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The rising global incidence of acute and chronic kidney diseases has increased 
the demand for renal replacement therapy. This issue, compounded with the 
limited availability of viable kidneys for transplantation, has propelled the search 
for alternative strategies to address the growing health and economic burdens 
associated with these conditions. In the search for such alternatives, significant 
efforts have been devised to augment the current and primarily supportive 
management of renal injury with novel regenerative strategies. For example, 
gene- and cell-based approaches that utilize recombinant peptides/proteins, 
gene, cell, organoid, and RNAi technologies have shown promising outcomes 
primarily in experimental models. Supporting research has also been conducted to 
improve our understanding of the critical aspects that facilitate the development 
of efficient gene- and cell-based techniques that the complex structure of the 
kidney has traditionally limited. This manuscript is intended to communicate 
efforts that have driven the development of such therapies by identifying the 
vectors and delivery routes needed to drive exogenous transgene incorporation 
that may support the treatment of acute and chronic kidney diseases.
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1. Introduction

Renal dysfunction can be acute, chronic, or end-stage, manifesting in several forms. The 
most prevalent cases arise from congenital disorders (1, 2); nephrotoxicity (3); ischemia–
reperfusion injury (4, 5); systolic hypotension and hemorrhage (6); hypertension (7); trauma 
(8); essential mineral deficiencies (9); malignancies (10); diabetes (11, 12); and viral infections, 
as observed with the COVID-19 pandemic (13, 14). Paradoxically, hospitalization and the 
complex relationship between various forms of kidney injuries are additional factors that can 
contribute to renal dysfunction. For decades, clinicians have been aware of the risk of patients, 
with and without underlying kidney injury, developing hospital-acquired kidney malfunction 
(15). They have also been aware of the complex connection between acute kidney injury (AKI) 
and chronic kidney disease (CKD), whereby they are closely linked and likely promote one 
another. For instance, CKD is a reputed risk factor for developing AKI during hospitalization, 
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while there is a growing body of evidence illustrating how AKI 
accelerates the progression of CKD in critically ill patients (16), 
particularly hospitalized COVID-19 patients (17).

From a global perspective, it is estimated that AKI affects 
approximately 13 million people annually, contributing to nearly 1.7 
million annual deaths (18). Traditionally, AKI is a critical stage in 
injury progression because of its reversibility (19). In comparison, 
CKD affects over one-tenth of the general population worldwide (20), 
and eventually, these conditions contribute to 5–8 million patients 
with end-stage renal disease (ESRD) requiring renal replacement 
therapy (21). AKI is a critical stage in injury progression because of 
its reversibility (21). Beyond this stage, treatment options are limited 
to renal replacement therapy, as the dysfunction has progressed to 
either CKD or, unfortunately, ESRD. It was previously thought that 
AKI, a sudden reduction in renal function, was fully reversible in all 
patients (22). Nevertheless, recent research has gone against this 
notion based on studies conducted on individuals with reduced 
filtration capacities who are more prone to ESRD progression and 
mortality than a reversal of the condition (23, 24).

These facts highlight significant clinical problems that arise from 
acute and chronic disorders. Furthermore, from a financial 
perspective, these patients often require long-term hospitalization, 
which imposes substantial burdens on the healthcare systems related 
to the etiologies of these disorders and their complex and debilitating 
interconnected nature. Likewise, these conditions lead to enhanced 
levels of morbidity and reductions in quality of life. Overall, 
morbidity and mortality are expected to rise exponentially with the 
growing rates of diabetes and cardiovascular diseases. Given that 
current treatments are mainly preventive strategies and early 
detection and intervention can be difficult in asymptomatic patients 
with these conditions, there is a definite need for alternative strategies 
to address the growing prevalence and subtle progression of renal 
dysfunction and ultimately reduce the need for renal replacement 
therapy (5, 25–28).

In the search for such strategies, significant efforts are being 
devised to augment the present-day management of kidney disease 
using novel regenerative strategies. For example, gene- and cell-based 
approaches that utilize recombinant peptides/proteins, gene, cell, 
organoid, and RNAi technologies have shown promising outcomes 
primarily in experimental models (25). Accompanying efforts have 
also been devised to facilitate the development of efficient gene- and 
cell-based techniques. This article is intended to convey efforts that 
have advanced these alternative forms of therapy by highlighting 
vectorization and mechanisms that can elicit genetic modifications 
that may support the treatment of acute and chronic kidney diseases.

2. Efforts to devise effective genetic 
alterations in the kidney

2.1. Recombinant peptides and proteins

Various methods have been proposed to deliver exogenous genes 
to mammalian cells. For the kidney, attempts have been made to 
protect and repair renal function by targeting single genetic loci with 
purified protein products, plasmids, recombinant growth factors, and 
viruses encoding peptides and proteins. Intravenous doses of human 

growth factor (HGF), which has anti-fibrotic properties, have 
promoted kidney repair in rodents with CKD (29, 30). Injections of 
IL-18BP, a recombinant interleukin, improved renal function, 
restored tubular morphology, and decreased tubular necrosis and 
apoptosis in small animal models (31). Cell-based approaches 
conducted with intrarenal injections of human placenta-derived stem 
cells have also ameliorated damage in ischemia–reperfusion settings 
of AKI (32).

Single intravenous doses of plasmids encoding human growth 
factor (HGF) have also been shown to improve tissue regeneration 
and protect tubular epithelial cells from injury and apoptosis during 
acute renal failure (33). In such earlier studies, HGF also helped 
preserve renal structure in chronic injury models by activating matrix 
degradation and reducing fibrosis (34–36). Researchers have tested 
growth hormone-releasing hormone (GHRH) plasmid-based therapy 
in feline and canine chronic injury models. GHRH-treated animals 
displayed better levels of erythropoiesis, urea and creatinine 
clearances compared to controls (37), as well as more recent findings 
related to its therapeutic effect in CKD patients (38).

It has been well-established that adenovirus and adeno-associated 
virus vectors are two of the most efficient systems for transducing 
non-dividing cells (39) and have been used to target a variety of 
genetic loci. Other experimental studies have used adeno-based 
vectors for gene transfer. Lately, such vectors have displayed the long 
noncoding RNA-H19-derived attenuation of acute ischemic kidney 
injury (40) and the mediation of AKI to CKD progression (41). These 
vectors have also helped preserve renal microvascular morphology 
and suppress the progression of AKI via the upregulation of vascular 
endothelial growth factor (VEGF) and angiopoietin (42). 
Interestingly, the inhibition of VEGF also promoted structural and 
functional improvements in diabetes-induced chronic kidney disease 
(43, 44). These findings support the long-derived notion that 
repairing ischemic and toxic renal injuries depended critically on 
regulating a redundant, interactive network of cytokines and growth 
factors (45). Thus, it would be of value to devise a system that could 
reliably modulate gene expression levels to return kidney function to 
near-normal baseline levels without inducing viral-derived toxicity. 
However, despite its benefits regarding kidney function recovery, 
recombinant agents have short half-lives and require large doses (46). 
Further studies are needed to demonstrate consistent safety and 
effectiveness levels before these experimental techniques become 
clinical practice (47).

2.2. Cell and organoid transplantation

Cell therapy is another option to improve tissue/organ 
regeneration. Research efforts initially focused on cell transfer for 
bone marrow and organ transplantation, blood transfusion, and in 
vitro fertilization (48). Nowadays, this technique is being developed 
to facilitate the repair/replacement of damaged and lost 
compartments in solid organs. This regenerative strategy transplants 
cells, which deliver genes of interest, to targeted organs. To achieve 
this purpose, investigators use the following cells: stem or progenitor 
cells; mature, functional cells from humans or animals; and 
genetically modified and transdifferentiated cells (48–51). More 
recently, organoids, transdifferentiated three-dimensional cell 
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clusters, arose as another promising option to enhance or restore 
kidney function (52–54).

Papazova et  al. published a meta-analysis of CKD and cell 
therapies (55). This analysis demonstrated that more than half of all 
cell-based studies focused on the therapeutic effects of single 
intravenous doses of mesenchymal stem cells. About a third of the 
studies investigated the preventive benefits of such therapies, while 
half of the studies focused on their therapeutic benefits. For instance, 
in AKI animal models, mesenchymal stem cells improved renal 
function (56–58). Even though the specific mechanisms of action are 
still under investigation, these cells helped reduce renal fibrosis, 
improve remodeling, and promote neoangiogenesis (59). Kelly et al. 
also helped restore renal function using undifferentiated 
reprogrammed cells to generate sera amyloid A proteins in ischemia–
reperfusion, plus gentamicin- and cisplatin-based nephrotoxicity 
acute injury rat models (60).

Additional efforts have also reported the successful differentiation 
of embryonic and induced pluripotent stem cells into tubular, 
glomerular, and whole nephron organoids (61–68). A greater 
understanding of the roles of key signaling pathways has also allowed 
investigators to differentiate stem cell niches into various lineages. 
We believe that shortly, organoids derived from patients’ cells will 
be able to repopulate decellularized renal scaffolds and printed tissues 
or even be  injected back into the patients to restore their native 
dysfunction (69–71). Nevertheless, many technical (72–78) and 
ethical (79–87) issues still need to be solved in this field. It is well-
established that embryonic stem cell technology offers hope for new 
therapies, yet societal and moral incongruences limit their use. 
Teratoma, a hallmark of pluripotency (89–91), is a significant concern 
after implantation. The ability to culture and manipulate human stem 
cells indefinitely while simultaneously governing their differentiation 
characteristics offers excellent possibilities for the future of medicine 
(92–94).

2.3. RNA interference therapy

Another option within the growing arsenal of gene and cell 
therapy applications is RNA interference (RNAi). The discovery of 
mammalian RNAi is one of the most promising therapeutic strategies 
because it enables the silencing of any gene (95). RNAi is an 
advantageous technique, as it is easier to silence deficient and 
non-functional genes than replace them (96). Moreover, RNAi is the 
most practical approach thus far, as it is relatively low cost, highly 
specific, and can inhibit multiple genes of various pathways 
simultaneously (97). This technology can help identify complex 
genetic loci essential to human pathology.

RNAi is an endogenous process that allows cells to regulate their 
genetic activity. This process remains central to gene expression and 
the defense against mutagenesis generated from viral genes and 
transposons (98). The primary methods that induce exogenous 
RNAi-based gene silencing utilize micro-RNA (miRNA), small 
interfering RNA (siRNA), and small hairpin RNA (shRNA) systems. 
Since Napoli and Jorgensen first reported on this phenomenon in 
1990 (99), there has been a growing interest in using RNAi technology 
to improve renal health (95). This interest has directed RNAi-based 
research focused on improving the study and management of kidney 

disease by identifying miRNA targets and AKI biomarkers. It has also 
prompted interest in improving the delivery of exogenous silencing 
mediators and siRNA and shRNA targets to either reduce or protect 
against renal injury. Currently, lipid nanoparticles are the most 
frequently used formulation to mediate silencing (100), and further 
work has been proposed to determine in vivo silencing efficiencies 
and investigate other small RNAs that can affect post-transcriptional 
gene silencing (101, 102).

From a diagnostic standpoint, several studies have provided 
fundamental insight into renal injury biomarkers. Valadi et  al. 
showed that miRNAs recovered from urinary exosomes provide 
information about the kidney in standard and injury settings (103). 
Zhou et  al. showed that miR-27b and miR-192  in these urinary 
vesicles could differentiate between glomerular and tubular damage 
(104). Also, from a therapeutic standpoint, exosomes containing 
miRNAs can enter recipient cells by membrane surface proteins. This 
phenomenon offers a new mechanism for cell–cell communication 
and gene delivery (105–111). In a study by Cantaluppi et al., 
microvesicles enriched with pro-angiogenic miR-126 and miR-296 
were injected into the vein, enhanced tubular cell proliferation, and 
reduced apoptosis and leukocyte infiltration (112). In AKI settings, 
such silencing has demonstrated that the caspase-3 siRNA improved 
ischemic reperfusion (IR) injury with reduced caspase-3 expression 
and apoptosis, better renal oxygenation and acid–base homeostasis, 
and the silencing IKKβ using siRNA diminished inflammation and 
protected the kidneys against IR injury (113). Whereas, in a 
glomerulonephritic chronic injury model, MAPK1 suppression 
remarkably improved kidney function, reduced proteinuria, and 
ameliorated glomerular sclerosis (113).

RNAi therapy could be a valuable surrogate for treating patients 
with AKI by reducing the uptake of nephrotoxins, ameliorating 
immunologic response mechanisms, and downregulating harmful 
disease mediators (114–116). Such characteristics have prompted 
interest in the knockdown of dynamin-2 (Dyn2) and low-density 
lipoprotein-related protein 2 (LRP2). Dyn2 is a critical component of 
the endocytic pathway (117–119), and its knockdown blocks clathrin-
coat-dependent endocytosis and coat-independent fluid phase probe 
uptake in several epithelial cell lines (120). In animal models, 
silencing LRP2 reduced gentamicin toxicity in proximal tubule 
epithelial cells (121–123). In a rat model of kidney transplantation, 
caudal vein administration of siRNAs, which targeted connective 
tissue growth factor (CTGF), decreased renal fibrosis (124). CTGF is 
an essential pro-fibrotic cofactor that is downstream from TGF-β. 
Electroporation also enhanced the delivery of siRNA targeted to 
TGF-β1, significantly reducing glomerular matrix deposition and 
proteinuria four and 6 weeks after anti-Thy-1 administration 
(124, 125).

In other studies, which have investigated the renotherapeutic 
potential of siRNA technology (126), siRNA sequences were 
systemically delivered to inhibit the expression of p53. This strategy 
significantly reduced ischemia-induced p53 upregulation and helped 
attenuate ischemic and cisplatin-induced AKI (127, 128). The 
oligonucleotides used to facilitate RNAi contained stabilizing 
modifications with a relatively low affinity for albumin and other 
plasma proteins. Such modifications diminished their hepatic 
distribution and degradation in serum and facilitated their renal 
clearance and endocytic tubular uptake (128). This fact limits the 
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class of therapeutic siRNAs for such procedures because of the 
natural tendency of systemically delivered materials to accumulate 
within the liver.

In comparison, the expression of transgenic shRNA targeting the 
proapoptotic BIM gene prevented the development of polycystic 
kidney disease in BCl-2 deficient mice (129). However, the mortality 
rate in this study was high. Additional research is required to identify 
whether the high mortality rate was due to the sequence of the shRNA.

3. Mechanisms for exogenous 
transgene expression in mammalian 
cells

One major challenge to developing gene- and cell-based strategies 
is our need to understand their mechanisms of action. Regardless of 
the performance of recombinant peptides, DNA vectors, stem cells, 
and RNAi agents, mechanisms related to each approach still need to 
be  uncovered (47, 69, 130–135). This gap in knowledge makes it 
difficult to optimize these techniques. Nevertheless, the basic 
principles for successful transgene expression have been documented 
(130–134, 136–142). All such therapies rely on efficiently delivering 
exogenous genes to widespread cellular targets. The techniques 
discussed earlier have achieved this by directly using DNA/RNA 
strands or inserting these molecules into gene transport vehicles. 
Once the genetic materials enter the nuclei, they either aid or inhibit 
the expression of the gene product(s) of interest in transformed cells 
and their progeny.

Likewise, the overall efficacy of RNAi in inducing gene silencing in 
any cell depends on the ability of the dsRNA reagent to access the 
subcellular compartment containing the RNA-induced silencing 
complex (RISC) and other components of the RNAi machinery (143, 
144). This subcellular compartment is in the perinuclear region of the 
cytoplasm. However, if cell transplantation mediates transgene 
expression, the gene delivery process will rely on integrating the 
delivered cells, native cellular division, and intercellular communication. 
Furthermore, the goal is to facilitate gene expression/inhibition once 
exogenous cells are integrated into tissues and organs (145, 146).

For instance, previous work suggests that the effectiveness of gene 
therapies using adenoviral (147) and siRNA (148) vectors depends on 
the dose and timing of transgene administration. Such dependence 
drives variations in drug concentrations at the respective sites of the 
gene expression and silencing machinery.

It is, therefore, essential to understanding how effective 
concentrations within the cytoplasm affect therapeutic potency based 
on dosing and timing of transgene administrations. This factor is a 
topic of practical importance, as the mechanism(s) will determine the 
intracellular fate of exogenous transgenes from non-viral, viral, and 
cellular sources and aid the development of effectual medical strategies 
that can control the duration and extent of induced genetic traits. 
Alternatively, for approaches that focus on whole organ engineering 
and re-engineering, additional insights are needed into the 
mechanisms behind the successful repopulation of tissue and organ 
templates (65). Researchers must also determine the characteristics 
required to facilitate exogenous genetic and cellular harmony for 
viable transplantable kidneys before these findings can translate into 
clinical practice.

4. Key aspects to facilitate 
advancements in renal genetic 
medicine

4.1. The development of efficient delivery 
techniques

Over the past 30 years, many methods have been proposed to 
deliver exogenous genes and cells to target organs (32, 39, 46, 97, 100, 
102, 130, 142, 149–157). From a fundamental viewpoint, these 
techniques seek to provide inexpensive and rapid alternatives to 
pronuclear microinjection-derived transgenic models and platforms 
for translational studies (121). However, a limiting step in this process 
is the need for more reliable delivery systems. Several reports have 
indicated inconsistent outcomes regarding the effectiveness of existing 
gene and cell transfer techniques. Studies in the kidney have illustrated 
this variability (155, 156, 158–164). In general, an in vivo gene and cell 
transfer system’s success relies on various factors. The factors include:

 • the ability to deliver vectors to the target cells/organ;
 • the time the target cell/organs take to express the exogenous 

materials; and
 • the number of cells/organs that express the required phenotype.

Other essential factors are the resulting expression levels, cellular 
turnover rates, the reproducibility of the process, and the severity of 
the injury that may result from it (95, 130). Thus, most existing 
strategies remain experimental (165–168).

Researchers must consider organ morphology and function 
variations as crucial elements to improve the overall efficacy of 
delivery strategies (169, 170). Thus, efficient gene and cellular 
therapies for treating kidney diseases remain challenging (47, 171–
175). The structure of the renal vasculature and its unique 
characteristics are prominent limiting factors. Systems focusing on 
proximal tubular epithelial cellular uptake could be helpful (175–177). 
However, a potential drawback to this technique is the variations in 
the glomerular permeability of different molecules (178–183). 
Likewise, the unknown degree to which these cells are accessible for 
gene delivery at the basolateral surface via the peritubular capillaries 
provides another level of complication. Studies using adenovirus 
vectors have demonstrated the need to improve our understanding of 
renal physiology and our ability to manipulate it.

Intra-arterial kidney injections, pre-chilled for extended periods, 
facilitated transgene expression within the cortical vasculature (184). 
Combining the pre-chilling treatment with vasodilators provided gene 
transfer in the outer medulla’s inner and outer strips (184). Other 
studies have successfully presented adenoviral vector delivery to rat 
glomerular and tubular compartments by infusions into the right 
renal artery (185, 186). This technique provided high levels of 
transgene expression for 2–4 weeks without causing significant 
damage (187, 188). Analogous concentrations of the same adenovirus 
vector were suspended in different volumes and delivered to the 
kidney via arterial injections and pelvic catheter infusions. This 
approach facilitated transgene expression in distinct kidney regions 
(188, 189). After injecting vectors into the aorta at a location proximal 
to the left renal artery, the investigators observed transgene expression 
only in proximal tubular cells.
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Tail vein and retrograde ureteral adenovirus infusions that target 
aquaporin water channels also reported different expression levels, 
which depended on the transgene infusion site (130, 156). Aquaporin 
1 transgenes were expressed in apical and basolateral membranes of 
proximal tubule epithelial cells in the renal cortex but not in the 
glomerulus, loop of Henle, or collecting duct. Conversely, ureteral and 
renal papilla transgene expression was reported through ureteral 
infusions. The researchers also reported less intense and patchy 
expression in cortical collecting ducts. Ashworth et  al. (190) and 
Tanner et al. (161) explored the direct transfer of adenovirus vectors 
that carried transgenes into individual nephron segments using 
micropuncture techniques. They observed site-specific transgene 
expression within the injected tubules or vascular welling points. 
These results also demonstrated the utility of intravital fluorescent 
multiphoton microscopy to monitor protein expression in live animals 
directly. However, one limitation of the approach was that the injection 
sites were the only places where the investigators found 
transgene expression.

These studies further highlight the challenge of introducing genes 
into multiple renal cell types due to the intricate anatomy of the 
kidney, even when using the same type of vector. Results depend on 
the transgene infusion site, volume, and rate, as well as the organ 
temperature and the use of vasodilators. Hydroporation may address 
these challenges by increasing vascular permeability and thus 
efficiently delivering exogenous substances throughout the kidney. 
Hydrodynamic fluid delivery impacts fluid pressures within thin, 
stretchable capillaries (191, 192). The enhanced fluid flow generated 
from pressurized injections produces rapid and high fluctuations in 
blood circulation. Theoretically, it increases the permeability of the 
capillary endothelium and epithelial junctions by generating transient 
pores in plasma membranes that facilitate the cellular internalization 
of macromolecules of interest (47, 191, 193). The unique anatomy of 
the kidney provides various innate delivery pathways (artery, vein, and 
ureter) that may be  ideal for hydrodynamic gene delivery. In our 
recent reports, this delivery method provided efficient and lengthy 
plasmid and viral expression in live rat kidneys (130, 142, 194) and 
facilitated protection against moderate forms of ischemia–reperfusion 
injury (154, 195–197). A summary of delivery methods and associated 
vectors is presented in Table 1.

4.2. Exogenous transgene vectors

The gene of interest is infused either systemically or directly 
into the kidney. Apart from the artery, vein, and ureter, direct 
infusions into the renal capsule and parenchyma using 

micro-needles (161, 190) or blunt-tip needles (157, 198) have also 
been proposed, along with indirect tail vein (191, 196, 199) and 
peritoneum (200, 201) gene delivery schemes. As indicated before, 
the success of these methods varies per the anatomical location of 
the targeted cells and the types of vectors used to support gene 
expression. These vectors include PRC-amplified DNA fragments; 
plasmid DNA; liposomes; polycations; viral vectors; and stem cells 
(130). If transformed cells act as gene vectors to promote transgene 
expression, they may be  engineered with various anchoring or 
binding proteins/peptides to assist their integration into the tissue 
of interest (202). This process mimics endogenous viral capsid 
components, which mediate receptor binding and support entry 
into mammalian cells. As observed in some injured kidney animal 
models, local healing/regeneration factors facilitate the 
incorporation of exogenous renal cells delivered intravenously (55). 
An outline of transgene vector incorporation into the renal 
epithelium is presented in Figure 1.

Apart from achieving successful genetic modifications, we must 
also focus on exogenous transgene delivery and expression effects. 
Such considerations relate to the levels of cellular toxicity and injury 
that may occur during and after the transfer process. Endo- and 
exonucleases efficiently degrade DNA fragments (203, 204). 
However, an overload of exogenous DNA fragmentation may 
stimulate Ca2+ endonuclease activity, degrade endogenous DNA, 
and mediate cell death (205). Similarly, plasmid DNA, prepared 
from bacteria, may induce unmethylated CpG motif toxicity that 
can trigger lower respiratory tract inflammatory responses (206). 
Oligonucleotide therapies have also been shown to stimulate 
immune system responses and induce hepatotoxicity and 
nephrotoxicity (207). Virus-induced toxic and immunogenic 
responses from high titers, protein overexpression, and capsid 
protein infections are also topics of significant concern (208). Long-
term mutagenesis may also be an issue. Reports have shown such 
events using recombinant adenovirus systems (209, 210). 
Specifically, slow-transforming insertional mutagenesis may arise 
from retroviruses that incorporate into an organism’s genome (211), 
and in vivo stem cell quiescence can tamper with DNA repair 
mechanisms to further support mutagenesis (212).

5. Conclusion

There is a dire need to improve the clinical management of acute 
and chronic renal diseases. Preliminary outcomes in experimental 
models with kidney dysfunction managed by gene-based and cell-
based approaches are promising. Recent findings echo the traditional 

TABLE 1 An overview of delivery methods and associated vectors.

Infusion Site Infusion Method Infusion Compound Auxiliary Gene Enhancer

Tail vein Systemic injection (normal volume and 

pressure)

Plasmid and viral vectors, and cells None reported

Renal artery, renal vein, renal 

pelvis, and ureter

Low pressure injections

Hydrodynamic injections

DNA particles, liposomes, polycations, stem 

cells, and viral vectors

Electroporation, microbubble cavitation, 

ultrasound cavitation, ultrasound and 

microbubble coupled cavitation

Renal capsule Micropuncture and blunt needle 

injections

Viral vectors None reported
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FIGURE 1

A schematic overview of the renal gene- and cell-based approaches highlights vectorization, delivery mode, and pathways supporting transgene 
incorporation and expression.
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need to address several challenges before these therapies become 
viable clinical options. Existing techniques provide a wide range of 
success rates and, in some instances, also induce harmful side effects. 
Thus, further research is needed to develop methods to induce 
transient or permanent modifications with minimal physiological 
interference or damage as we aim to improve the treatment of acute 
and chronic kidney diseases.
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