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Background: The goal of this study was to develop and validate a radiomics 
signature based on dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) preoperatively differentiating luminal and non-luminal molecular 
subtypes in patients with invasive breast cancer.

Methods: One hundred and thirty-five invasive breast cancer patients with luminal 
(n = 78) and non-luminal (n = 57) molecular subtypes were divided into training set 
(n = 95) and testing set (n = 40) in a 7:3 ratio. Demographics and MRI radiological 
features were used to construct clinical risk factors. Radiomics signature was 
constructed by extracting radiomics features from the second phase of DCE-MRI 
images and radiomics score (rad-score) was calculated. Finally, the prediction 
performance was evaluated in terms of calibration, discrimination, and clinical 
usefulness.

Results: Multivariate logistic regression analysis showed that no clinical risk factors 
were independent predictors of luminal and non-luminal molecular subtypes in 
invasive breast cancer patients. Meanwhile, the radiomics signature showed good 
discrimination in the training set (AUC, 0.86; 95% CI, 0.78–0.93) and the testing 
set (AUC, 0.80; 95% CI, 0.65–0.95).

Conclusion: The DCE-MRI radiomics signature is a promising tool to discrimination 
luminal and non-luminal molecular subtypes in invasive breast cancer patients 
preoperatively and noninvasively.
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1. Introduction

Greater numbers of younger patients are suffering from breast cancer, and its mortality rate 
ranks first among female malignant tumors in recent years (1, 2). The molecular subtypes of 
breast cancer play an important role in clinical treatment decisions. According to four indicators 
of the expression levels of certain receptors (ER, PR, Her-2, and Ki-67), the molecular subtypes 
of breast cancer are classified into luminal A, luminal B, human epidermal growth factor 
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receptor 2 (HER2) -enriched and triple-negative (3–5). Generally, 
luminal types account for the majority (about 70%) of invasive breast 
cancers and respond well to endocrine therapy (6, 7). The selection of 
targeted antibody therapy is a priority for HER2-enriched types (8). 
Triple-negative breast cancer, which is negative for hormone receptor 
and HER-2, loses the opportunity to use endocrine drugs and targeted 
therapy, and can only be  further treated by chemotherapy and 
radiotherapy, and has the worst prognosis (9, 10). In conclusion, 
luminal types in invasive breast cancer have the best prognosis, and 
its hormone receptor positivity gives us the opportunity to treat with 
endocrine drugs that do the least harm to the body. Therefore, there 
is an urgent need for a noninvasive and efficient method to 
differentiate luminal and non-luminal molecular subtypes in invasive 
breast cancer patients before surgery.

For non-invasive diagnosis, various imaging techniques can 
be used, including mammography, ultrasound, MRI, etc. DCE-MRI 
is a satisfactory imaging modality, which can provide temporal 
information of the contrast agent dynamics of suspected lesions and 
acceptable spatial resolution. It is a sensitive sequence for the detection 
of breast cancer lesions, especially for dense breast lesions (11, 12). 
Tumor angiogenesis is a marker of tumor invasion potential. 
DCE-MRI can indirectly reflect tumor abnormal vascular proliferation 
through the hemodynamic characteristics of the lesion (13, 14). 
However, DCE-MRI has limited predictive power for luminal and 
non-luminal molecular subtypes in patients with invasive breast 
cancer, and diagnostic accuracy based on DCE-MRI images is largely 
dependent on the radiologist’s experience, which is highly subjective 
(15–17).

The development of artificial intelligence has made it possible to 
integrate the experience of imaging diagnosis, and various advanced 
medical image analysis methods have come into being. The research 
in related fields has improved the accuracy of disease diagnosis and 
can assist radiologists to carry out their daily work accurately and 
efficiently (18–20). The semi-quantitative or quantitative information 
of morphology provided by routine imaging examination could not 
fully meet the needs of precision medicine (21). In recent years, the 
emergence of radiomics provides a new method for evaluating tumor 
characteristics. Radiomics is one of the applications of artificial 
intelligence in medical field, it uses medical image analysis tools to 
extract some features of images (such as gray level) and create a 
digital matrix to find the association between voxels in images 
(22–24).

The purpose of this study was to evaluate the ability of DCE-MRI 
radiomics signature to noninvasively distinguish luminal and 
non-luminal molecular subtypes of invasive breast cancer patients.

2. Materials and methods

2.1. Patients

This retrospective study included patients with luminal and 
non-luminal molecular subtypes of invasive breast cancer who 
underwent DCE-MRI at our hospital from January 2019 to March 
2022. The inclusion criteria were as follows: (1) primary invasive 
breast cancer that underwent surgery, such as biopsy or resection, (2) 
histological diagnosis and molecular subtypes of breast cancer were 
obtained, and (3) DCE-MRI was performed within 3 months before 

surgery. The exclusion criteria were as follows: (1) patients received 
radiotherapy or chemotherapy before DCE-MRI scans and (2) poor 
imaging quality making difficulties in segmentation (e.g., motion 
artifacts or artefacts leading to signal distortions in the tumor area). 
Finally, a total of 135 luminal (78 cases, ages 33–79 years) and 
non-luminal (57 cases, ages 28–70 years) molecular subtypes of 
invasive breast cancer were included in this study (Figure 1; Table 1).

Patients were randomly assigned to the training and testing sets 
in a ratio of approximately 7:3. The training and testing sets were 
stratified to maintain the same proportion of luminal and 
non-luminal molecular subtypes of tumors in the training and 
testing sets.

2.2. MRI image acquisition

MR Scans were performed using a SIMENS MAGNETOM 
SKYRA 3.0T-MR Scanner with an 18-channel dual-emulsion phased 
front coil. The patient was placed in a prone position, feet advanced, 
with bilateral breasts naturally hanging in the breast coil.

Scanning parameters: 1. axial T1WI (TR =735 ms, TE = 8.1 ms, 
slice thickness = 4 mm, slice spacing =1 mm), acquisition matrix 
224 × 320, field of view 320 × 320 mm; 2. axial fat suppression T2WI 
(TR = 3,700 ms, TE = 101 ms, slice thickness = 4 mm, slice 
spacing = 1 mm), acquisition matrix 224 × 320, field of view 
320 × 320 mm; 3. DCE scanning was performed on T1 fat suppression: 
TR 5.24 ms, TE 2.46 ms, layer thickness 1.5 mm, acquisition matrix 
182 × 320, field of view 320 mm, turning Angle 10°. Before contrast 
injection, the mask was scanned, and then Gd-DTPA was injected into 
the dorsal vein through a high-pressure syringe with a dose of 
0.1 mmol/kg and an injection flow rate of 2.5 mL/s. After contrast 
injection, 20 mL normal saline was rapidly injected. Then seven 
consecutive intervals were scanned.

2.3. MRI characteristic evaluation

The MRI image were scrutinized by two radiologists with 
10 years (read 1) and 15 years (read 2) of diagnostic breast imaging 
experience. Blinded to the clinic-pathologic data, the two doctors 
interpreted the following MRI features by consensus: “Breast 
parenchymal pattern” was evaluated on the T1WI sequence using 
a semi-quantitative method according to ACR-BI-RADS-MRI 
(2013). “Maximum diameter” was the longest diameter of the 
tumor on an axial MRI image. “DCE-TIC”: The time-intensity 
curve (TIC) type of each case was plotted based on DCE-MRI, and 
an area of interest (ROI) of about 0.2–0.4 cm2 was placed on each 
piece of the brightest part of the lesion in the early images 
obtained after the injection of contrast agent. When each lesion 
had a different type, we  recorded the type of high TIC curve. 
“MRI-determined presence of ALN metastasis”: All axillary lymph 
nodes were evaluated on T1 + C axial and coronal images. The 
morphologic criteria for evaluating ALN metastasis are as follows: 
absence of hilum structure, lymphatic hilum displacement, 
eccentric cortical thickening, short diameter >1 cm, or long 
diameter to short diameter ratio less than 2 (25, 26).
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2.4. Assessed clinical risk factors

The clinical parameter of age was retrieved from the electronic 
medical record system of our hospital. Two radiologists with 10 and 
15 years of experience in breast imaging were blinded to imaging 
reports and pathological details, and imaging features including breast 
parenchymal pattern, maximum diameter, DCE-TIC, and 
MRI-determined presence of ALN metastasis were reviewed and 
reported. When assessed clinical risk factors, the above demographics 
and MRI radiological features were analyzed by univariate regression, 
and then the statistically significant characteristics in the univariate 
regression analysis were processed by multivariate regression model. 
Ultimately, features with p < 0.05 were considered as independent 
predictors of luminal and non-luminal molecular subtypes in invasive 
breast cancer patients.

2.5. Tumor segmentation

All the second phase of DCE-MRI images in DICOM format, 
original size and resolution were transferred to ITK-SNAP software 

(Version 3.8, www.itksnap.org) for three-dimensional (3D) region of 
interest (ROI) segmentation. To ensure accurate tumor boundaries, 
ROIs on all slices were carefully delineated manually by a radiologist 
(read 1) with 10 years of experience in breast imaging, who was 
blinded to the pathological findings. To test the stability of features, 
doctor 1 and another radiologist with 15 years of experience (read 2) 
underwent re-extraction of radiomics features from 40 randomly 
selected patients from the entire study set. Intra-class correlation 
coefficient (ICC) was calculated to evaluate the consistency and 
reproducibility of the features. Subsequent analyses included features 
of ICC > 0.75  in intra-observer and inter-observer consistency 
analyses (27, 28). In order to avoid local volume effect, the top layer 
and bottom layer were eliminated. Figure 2 shows two typical the 
second phase of DCE-MRI images of breast cancer segmentation on 
ITK-SNAP, one of the molecular subtypes is luminal (Figures 2A–C) 
and the other is non-luminal (Figures 2D–F).

2.6. Radiomics feature extraction

Prior to radiomics feature extraction, to reduce feature variability, 
we performed the following image preprocessing steps, containing 
gray discretization, intensity normalization, and voxel resampling 
(29). Then, radiomics features were extracted from the second phase 
of DCE-MRI images through the open source PyRadiomics library. 
They are divided into four categories: size and morphology features, 
descriptors of image intensity histograms, descriptors of the 
relationship between image voxels and higher-order texture features 
extracted from filtered images.

FIGURE 1

Flow diagram of the study.

TABLE 1 Histologically confirmed tumor distribution in the whole cohort.

Luminal Number Non-luminal Number

Luminal A 47 (HER2) -enriched 31

Luminal B 31 triple-negative 26
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2.7. Construction and assessment of the 
radiomics signature

In order to prevent signature overfitting, dimensionality of 
features is reduced before signature construction. Succinctly, 
radiomics features that met the inter-observer and intra-observer 
ICCs criteria greater than 0.75 and were significantly different between 
the two groups as assessed by one-way analysis of variance (ANOVA) 
were included in the LASSO regression model to select the most 
valuable features in the training set. Finally, the selected radiomics 
features were used to construct radiomics signature. Rad-score was 
calculated for each patient by linear combination of selected features 
and weighted by the respective LASSO coefficients, which was 
calculated using the following formula:

“Radscore = 0.423168579279913*(Intercept) + 0.256145048374 
423*log_sigma_3_0_mm_3D_gldm_SmallDependenceHighGrayLev
elEmphasis+0.189746981186449*lbp_3D_k_firstorder_Minimum+0
.160418301883463*wavelet_HHL_glcm_Id+0.152274099347284* 
wavelet_LHH_glcm_MaximumProbability+0.046015260261054*lb
p_3D_m1_glszm_SmallAreaLowGrayLevelEmphasis+ − 0.057685 
179007322*wavelet_HLL_glcm_Imc1 + −0.0877353138903384* 
wavelet_HLH_glszm_SmallAreaEmphasis+ − 0.0953377462671598* 
wavelet_LHH_glszm_SizeZoneNonUniformityNormalized+ − 
0.273401999050143*wavelet_HHH_glszm_SmallAreaLowGrayLevel 
Emphasis+ − 0.318474415701059*lbp_3D_m1_firstorder_Interqu 
artileRange+ − 0.334402481515917*wavelet_LLH_glszm_
SmallAreaEmphasis+ − 0.360310670738742*wavelet_HHL_glcm_

Imc1 + −0.364519784506579*wavelet_LHH_firstorder_
Skewness+ − 0.418315908802964*lbp_3D_k_glcm_Maximum 
Probability.”

Calibration curve was used to evaluate the calibration effect of 
radiomics signature. The Hosmer-Lemeshow test was used to 
evaluate the goodness of fit of radiomics signature. ROC curves of 
training and testing sets used to evaluate the diagnostic performance 
of radiomics signature in distinguishing luminal and non-luminal 
molecular subtypes of invasive breast cancer patients. To assess the 
clinical usefulness of radiomics signature, DCA was performed by 
calculating net benefits over a threshold probability range for the 
entire ensemble.

2.8. Statistical analysis

Statistical analysis was conducted using SPSS 19.0 and R software 
(Version 3.4.4; http://www.Rproject.org). The chi-square test was used 
for the analysis of categorical variables and the mean values ± standard 
deviations was used for the analysis of continuous variables. The 
“glmnet (R)” package was used to perform LASSO regression. The 
“Regression Modeling Strategy (RMS)” package was used to construct 
the radiomics signature and calibration curves. The Hosmer–
Lemeshow test was performed on the“generalhoslem” package. ROC 
curves were plotted using the “partial Receiver Operating 
Characteristic (pROC)” software package. The significance level was 
set as two-sided p < 0.05.

FIGURE 2

Manual 3-D segmentation of the tumor. (A–C): a 58-year-old female diagnosed with the luminal A subtype of breast cancer. (D–F): a 30-year-old 
female diagnosed with the triple-negative subtype of breast cancer. No special radiological features are seen by naked eye on MRI to distinguish 
between these two molecular subtypes.
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3. Results

3.1. Demographics and MRI radiological 
features findings

A total of 135 patients were enrolled in our study, and 
demographics and MRI radiological features were collected. Table 2 
summarizes the differences in demographics and MRI radiological 
features variables between luminal and non-luminal molecular 
subtypes in invasive breast cancer patients in the training and 
validation sets. Patients with luminal molecular subtype was no 
significantly different from those with non-luminal (p > 0.05 in the 
training and testing sets). After univariate and multivariate logistic 
regression analysis, no clinical risk factors were independent 
predictors of luminal and non-luminal molecular subtypes in invasive 
breast cancer patients (Table 3).

3.2. Feature extraction, selection, and 
radiomics signature building

A total of 1,316 radiomics features were extracted from the second 
phase of DCE-MRI images of each invasive breast cancer patients, 

among which 829 features were proved to have good inter-observer 
and intra-observer agreement, which ICCs achieve greater than 0.75. 
The significant difference between luminal and non-luminal molecular 
subtypes in one-way ANOVA (p < 0.05) was enrolled into the LASSO 
logistic regression model to select the most valuable radiomics features 
(Figures 3A,B). Finally, 14 radiomics features were used to construct 
radiomics signature (Figure 3C).

3.3. Assessment of the performance of 
radiomics signature

Figure  4 and Table  4 present ROC curves and the radiomics 
signature diagnostic performance in the training and testing sets, 
respectively. The radiomics signature yielded an AUC value of 0.86 
(95%CI 0.78–0.93) and 0.80 (95%CI 0.65–0.95) in both sets, and the 
accuracy, sensitivity, specificity, positive predictive value and negative 
predictive value were calculated. The calibration curve (Figure  5) 
showed a good agreement between the predicted and actual 
probabilities for predicting the luminal and non-luminal molecular 
subtypes in the training and testing sets, and the Hosmer-Lemeshow 
test yielded a nonsignificant statistical difference (p = 0.379 and 0.337). 
In addition, the radiomics score for each patient is shown in Figure 6. 
The radiomics signature were closely associated with differentiated 

TABLE 2 Assessed clinical risk factors of breast cancer patients in the training and validation sets.

Characteristics Training set (n = 95) p-value Testing set (n = 40) p-value

Luminal 
(n = 55)

Non-luminal 
(n = 40)

Luminal 
(n = 23)

Non-Luminal 
(n = 17)

Age (y) 48.0 ± 9.7 48.6 ± 11.5 0.798 50.4 ± 11.6 50.8 ± 7.5 0.918

Breast parenchymal 

pattern (n)

0.226 NA

  Type a 2 0 0 0

  Type b 5 7 4 4

  Type c 43 32 19 13

  Type d 5 1 0 0

Maximum diameter 

(cm)

33.2 ± 16.6 33.9 ± 17.1 0.851 31.8 ± 13.1 40.9 ± 19.3 0.073

Location 0.973 1.000

  Left 33 23 11 9

  Right 22 17 12 8

DCE-TIC (n) 0.601 NA

  Type I 1 0 0 0

  Type II 11 10 6 6

  Type III 43 30 17 11

MRI-determined 

presence of ALN 

metastasis (n)

0.215 0.785

  Yes 22 22 10 9

  No 33 18 13 8

Type a: almost entirely fat; Type b: scattered fibrous glandular tissue; Type c: heterogeneous fibrous glandular tissue; Type d: extreme fibrous glandular tissue; DCE-TIC, dynamic contrast 
enhancement-time intensity curve; ALN, axillary lymph node.
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luminal and non-luminal molecular subtypes in the training set 
(p < 0.01) and in the testing set (p < 0.01).

4. Discussion

In this retrospective study, we developed and validated a radiomics 
signature for noninvasive, individualized prediction of luminal and 
non-luminal molecular subtypes in invasive breast cancer patients. 
The radiomics signature constructed by extracting radiomics features 
from the second phase of DCE-MRI images showed predictive 

efficiency (AUC = 0.80, 95%CI =0.65–0.95) in distinguishing 
molecular subtypes with satisfactory reproducibility and reliability.

Accurate differentiating luminal and non-luminal molecular 
subtypes in patients with invasive breast cancer is an urgent need to 
select the most appropriate treatment. However, preoperative biopsies 
may mistakenly lead to errors in molecular subtypes discrimination 
because only small lesion areas are sampled, interobserver differences 
in tumor subtyping can occur even among professional breast 
pathologists (30, 31). Furthermore, inaccurate preoperative subtyping 
may lead to inadequate treatment, subsequent need for further 
surgery, and increased morbidity. Radiomics researches in breast 

A

B

C

FIGURE 3

Radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) regression. (A) Selection of tuning parameter (λ) in 
LASSO model. (B) LASSO coefficient profiles of radiomics features. The coefficient profiles corresponding to the selected logarithm (λ) values were 
generated by five-fold cross validation. (C) Selected radiomics features and their coefficients.

TABLE 3 Univariate and multivariate logistic regression analysis of clinical risk factors for distinguishing luminal and non-luminal molecular subtypes of 
invasive breast cancer.

Variable Univariate regression Multivariate regression

OR (95%CI) p-value OR (95%CI) p-value

Age 0.995 [0.957–1.035] 0.796 NA NA

Breast parenchymal pattern 1.342 [0.976–1.032] 0.792 NA NA

Maximum diameter 0.998 [0.934–1.022] 0.849 NA NA

Location 0.902 [0.394–2.062] 0.807 NA NA

DCE-TIC 1.069 [0.436–2.623] 0.885 NA NA

MRI-determined presence of 

ALN metastasis

0.545 [0.239–1.243] 0.149 NA NA
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imaging have focused on features extracted from DCE-MRI and their 
applications previously, such as the isolation of benign and malignant 
lesions (11), the prediction of therapeutic response (32), and the 
isolation of molecular subtypes (33), and results have been mixed, 
which may be attributed to the heterogeneity of the scanner, sequence, 
and features. Leithner D et  al. (34) evaluated the performance of 
multi-parameter MRI based radiomics in conjunction with AI to 
evaluate breast cancer receptor status and molecular subtypes. In 
terms of accuracy, radiomics-based triple-negative yielded the best 
results with all other cancers and with luminal A and triple-negative 
cancers (AUC, 0.86 [0.77–0.92] and 0.80 [0.75–0.83]). However, all 
tumors were segmented on the largest diameter slice, and this method 

may not capture the heterogeneity of the tumor completely. While in 
the present study, we obtained better results using 3D texture features.

After multivariate logistic regression analysis, clinical risk factors 
we  selected were not independent predictors of luminal and 
non-luminal molecular subtypes in invasive breast cancer patients. 
This result was not surprising, as it is difficult to identify by 
demographics and MRI radiological features alone. Son J et al. (35) 
aimed to predict molecular subtypes of breast cancer using radiomics 
signatures extracted from synthetic mammography. In multivariate 
analysis, radiomics signature was also the only independent predictor 
of the molecular subtypes. Similar founding to our study, the clinical 
features included age, tumor size and image features evaluated by 
radiologists were not independent predictors of luminal and 
non-luminal molecular subtypes. In addition to the conventional first-
order statistical features, we employed the ITK-SNAP software to 
mine high-order texture parameters that are richer inside the tumors. 
Texture analysis appraises the relationships between pixels that 
generate patterns of feature organization in an image, many of which 
go beyond visual perception (36, 37). Five GLCM, five GLSZM and 
one GLDM high-order texture parameters (dependence variance) 
were included in the feature-screening results. The spatial structure of 
each tumor is different. Based on previous studies (38, 39), it’s easier 
to identify different molecular subtypes of breast lesions by extracting 
higher-order features.

In this study, the radiomics features of the second phase of 
DCE-MRI images of breast cancer were analyzed. Compared to 
mammography, DCE-MRI can provide high time, high space and 
high signal-to-noise ratio images for the diagnosis of breast lesions by 
evaluating tumor morphology and hemodynamics (40). The images 
in the second phase were significantly enhanced to better reflect the 
aggressiveness and heterogeneity of the tumor (41). It is valuable to 
focus on more MRI sequences in subsequent studies, and it is expected 
that the radiomics signature of multimodal MRI images can provide 
us with more useful information and further improve the predictive 
efficiency of the model.

The limitations of this study: (1) this is a single-center, small-
sample retrospective study, and external verification of model stability 

FIGURE 5

For the calibration curve of the radiomics signature, the closer the fit between the two curves, the higher the prediction accuracy.

FIGURE 4

ROC curves (AUC) of the radiomics signature in the training and 
testing sets.
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and clinical applicability should be added to the multi-center data set, 
(2) manual lesion delineation may lead to the formation of errors, thus 
losing part of the image information. Therefore, more accurate lesion 
contour delineation methods such as semi-automatic segmentation 
are needed to extract the lesion characteristic values in the future, and 
(3) in this study, we only examined traditional radiomics analyses, and 
the differences in performance and robustness between our study  
and deep neural network-based studies in evaluating luminal and 
non-luminal states require further comparison.

5. Conclusion

In conclusion, the radiomics signature based on the second phase 
of three-dimensional DCE-MRI images developed in this study can 
be  useful for differentiating luminal and non-luminal molecular 
subtypes. As a non-invasive, preoperative method, the radiomics 
signature may helpful for clinical decision-making in invasive breast 
cancer patients.
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TABLE 4 Predictive performance of radiomics signature.

Model Radiomics signature

Training set Testing set

Accuracy (95%CI) 0.821 (0.729–0.892) 0.800 (0.644–0.909)

Sensitivity 0.873 0.783

Specificity 0.750 0.824

Pos. pred. value 0.828 0.857

Neg. pred. value 0.811 0.737

FIGURE 6

Boxplots of the radiomics score in the entire dataset shows 
difference between luminal and non-luminal molecular subtypes 
based on DCE-MRI images. The luminal group is red, the non-
luminal group is blue.
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