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Sickle Cell Disease (SCD) is a group of inherited hemoglobinopathies. Sickle cell 
anemia (SCA) is caused by a homozygous mutation in the β-globin generating 
sickle hemoglobin (HbS). Deoxygenation leads to pathologic polymerization 
of HbS and sickling of erythrocytes. The two predominant pathologies of SCD 
are hemolytic anemia and vaso-occlusive episodes (VOE), along with sequelae 
of complications including acute chest syndrome, hepatopathy, nephropathy, 
pulmonary hypertension, venous thromboembolism, and stroke. SCD is 
associated with endothelial activation due to the release of danger-associated 
molecular patterns (DAMPs) such as heme, recurrent ischemia–reperfusion injury, 
and chronic thrombin generation and inflammation. Endothelial cell activation 
is mediated, in part, by thrombin-dependent activation of protease-activated 
receptor 1 (PAR1), a G protein coupled receptor that plays a role in platelet 
activation, endothelial permeability, inflammation, and cytotoxicity. PAR1 can also 
be  activated by activated protein C (APC), which promotes endothelial barrier 
protection and cytoprotective signaling. Notably, the APC system is dysregulated 
in SCD. This mini-review will discuss activation of PAR1 by APC and thrombin, the 
APC-EPCR-PAR1 axis, and their potential roles in SCD.
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Introduction

Sickle cell disease

Sickle cell disease (SCD) is the most common inherited hemoglobinopathy worldwide. 
More than 300,000 babies are born with SCD annually and this rate is expected to increase over 
the next 30 years (1). The majority of cases are concentrated in sub-Saharan Africa and southern 
Asia, where sickle cell trait provides protection from malaria (2). Sickle Cell Anemia (SCA) is 
caused by a single nucleotide mutation in the gene for beta (β) globin. Normal hemoglobin is a 
tetramer of two α and two β subunits, each of which contain a heme molecule, and is the critical 
oxygen carrying protein in red blood cells (RBCs). In SCA, an A to T transversion in the sixth 
codon results in the substitution of a valine (Val) for a glutamine (Glu). This hydrophobic valine 
residue confers an adhesive property to HbS (comprised of two α and two βS subunits); thus, 
when it becomes deoxygenated it forms rigid polymers in RBCs (Figure 1). This results in the 
sickling of RBCs, causing hemolysis and anemia. Hemolysis releases HbS and free heme into 
the circulation, acting as danger associated molecular patterns (DAMPs) to activate the 
endothelium and leukocytes. The activated endothelium upregulates adhesion molecules 
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E-selectin, P-selectin, vascular cell adhesion molecule (VCAM), 
intercellular adhesion molecule (ICAM), and von Willebrand Factor 
(VWF). Activated neutrophils, platelets, and sickled RBCs form 
multicellular aggregates in the circulation, which adhere to the 
circulating endothelium, leading to vaso-occlusive episodes (VOE). 
These two primary pathologies, hemolytic anemia and VOE, are 
accompanied by sequelae of acute and chronic complications such as 
acute painful crises (3), chronic pain, stroke (4–8), venous thrombosis 
and pulmonary embolism (9, 10), pulmonary hypertension (11), acute 
chest syndrome (12), sickle nephropathy (13, 14), among others. More 
comprehensive reviews of SCD and its complications can be found 
elsewhere (3, 15).

Current treatments for SCD

Despite the significant global burden of SCA, there are only four 
FDA-approved drugs currently available to patients: hydroxyurea, 
L-glutamine, crizanlizumab, and Voxelotor (16). Hydroxyurea inhibits 
HbS polymerization and sickling by increasing production of fetal Hb 
(HbF) (17). L-glutamine reduces oxidative stress (18). Crizanlizumab 
inhibits P-selectin-dependent sRBC-endothelial interactions (19). 
Voxelotor changes the affinity of HbS for oxygen and inhibits 
hemoglobin polymerization (20). These therapies modestly limit the 
severity and frequency of VOC (17–19). Many SCA patients also 
routinely undergo whole blood transfusions and red blood cell 
exchange therapy (3, 21). Curative options such as hematopoietic stem 
cell transplantation (HSCT) and gene therapy (GT) are also being 

investigated (22). Allogeneic HSCT has been performed in 
approximately 2,000 patients in the past 30 years. A recent meta-
analysis revealed that HSCT reduces the incidence of VOE, but it also 
identified risks including graft-versus host disease, graft failure, 
mortality, and secondary malignancies (23). The GT strategies 
currently being evaluated are correction of the HbS mutation, gene 
transfer to overexpress HbA in hematopoietic stem cells, and 
knockdown of BCL11a, the negative regulator of HbF, to increase HbF 
production and prevent sickling (3, 22–24). Although these therapies 
are promising, the FDA may require long-term follow up of 
10–15 years after gene therapy to evaluate safety risks before they will 
be approved for clinical use (25). HSCT and GT carry significant costs 
and medical resources, and may not be  feasible in low-resource 
countries where SCA is most prevalent (22). Recent GT trials have 
also been paused due to unexpected toxicity (26). The limited range 
of approved drugs for SCA, combined with an ageing population 
facing severe clinical complications, highlights the need to investigate 
new treatment options that are accessible and effective. Several drugs 
targeting downstream events are currently being evaluated in Phase II 
and III clinical trials, including anti-sickling agents, anti-inflammatory 
agents, and anticoagulants (3, 15).

Coagulation activation in SCA

A hallmark of SCA is activation of coagulation (27–33). Tissue 
factor (TF) is the primary initiator of extrinsic coagulation and is not 
normally expressed on intravascular cells. In SCA, TF expression is 

FIGURE 1

Sickle cell anemia is caused by a single nucleotide mutation in the HBB gene. Normal hemoglobin (HbAA) is formed from two α-globin and two 
β-globin subunits. The HBB gene encodes β-globin. In SCD, an adenine to thymine substitution changes the 6th codon of the mature protein from a 
glutamine to a valine. Sickle hemoglobin (HbSS) contains two α-globin and two βS-globin. Upon deoxygenation, the presence of a hydrophobic valine 
residue in HbSS causes the molecules to polymerize, leading to stiffening of the RBC.
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upregulated on leukocytes and endothelial cells (34–37). TF is a 
transmembrane protein and obligate cofactor for coagulation factor 
VIIa (FVIIa), activating factor X (FX) to FXa, which converts 
prothrombin to thrombin. Thrombin cleaves fibrinogen into fibrin, 
leading to clot formation. We and others have shown that TF (4, 5, 37, 
38), FXa (6, 39), thrombin (39, 40), and fibrin(ogen) (41, 42) 
contribute to inflammation, cardiovascular dysfunction, vascular 
congestion, nephropathy, and microvascular stasis (43) in mouse 
models of SCA. In addition to its prothrombotic role, thrombin can 
induce signaling through Protease Activated Receptor-1 (PAR1).

Protease activated receptors

Protease activated receptors (PARs) are a family of G-protein 
coupled receptors (GPCR) consisting of PAR1, PAR2, PAR3, and 
PAR4. PARs share a conserved mechanism of irreversible activation 
by proteolytic cleavage of specific amino acid residues on the 
extracellular N-terminus. This results in the exposure of a novel 
N-terminal peptide, or tethered ligand, which binds to extracellular 
loop 2 and induces a conformational change in the GPCR to signal 
through intracellular G proteins (44). PARs are subject to proteolysis 
by multiple proteases at different amino acid residues on the 
N-terminus, resulting in activation of different signaling pathways and 
outputs (45). The focus of this review is PAR1, which was first 
identified as the main thrombin receptor on platelets (46–48), 
triggering activation and aggregation of platelets that is critical for 
both hemostasis and thrombosis (49). Importantly, PAR1 is also 
expressed on leukocytes and endothelial cells. Thrombin cleaves PAR1 
at arginine 41 (R41) (50), generating a tethered ligand that binds to a 
conserved sequence in extracellular loop  2 (51). This enables the 
C-terminus to engage with Gαq and Gα12/13 which leads to 
inflammation, endothelial barrier permeability, and cytotoxicity (52, 
53) (Figure  2). Thrombin/PAR1 activation of Gαq and Gα12/13 
upregulates inflammatory cytokines [interleukin-1 (IL-1), IL-6, and 
tumor necrosis factor α (TNFα)] and endothelial adhesion molecules 
[E-selectin, P-selectin, intracellular adhesion molecule 1 (ICAM-1) 
and vascular cell adhesion molecule 1 (VCAM-1)] via activation of 
MAPK and NFκB. G-protein mediated Ca2+ signaling promotes the 
release of Weibel Palade bodies to the endothelial surface, increasing 
P-selectin and von Willebrand Factor (VWF) release, thus increasing 
adhesion. These signaling pathways also cause apoptosis, through 
caspase activation, and endothelial barrier permeability, by 
modulating the cytoskeleton and disrupting tight junctions (54). 
Thrombin/PAR1 signaling is rapid, transient, and irreversible, due to 
the proteolytic cleavage of the protein. Signal termination is mediated 
by endocytosis of the receptor in clathrin-coated pits, and lysosomal 
degradation (55). Matrix metalloproteases MMP-1 and MMP-13 also 
cleave PAR1 at aspartate 39 (D39) and serine 42 (S42), respectively, 
with signaling outputs similar to thrombin (53).

Interestingly, PAR1 is also cleaved by activated protein C (APC), 
although with lower affinity than thrombin (56). The zymogen protein 
C binds to endothelial protein C receptor (EPCR), a type 
I transmembrane protein that binds the Gla domain of protein C and 
APC (57). On endothelial cells, the majority of EPCR is found in 
caveolin-1 (Cav1)-positive lipid rafts, where it colocalizes with PAR1 
(58), which is required for cytoprotective signaling (59, 60). When 
bound to EPCR, protein C is cleaved by thrombomodulin-bound 

thrombin to generate the active serine protease APC, which cleaves 
PAR1 at Arg46 and activates multiple signaling pathways. APC/PAR1 
signaling recruits and phosphorylates β arrestin-2, which activates 
Rac1, inhibits NFκB, and increases the barrier integrity of the 
endothelium (59). β arrestin-2 also activates sphingosine kinase 1 
(SphK1), which converts the lipid messenger sphingosine into 
sphingosine-1-phosphate (S1P). In turn, S1P activates Sphingosine-1-
phosphate receptor-1 (S1PR1), which signals through Gi/Akt and 
disheveled 2 (Dvl2) for anti-apoptotic and anti-inflammatory 
signaling (61, 62). aPC/PAR1-induced β-arrestin 2 also phosphorylates 
ERK1/2 (61). APC thus promotes anti-inflammatory and 
cytoprotective signaling on ECs and preserves endothelial barrier 
integrity (60, 63–65) (Figure  2). APC’s cytoprotective and anti-
inflammatory activity is not limited to ECs, as it can also modulate 
activation of monocytes, macrophages, and neutrophils, but has no 
effect on platelets (66). It is expressed on leukocytes (67–69), 
keratinocytes (70), vascular smooth muscle cells (71), cardiomyocytes 
(72), and neurons (73, 74), The opposing effects of PAR1 activation by 
thrombin and APC is a classic example of biased agonist signaling (65, 
75), well described for other G-protein-coupled receptors including 
the neurokinin 1, angiotensin II type 1A, parathyroid hormone 1, μ 
opioid, and D2 dopamine receptors (76).

The dysregulated protein C system in SCA

APC is an important natural anticoagulant (77), in addition to its 
critical anti-inflammatory and cytoprotective role on the endothelium 
(78). Zymogen protein C is a glycoprotein produced by the liver. 
When activated by thrombin to its serine protease form APC, it 
irreversibly inactivates FVa and FVIIIa by proteolysis at arginine 
residues (79). Anticoagulant APC activity requires its cofactor protein 
S, a glycoprotein that binds negatively charged phospholipid 
membranes via its Gla domain (78). Dysfunction or deficiencies in the 
protein C—protein S system are associated with venous thrombosis 
(80–82). It is well-documented that individuals with SCD have 
deficiencies in both the antigen and activity levels of protein C and 
protein S (29, 83–89), and that they are further decreased during crisis 
(90). Protein C and protein S levels negatively correlate with markers 
of coagulation activation (88). Although deficiencies in this system 
have not been linked to VOC (29), lower levels of protein C and S are 
associated with a higher incidence of stroke in children and 
adolescents with SCA (87, 89, 91, 92). The low levels of protein C and 
S are likely caused by multiple factors common in SCA, including 
decreased synthesis due to liver disease (93), consumption due to 
chronic activation of coagulation, and binding to phosphatidylserine-
positive sickled RBCs (94).

Decreased EPCR expression and EPCR shedding occurs in 
inflammatory bowel disease (95), malaria (96), diabetes (97), lupus, 
cardiovascular ischemia–reperfusion injury (98), and endotoxemia 
(99). EPCR shedding is mediated by pro-inflammatory cytokines and 
proteases such as TNFα converting enzyme (TACE), A Disintegrin 
and Metalloproteinase-10 (ADAM-10) and ADAM-17. Interestingly, 
EPCR shedding has been observed in individuals and mice with SCD 
(100, 101), and EPCR-positive microparticles are found in the 
circulation of individuals with SCD (90). A recent abstract described 
loss of EPCR expression in the kidney vasculature and presence of 
soluble EPCR in the urine of aged sickle mice, a phenomenon that 
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could also be triggered in young sickle mice by infusion of a low dose 
of heme to mimic an acute sickling event (102).

Together, these observations describe dysfunction in regulation of 
the vascular endothelium. In SCD, the decreased availability of the 
natural anticoagulant APC and its cofactor protein S, along with 
diminished presence of endothelial EPCR could result in reduced 
cytoprotective APC/PAR1 signaling. Moreover, in a disease setting 
characterized by chronic thrombin generation, this imbalance might 
favor detrimental thrombin/PAR1 signaling. This imbalance could 
contribute to endothelial barrier dysfunction and vascular 
inflammation in SCD.

The role of PAR1 in SCA

The endothelium is chronically activated in SCA due to hemolysis 
(103), which contributes to the pathogenesis of vaso-occlusive events 
(VOE). Increased expression of adhesion molecules P-selectin and 
E-selectin on the endothelial surface promotes interaction with 
P-selectin glycoprotein ligand-1 (PSGL-1) and Cd11b/Cd18 (Mac1) 
on leukocytes, respectively (104). This event recruits sRBCs and 
platelets to form multicellular aggregates that drive vascular stasis and 
ultimately occlusion (105, 106). In vitro studies have demonstrated 

that activation of PAR1 with either thrombin or PAR1 agonist peptide 
drives the interactions between sickle RBCs and endothelial cells. This 
was found to be  dependent on the release of P-selectin and von 
Willebrand Factor (VWF) from endothelial Weibel-Palade bodies 
(107, 108). Infusion of PAR1 agonist peptide caused rolling adhesion 
of sRBCs to the vascular endothelium that was p-selectin dependent 
in sickle mice, suggesting a role of PAR1  in vascular stasis (109). 
We also investigated the thrombin/PAR1 axis in sickle mice at steady 
state. To determine the role of PAR1, we transplanted sickle bone 
marrow (BMSS) in PAR1−/− mice. Endothelial PAR1 deficiency did not 
affect the increased levels of thrombin generation (thrombin anti-
thrombin complexes, TAT), systemic inflammation (IL-6), endothelial 
activation (sVCAM) or neutrophil recruitment in the lung vasculature. 
Interestingly thrombin inhibition with dabigatran reduced TAT, IL-6 
and neutrophil recruitment to the organs (39). Agreeing with these 
results, Arumugam and colleagues found that decreasing expression 
of prothrombin reduces inflammation, vascular congestion, and 
improves survival of sickle mice (40). One possible interpretation of 
these data is that thrombin plays a role in endothelial activation and 
inflammation in SCD independent of PAR1, at least at steady state. An 
alternative hypothesis is that in BMSS PAR1−/− mice, the lack of PAR1 
also prevents beneficial APC/PAR1 signaling. Indeed, it has been 
shown that administration of APC to sickle mice can attenuate 

FIGURE 2

Biased agonism of PAR1 by thrombin and APC. Thrombin activation of PAR1, by cleavage at arginine 41 (R41) favors activation of Gαq and Gα12/13 
signaling pathways. This results in inflammation, endothelial activation and barrier permeability, and cytotoxicity. In caveolin 1 (Cav1)-positive lipid rafts, 
PAR1 colocalizes with endothelial protein C receptor (EPCR). Activated protein C (APC) binds EPCR and activates PAR1 by cleavage of arginine 46 (R46), 
recruiting β-arrestin and inducing anti-inflammatory and endothelial stabilizing signaling.
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thrombus formation in the cerebral microvasculature (101), indicating 
that APC is beneficial in SCD.

Since it is known that thrombin/PAR1 signaling contributes to 
endothelial P-selectin expression and sickle RBC adhesion, we also 
evaluated the role of this pathway in microvascular stasis. Using a 
dorsal skinfold chamber to evaluate blood flow in the skin 
microvasculature, we  found that inhibition of PAR1 with the 
irreversible orthosteric antagonist vorapaxar protected sickle mice 
from heme-induced microvascular stasis (43). Similar results were 
obtained in BMSS PAR1−/− mice, which also had significantly less 
endothelial P-selectin and VWF expression in lung tissue after heme 
treatment (43). These data suggest that thrombin/PAR1 activation 
might play a role in the cell–cell interactions that lead to VOC (43, 
109), and that APC/PAR1 signaling can be  beneficial (101), in 
SCD. Future studies should be  aimed at determining the role of 
PAR1 in other acute and chronic complications of SCD, including 
stroke, thrombosis, and acute chest syndrome.

Current therapeutic strategies to target 
PAR1

Most PAR1 antagonists were designed to attenuate thrombin-
mediated platelet activation and reduce thrombosis. Vorapaxar is an 
orally available antagonist that binds the extracellular pocket of PAR1 
irreversibly and with high affinity. It effectively blocks PAR1 activation 
by both thrombin and APC. In clinical trials, administration of 
vorapaxar in combination with dual antiplatelet therapy improved 
cardiovascular outcomes but increased the risk of bleeding, especially 
in patients with a history of stroke (110). Thus, its use is counter-
indicated in SCD patients. Recombinant APC (Xigris) was tested in 
pre-clinical models of sepsis, but had limited success and also 
increased the risk of bleeding in larger clinical trials (45). A signaling-
selective variant of APC with limited anti-coagulant activity, 3K3A-
APC, is also being tested for the treatment of stroke and amyotrophic 
lateral sclerosis (NCT02222714 and NCT05039268).

Another option for targeting PAR1 are small molecules. Q94 is an 
allosteric modulator that is thought to act at the intracellular face of 
PAR1. Although it inhibits PAR1-dependent platelet activation, it has 
limited efficacy on endothelial PAR1 signaling (111). Pepducins are a 
family of PAR1 modulators; they are biomimetic lipidated peptides 
that can enter the cell and target the intracellular loops of a receptor 
(112–114). One pepducin, PZ-128, is currently being tested in clinical 
trials for coronary artery disease (114) and has a promising safety 
profile. Parmodulins are small molecule allosteric modulators of 

PAR1, which bind the intracellular C-terminus and recruit β arrestin 
(115). They not only block thrombin-dependent PAR1 signaling; they 
can actually induce APC-like cytoprotective and anti-inflammatory 
signaling. Parmodulins have been shown to have significant anti-
thrombotic and anti-inflammatory effects in mouse models of venous 
thrombosis (116, 117), neurologic diseases (115), virus (118), and 
diabetes (119).

Conclusion

The APC-EPCR-PAR1 axis is plays an important role in 
maintaining vascular endothelial homeostasis, and several studies 
described herein suggest that this pathway is dysfunctional in 
SCA. We  speculate that chronic thrombin generation which can 
activate detrimental PAR1 signaling, paired with decreased APC/
PAR1 signaling due to APC consumption and EPCR shedding, might 
play a role in the activated vascular endothelium in SCD.
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