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Objective: The purpose of this study was to evaluate the effect of estrogen 
receptor 1 (ESR1) polymorphisms on the development of medication-related 
osteonecrosis of the jaws (MRONJ) in women with osteoporosis.

Methods: A total of 125 patients taking bisphosphonates was evaluated the 
relationship between MRONJ occurrence and single nucleotide polymorphisms 
(SNPs) of ESR1. Clinical information was collected, including current age, 
treatment duration, and comorbidity. Univariate and Multivariable regression 
analyzes were performed to evaluate the independent predictive factors for 
MRONJ occurrence. Predictive models were constructed using machine learning 
methods such as Lasso regression, Random forest (RF), and Support vector 
machine (SVM). The area under the receiver-operating curve (AUROC) was used 
to evaluate the performance of a binary classifier.

Result: Two SNPs of ESR1 (rs4870056 and rs78177662) were significantly 
associated with MRONJ development. Patients with variant allele (A) of rs4870056 
showed 2.45 times (95% CI, 1.03–5.87) the odds of MRONJ occurrence compared 
to those with wild-type homozygote (GG) after adjusting covariates. Additionally, 
carriers with variant allele (T) of rs78177662 had higher odds than those with 
wild-type homozygote (CC) (adjusted odds ratio (aOR), 2.64, 95% CI, 1.00–6.94). 
Among demographic variables, age ≥ 72 years (aOR, 3.98, 95% CI, 1.60–9.87) and 
bisphosphonate exposure ≥48 months (aOR, 3.16, 95% CI, 1.26–7.93) were also 
significant risk factors for MRONJ occurrence. AUROC values of machine learning 
methods ranged between 0.756–0.806 in the study.

Conclusion: Our study showed that the MRONJ occurrence was associated with 
ESR1 polymorphisms in osteoporotic women.
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1. Introduction

Bisphosphonates (BPs) are commonly used agents with anti-
resorptive actions for skeletal protection in osteoporosis, multiple 
myeloma, and cancer bone metastasis (1, 2). Despite their clinical 
usefulness, they have some limitations because of safety concerns. In 
2003, Marx first reported 36 cases of jaw bone necrosis that appeared to 
be related to BPs (3). Since then, similar cases have been reported, which 
are commonly called bisphosphonate-related osteonecrosis of the jaws (4, 
5). In 2014, the American Association of Oral and Maxillofacial Surgeons 
(AAOMS) changed to the broad term “Medication-Related Osteonecrosis 
of the Jaws” (MRONJ) (6), as it is not only caused by bisphosphonates, 
but also by other anti-resorptive and anti-angiogenic drugs (7).

As case reports of MRONJ increased, a large number of researches 
have been performed to find the mechanisms, and its pathogenesis 
presumed disturbed bone remodeling, inflammation or infection, 
altered immunity, and angiogenesis inhibition (8–10). It was reported 
that 63.7% of MRONJ cases are related to tooth extraction (11). 
Therefore, the influence of medications including BPs on bone 
remodeling has been extensively studied (12). Bone remodeling consists 
of three consecutive phases: resorption, reversal, and formation (13, 
14). During the healing period of tooth extraction, especially in the 
early stages, osteoclastic resorption of the bone is considered the first 
important feature to repair from bone remodeling (15).

Estrogen is a well-known regulator of bone turnover and acts by 
binding estrogen receptors (ESR) (16–18). For bone remodeling, it has 
been reported that estrogen receptor 1 (ESR1, ERα) affects both 
osteoblasts and osteoclasts, and ESR2 (ERβ) mainly affects osteoblasts 
(19–21). ESR1 mediates the direct effects of estrogen on osteoclasts. 
For the effects on osteoblast, estrogen binds ESR1 of osteoblast 
progenitors and leads to attenuated bone resorption at the endo-
cortical surface. Additionally, the ESR1 of osteoblast progenitors 
stimulates periosteal bone development in response to mechanical 
strain, independently of estrogens (22, 23).

ESR1 is located on chromosome 6q25. Genetic screening of the 
ESR1 has found several meaningful polymorphic sites. Among 
polymorphisms, rs2234693 (PvuII) has been studied most actively, 
especially for its effects on bone mineral density and fracture risk, 
although results are conflicting (24, 25). Given the wide role of ESR1 in 
bone turnover, ESR1 polymorphisms in postmenopausal women could 
also be considered in the occurrence of MRONJ. However, it has not 
been studied much possibly because of involving complex processes (25).

Moreover, many of MRONJ studies have been carried out in oncology 
patients with solid tumors and multiple myeloma (24, 26). In addition, 
most such studies enrolled healthy controls without taking a BP (27, 28).

Therefore, the aim of the present study is to investigate the 
association between ESR1 polymorphism and MRONJ occurrence in 
osteoporosis patients taking BPs. Additionally, to quantify the risk of 
MRONJ, this study attempts to construct a predictive model to apply 
several machine learning techniques.

2. Methods

2.1. Patients and data collection

This study was an analysis of prospectively collected saliva samples 
from January 2014 to December 2018 at EWHA Womans University 

Mokdong Hospital. The detailed explanation of the study patients have 
already been provided in our previous paper (29). Briefly, all participants 
with current or previous BP use were diagnosed with osteoporosis by a 
physician. MRONJ was diagnosed by oral surgeons in accordance with 
AAOMS’ guidelines. Case group was identified as those who developed 
MRONJ, and control group was defined as those who had not developed 
MRONJ after dentoalveolar surgery. Clinical information was collected 
during the patients’ outpatient clinic visits. The collected clinical 
information included patients’ age, comorbidities, and duration of BP use.

The study protocol was approved by ethics committee of EWHA 
Womans University Mokdong Hospital Institutional Review Board 
(IRB number: 14–13-01), and written informed consent was obtained 
from all patients before their participation in the study.

2.2. Genotyping

Genomic DNA was extracted from saliva samples collected using 
the tube format (OG300) of the Oragene®•DNA Self-Collection Kit 
(DNAgenotek, Ontario, Canada), according to manufacturer’s 
instructions. SNPs of ESR1 were selected based on other studies and 
genetic information obtained from the SNP database of the National 
Center for Biotechnology Information (dbSNP) (25, 30–32). For the 
selection of ESR1 SNPs with minor allele frequency (MAF) of ≥20% 
in Japanese and Han Chinese populations, the following two methods 
were used: genetic information was obtained from Haploreg v4.1 and 
the tagger function was implemented in Haploview v4.2 program (33). 
Linkage disequilibrium blocks were constructed following the D′ 
method (34). One SNP in 5’UTR (rs78177662), eight intronic SNPs 
(rs827420, rs4870056, rs6912184, rs722208, rs851967, rs17081716, 
rs2175898, rs9371226) were selected.

2.3. In silico analysis

Several computational tools were used to predict the possible 
effects of given variants on splicing. ESEfinder, SpliceAid2, and 
EX-SKIP were used to evaluate alternations of the splicing factor-
binding site pattern caused by the given point mutation (35–37). The 
default threshold value was used and a score for a sequence above the 
threshold was considered to be potentially significant. Also, most 
splicing factors bind short (4–10 nucleotide) and degenerate sequences 
(38). For SNP sequence information, a total of 15 nucleotides was used 
for analysis using dbSNP.

2.4. Statistical analysis and machine 
learning methods

The chi-square and Student’s t-test were used to compare 
categorical and continuous variables between case and control groups, 
respectively. Multivariable logistic regression analysis was used to 
examine independent risk factors for MRONJ. The clinical and genetic 
variables selected were those with p < 0.2 on univariate analysis. 
Variables were entered by stepwise selection for p < 0.1 and were 
removed for p > 0.05. Odds ratios (ORs) and adjusted odds ratios 
(aORs) were calculated from univariate and multivariable analyzes, 
respectively. All statistical tests were conducted with a two-tailed alpha 

https://doi.org/10.3389/fmed.2023.1140620
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Choi et al. 10.3389/fmed.2023.1140620

Frontiers in Medicine 03 frontiersin.org

of 0.05. Machine learning models were run on each dataset in 5 
iterations of tenfold cross-validation on hyperparameter tuning to 
enhance the effectiveness of verification. Train and verification data 
were divided into 0.75 and 0.25 of the total. The importance of features 
of the model was also confirmed. Discrimination of the model was 
assessed by an analysis of the area under receiver operating curve 
(AUROC) and its 95% confidence interval (CI) of each model (39).

A risk scoring system was developed from the multivariable and 
machine learning analyzes. We randomly divided the data by a ratio 
of 75:25. To obtain the risk score, each coefficient from the logistic 
regression model was divided by the smallest one and rounded to two 
decimal places.

Statistical Package for Social Sciences Version 20.0 for Windows 
(SPSS, Chicago, IL, United States,1) was used for all analyzes. Machine 
learning algorithms were constructed using R software version 3.6.0 
(RFoundation for Statistical Computing, Vienna, Austria,2).

3. Results

Initially, a total of 149 patients were screened and enrolled in this 
study. Twenty who had additional indications other than osteoporosis, 
two who had missed clinical information, and two men were excluded. 
A total of 125 patients were included in the final analysis and 58 
(46.4%) developed MRONJ after dental procedures. Table 1 shows the 
demographic and clinical characteristics of the study population 
stratified by MRONJ occurrence. The mean age was 72.9 ± 9.4, and the 
most frequent comorbidity was hypertension. Sixty four patients had 
a history of hypertension, which showed statistical significance in 
relation to MRONJ occurrence (p = 0.024). The proportion of patients 
who had taken BPs for 48 months or longer was higher in the case 
group than the control group (p = 0.003).

The effects of 9 SNPs of ESR1 on the occurrence of MRONJ were 
evaluated (Table 2). Minor allele frequencies (MAFs) in our study 

1 https://www.ibm.com/spss

2 https://www.r-project.org

TABLE 1 Demographic characteristics.

Characteristics Case 
(n = 58)

Control 
(n = 67)

P

Age 0.001

<72 13 (22.4) 35 (52.2)

≥72 45 (77.6) 32 (47.8)

Comorbidity

Hypertension 36 (62.1) 28 (41.8) 0.024

Diabetes mellitus 18 (31.0) 16 (23.9) 0.370

Cardiovascular disease 8 (13.8) 8 (11.9) 0.757

Rheumatoid arthritis 7 (12.1) 2 (3.0) 0.080

Thyroid disease 4 (6.9) 2 (3.0) 0.415

Kidney disease 2 (3.4) 3 (4.5) 1.000

Liver disease 0 (0) 2 (3.0) 0.499

Treatment duration 0.003

<48 28 (48.3) 46 (68.7)

≥48 27 (46.6) 13 (19.4)

ND 3 (5.2) 8(11.9)

ND, not determined.

TABLE 2 Association of genotypes with medication-related osteonecrosis of jaws.

SNP Allele 
change

Minor allele 
frequency

dbSNP func 
annot

Grouped 
genotypes

Case 
(n = 58)

Control 
(n = 67)

p HWE

rs827420 G > A 0.435 Intronic GG 13 28 0.020 0.684

GA,AA 45 38

rs4870056 G > A 0.309 Intronic GG 21 36 0.051 0.567

GA,AA 36 30

rs6912184 G > A 0.468 Intronic GG 14 10 0.196 0.280

GA,AA 44 57

rs78177662 C > T 0.456 5’UTR CC 45 25 0.051 0.949

CT,TT 12 42

rs722208 A > G 0.384 Intronic AA 7 14 0.193 0.408

AG,GG 51 53

rs851967 C > T 0.488 Intronic CC 9 20 0.062 0.883

CT,TT 49 47

rs17081716 A > G 0.289 Intronic AA 23 36 0.117 0.210

AG,GG 34 30

rs2175898 C > T 0.468 Intronic CT,CC 16 55 0.198 0.920

TT 42 12

rs9371226 G > T 0.296 Intronic GT,GG 54 56 0.059 0.254

TT 3 10
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TABLE 4 In silico analysis.

SNP ID Program 
version

Nucleotide 
change

Variation Genomic position Site change (score, total)

rs4870056

ESEfinder3.0 SRSF2(2,6) → SRSF2(2.0)

EX-SKIP G > A Intron Variant 6:151841092 (GRCh38) ESS(16), ESE(8) → ESS(15), ESE(6)

SpliceAid2 CUG-BP1(5), ETR-3(5), Nova-1(5) → ETR-3(5)

rs78177662

ESEfinder3.0

C > T

SRSF1(1.6), SRSF2(1.0) → SRSF1(−1.4), SRSF2(0.8)

EX-SKIP 5 Prime UTR Variant 6:151654430 (GRCh38) ESS(0), ESE(1) → ESS(2), ESE(0)

SpliceAid2 NA

NA, not available.

TABLE 5 The top four important features of machine learning methods.

Rank Machine learning methods

Lasso regression Random 
forest

Support 
vector 

machine

1 Age ≥ 72 Age ≥ 72 Age ≥ 72

2 rs4870056
Treatment 

duration ≥48

Treatment 

duration ≥48

3 Treatment duration ≥48 rs4870056 rs4870056

4 rs78177662 rs78177662 rs78177662

population ranged from 28.9 to 48.8%. In univariate analysis, rs827420 
(G > A) was significantly associated with the occurrence of 
MRONJ. Carriers with variant A allele of rs827420 had a higher 
incidence rate of MRONJ than did those with wild homozygote 
carriers (p = 0.02). The polymorphisms of rs4870056 (G > A), 
rs78177662 (C > T), rs851967 (C > T) and rs9371226 (G > T) reached 
marginal significance (Table 2).

For the multivariable analysis, the SNP of rs827420 was excluded 
because of multi-collinearity with age variable in our population. After 
adjusting covariates, carriers with variant allele of rs4870056 had 
approximately 2.45 times (95% CI 1.03–5.87) the odds of MRONJ 
occurrence compared to those with wild-type homozygotes (GG). 
Carriers with variant T allele of rs78177662 had 2.64 times higher 
incidence of MRONJ than did those with other genotypes. The age 
over 72 years (aOR 3.98, 95% CI 1.60–9.87) and treatment duration 
over 48 months (aOR 3.16, 95% CI 1.26–7.93) were both significant 
clinical predictors of MRONJ development (Table 3).

Analysis of SNP rs4870056 with ESEfinder 3.0, which detects 
exonic splicing enhancer (ESE) for the SR protein, showed that this 
mutation decreased the score of SF2/ASF binding from −0.308 to 
−2.372 (threshold: 1.956). The polymorphism of rs78177662, which 
located on 5’UTR also associated with the change of exonic splicing 
silencer (ESS)/ESE ratio in EX-SKIP program, showed that this 
mutation increased the ESS/ESE ratio from 0.00 to 2.00 (Table 4).

The top four important features of machine learning methods 
were the highest at aged over 72 years, followed by duration over 
48 months from Random forest (RF) and Support vector machine 
(SVM) and rs4870056 from Lasso regression (Table 5). The AUROC 
values (mean, 95% CI) using ten-fold cross-validated Lasso regression, 
SVM and RF models were 0.756 (0.573–0.938), 0.761 (0.583–0.939), 

and 0.806 (0.645–0.967), respectively (Figure 1). The hyperparameters 
and R code that we used are shown in Supplementary file S1.

Patients with 0, 1–2, 2–3, 3–4, and 4–5 points on the training set 
showed approximately 0, 20, 41, 63, and 92% risk of MRONJ, 
respectively. The respective value of the validation set was 0, 25, 36, 71, 
and 100%. The logistic regression curve by mapping the scores to risk 
scores is presented in Figure 2.

4. Discussion

This study showed that ESR1 polymorphisms affected MRONJ 
development in postmenopausal women. Variant A allele of 
rs4870056 and variant T allele of rs78177662 increased the risk of 
MRONJ by 2.45 fold and 2.64 fold, respectively. Patients aged 72 
and older, and treatment duration over 48 months had an increased 
risk of MRONJ by 3.98 fold and 3.16, respectively. Machine 
learning analyzes indicated good performance (higher than 0.7) of 
the constructed model.

Previous pharmacogenomic studies have shown the relationships 
of some genes with the occurrence of MRONJ using population-based 
or healthy controls without taking BPs (27, 28, 40). In contrast, our 
group recently reported that VEGFA polymorphisms, involved in the 
modulation of angiogenesis, could affect the development of MRONJ, 
comparing osteoporotic controls taking BPs (29). Furthermore, it may 
essential in our study population to evaluate the impact of genetic 
variants of ESR1, which encodes estrogen receptor that binds estrogen 
playing a crucial role in bone turnover.

BPs suppress mandibular bone remodeling in experimental 
animals (41). It has been proposed that reduced jaw bone turnover 
may impede the healing process even for a mild injury such as a 
dental extraction (42). Estrogen deprivation in postmenopausal 

TABLE 3 Multivariable analysis to identify predictors of medication-
related osteonecrosis of jaws.

Variables Crude odds 
ratio (95% CI)

Adjusted odds 
ratio (95% CI)

Age ≥ 72 (years) 3.79 (1.73–8.27)** 3.98 (1.60–9.87)**

Treatment duration ≥48 

(months)
3.40 (1.52–7.68)** 3.16 (1.26–7.93)*

ESR1 rs4870056 GA/AA 2.06 (1.00–4.24) 2.45 (1.03–5.87)*

ESR1 rs78177662 CT/TT 2.23 (1.00–5.00) 2.64 (1.00–6.94)*

Logistic regression analysis with backward elimination was carried out with variables such as 
age ≥ 72, treatment duration ≥ 48, rheumatoid arthritis, hypertension, rs4870056, rs6912184, 
rs78177662, and rs2175898. 
*p < 0.05, **p < 0.01.
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women results in accelerated bone resorption and remodeling 
(43–45). It leads to reduce bone turnover. Another potential 
mechanism is that ESR1 affects the activation of the insulin-like 
growth factor 1 (IGF-1) signaling pathway, mainly involving anti-
inflammatory reactions and re-epithelialization (46, 47). IGF-1 can 
promote wound recovery in estrogen-deficient animal models. 
However, it showed that IGF-1 does not promote healing and 
increases inflammatory responses in ESR1-null mice (48). In 

patients taking BPs, it suggested that ESR1 polymorphism leads to 
decreased bone turnover and poor wound healing and may 
contribute to the development of MRONJ (25).

The SNP of rs4870056, located in ESR1 intron, this SNP has been 
studied in several other clinical fields. It reported that rs4870056 was 
associated with cardiovascular disease risk during postmenopausal 
hormone therapy (49, 50). Checking the linkage disequilibrium, 
rs4870056 appeared to have a strong relationship with rs2234693 
(Pvull), which is currently one of the most widely studied SNPs among 
ESR1 SNPs. From studies using rs2234693, it was explained that the 
SNP might contribute to determining of bone mineral density and 
fracture in postmenopausal women (32, 51, 52). In addition, in silico 
analysis showed that splicing factors tended to decrease due to changes 
in motifs in the mutant sequence. The polymorphism of rs78177662 
is located at 5’UTR, but the current study has not revealed its function. 
It could only be inferred from the in silico analysis.

Recently, several studies reported the influence of gene 
polymorphism on the development of disease and drug-related 
adverse reactions applying machine learning (53–55). Some machine 
learning methods such as RF, SVM, and decision trees classification 
were used, and the performance of each model was compared with 
AUROC values (53). In this study, the purpose of generating models 
is to provide a warning for and screen a group with an increased risk 
for MRONJ occurrence. Applying machine learning methods can 
improve the performance in predicting (55, 56). To evaluate AUROC 
values, all our machine learning models employed performed well. 
Lasso regularization shrinks regression coefficients toward zero, 
effectively selecting significant predictors and improving the 
interpretability of the model (57). As a result of regulating variable 
weights with lasso, 0.756 of AUROC value was obtained. Using the 

FIGURE 1

Comparison of AUROCs between machine learning methods (A) Lasso regression, (B) Random forest, and (C) Support vector machine.

FIGURE 2

Risk scores vs. probability of MRONJ.
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bagging technique, RF can generate multiple versions of predictors, 
and use them to obtain aggregated predictors (58). An AUROC value 
was 0.761 from the test set. As another classification model is the 
maximization of separating margin, and the AUROC value of SVM 
was 0.806 after setting the optimal cost and gamma using the tune 
function (59).

Risk assessment systems, including biomarkers and risk factors, 
are helpful for rapid clinical decision-making. Risk scoring systems for 
adverse drug reactions (ADR), such as the GerontoNet ADR risk 
score, have been developed (60). Therefore, this study developed the 
risk scoring system for MRONJ occurrence in addition to previous 
work. The constructed risk scoring system may be helpful to screen 
the high-risk group for MRONJ occurrence, and further studies are 
needed to improve its generalizability.

This study has several limitations due to the study design and 
sample size. The mechanism that polymorphisms of ESR1 affect 
osteonecrosis could not be investigated. However, we attempted to 
understand the roles of SNP through in silico analysis. The study’s 
strength is that it collected data from MRONJ patients with 
osteoporosis and created predictive models and a risk-scoring system 
through machine learning methods. This study showed that ESR1 
polymorphism in female patients with estrogen deficiency was 
associated with medication-related osteonecrosis.

5. Conclusion

Our study showed that MRONJ development was associated with 
ESR1 gene polymorphism in osteoporotic women. Predictive 
modeling created through machine learning techniques showed good 
performances. As a result, from the perspective of bone remodeling, 
it suggests the possibility of predictive diagnosis.
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