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The realm of cell-based immunotherapy holds untapped potential for the 
development of next-generation cancer treatment through genetic engineering 
of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for 
targeted eradication of cancerous malignancies. Such allogeneic “off-the-shelf” 
cell products can be  advantageously manufactured in large quantities, stored 
for extended periods, and easily distributed to treat an exponential number of 
cancer patients. At current, patient risk of graft-versus-host disease (GvHD) 
and host-versus-graft (HvG) allorejection severely restrict the development of 
allogeneic CAR-T cell products. To address these limitations, a variety of genetic 
engineering strategies have been implemented to enhance antitumor efficacy, 
reduce GvHD and HvG onset, and improve the overall safety profile of T-cell 
based immunotherapies. In this review, we summarize these genetic engineering 
strategies and discuss the challenges and prospects these approaches provide 
to expedite progression of translational and clinical studies for adoption of a 
universal cell-based cancer immunotherapy.
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1. Introduction

Recent developments in cell-based engineering have revolutionized the field of cancer 
treatment in terms of enhancing both the specificity and efficacy of potential therapeutics 
(1–3). Delivered agents such as immune checkpoint inhibitors or engineered immune cells 
bolster immunoreactivity and are designed to specifically target tumor cells with minimal 
off-target effects (Table 1) (2). Currently, cancer vaccines, oncolytic viruses, T and natural killer 
(NK) cells, stem cells, monoclonal antibodies and recombinant proteins are major areas of 
investigation for the development of new cancer therapeutics (3). As a relatively novel field of 
medicine, cell-based approaches provide a “living therapy” distinct from other forms of 
treatment, attracting massive interest as a highly malleable and dynamic platform (4, 5). 
Furthermore, compared to autologous cell therapy, wherein therapeutic cells are collected 
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directly from the intended patient, manufactured and engineered in 
vitro, and used to exclusively treat that patient, allogeneic cell therapy  
can be preemptively positioned at treatment centers, manufactured 
at large scale, and is less logistically challenging and costly (6, 7).

Allogeneic hematopoietic stem cell transplantation (allo-
HSCT) has been widely recognized as the earliest form of 
allogeneic cell therapy, after its implementation to treat inherited 

anemias and immune deficiencies in the 1950s (8). The Allo-HSCT 
platform was found to be  particularly effective against 
hematological malignancies with limited response in solid tumors, 
and could potentially address refractory malignancies (8). Despite 
powerful graft-versus-tumor (GvT) implications, allo-HSCT-
induced immune cell activation and proliferation also produced 
harmful graft-versus-host disease (GvHD) restricting its delivery.

TABLE 1 Engineering strategies for allogeneic cell products.

Engineering 
strategies

Target genes
Knock-out or 
overexpression

Outcomes Reference

Enhance antitumor efficacy CARs Overexpression Anti-tumor immunity enhancement; potential risk of 

GvHD and HvG effect

(5, 9, 29, 33)

IL-15 Overexpression T cell survival and persistence improvement; tumor-

killing enhancement

(40, 41)

IL-2 Overexpression Tumor-killing enhancement; constitutive stimulation 

of immunosuppressive regulatory T cells; activation-

induced cell death

(43)

IL-7 Overexpression Increased CD4+ and CD8+ T cells; improved tumor-

targeting and killing

(44, 45)

IL-12 Overexpression Increased IFN-γ; greater antitumor efficacy; greater 

innate immune response enhancement

(47)

IL-21 Overexpression optimal proliferation, differentiation, and activation 

of T cells; greater cytotoxicity to tumor cells;

(43, 49–51)

PD-1 Knock-out PD-1&PD-L1/L2 interaction elimination; anti-tumor 

immunity enhancement

(53, 56, 58, 62–64)

CTLA-4 Knock-out CTLA-4&B7-1/2 interaction elimination; anti-tumor 

immunity enhancement

(53, 71)

LAG-3 Knock-out LAG-3&MHC interaction elimination; anti-tumor 

immunity enhancement

(73, 74)

TIM-3 Knock-out TIM-3&Galectin-9 interaction elimination; anti-

tumor immunity enhancement

(76)

NKG2A Knock-out NKG2A&HLA-E interaction elimination; anti-tumor 

immunity enhancement

(78, 84)

EZH1 Knock-out iPSC-derived T (EZ-T) cells production; robust 

anti-tumor responses;

(91–95)

DNTM3A Knock-out HSC differentiation impairment amelioration; cell 

exhaustion prevention; anti-tumor activities 

improvement

(97–99)

CD16 Overexpression Better cell survival; anti-tumor activities 

improvement

(100–102, 104, 105)

Disrupt endogenous TCR to 

ameliorate GvHD

TCR Knock-out curtailment of graft cell capacity for 

immunoresponse; tumor recognition enhancement

(113, 114, 118–120)

TCR Engineered Alloreaction amelioration; TCR-mediated antigen 

recognition retainment; antitumor capacity 

improvement

(122–124)

Reduce host cell-mediated 

allorejection

HLA Knock-out HvG effects abrogation; long-term graft persistence 

promotion

(6, 11, 136, 138, 143, 146)

Inhibitory ligands Overexpression HvG effects abrogation; long-term tumor growth 

suppression enhancement

(150, 151, 153, 163, 164)

CD52 Knock-out total lymphodepletion avoidance; lower risk of GvHD (165, 166)

Improve safety profile Suicide genes Overexpression Selective destruction of modified cells; potential risks 

minimization

(2, 3, 5, 167)
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Among peripheral lymphocytes, T and NK cells are the most 
commonly studied immune cells for antitumor allogeneic cell 
therapy, in the form of chimeric antigen receptor (CAR)-engineered 
T and NK (CAR-T and CAR-NK) cells (5, 9). Currently, all CAR-T 
cell therapies approved by the United  States Food and Drug 
Administration (FDA) remain autologous, targeting CD19-positive 
B-cell leukemia and lymphoma (i.e., Kymriah, Yescarta, Tecartus, 
and Breyanzi), as well as B-cell maturation antigen (BCMA)-
positive multiple myeloma (MM) (i.e., Abecma and Carvykti). 
Though CAR-T cells have shown less potency against solid tumors, 
several investigations are underway to target solid tumors with 
CARs. Ongoing clinical trials are targeted against several tumors, 
including prostate stem cell antigen (PSCA)-CAR-T cells against 
advanced prostate cancer, IL13Ra2-CAR T cells and epidermal 
growth factor receptor variant III (EGFRvIII)-CAR-T cells against 
advanced glioblastoma, glypican 3 (GPC3)-CAR-T cells against 
hepatocellular carcinoma (HCC), CD70-CAR-T cells against renal 
cell carcinoma (RCC), GD2-CAR-T cells against neuroblastoma, 
and mesothelin (MSLN)-CAR-T cells against MSLN-positive solid 
tumors (e.g., ovarian, breast, lung, and pancreatic cancer). However, 
these therapies are limited in their autologous nature due to 
potentially low healthy T cell numbers in patients, lengthy 
manufacturing process, and high cost. Allogeneic therapies address 
these limitations by increasing availability as an off-the-shelf 
therapy and reducing manufacturing variability, thereby decreasing 
the production costs.

Pioneering clinical trials are investigating allogeneic cell therapy 
by collecting peripheral blood mononuclear cells (PBMCs) via 
leukapheresis from healthy donors for in vitro expansion (9, 10). 
Further engineering involves arming of these cells with tumor antigen-
specific CARs and ablation of the TRAC locus to eliminate the risk of 
GvHD (9, 11, 12). Some trials also involve engineering cord blood-
derived hematopoietic stem cells (HSCs) or induced pluripotent stem 
cells (iPSCs) to generate NK cells with CARs enhancing NK-mediated 
killing (9). The resulting genome-edited, donor-derived allogeneic 
CAR-T cell products can be distributed to treat multiple patients (10, 
12). In addition to conventional T or NK cells, innate-like T cell 
subtypes including invariant natural killer T (iNKT) and mucosal-
associated invariant T (MAIT) cells have been explored due to their 
limited TCR repertoires that evade MHC restriction, suggesting their 
potential as a highly efficient allogeneic cell product (10, 11).

Several sources have been investigated for the generation of 
allogeneic cell therapies, including PBMCs, iPSCs, and HSCs. 
PBMCs are the simplest cell product to derive by isolating the 
desired cell type from healthy donors via leukapheresis, engineering 
via retro-or lentiviral transduction, and culturing to high purity. 
However, stem cell-derived therapies provide a more beneficial and 
malleable platform for therapeutic cell production (13). These 
approaches, including HSC-and iPSC-differentiation, hold several 
advantages over PBMC-derived cell generation; ubiquitously, 
engineering nascent stem cells has lower cost and produces higher 
yields of therapeutic cells (13, 14). iPSCs can be derived from any 
mature cells, commonly skin cells, and can be differentiated into 
any cell type. HSCs are derived from bone marrow or cord blood 
donors and can be differentiated into any hematopoietic lineage cell 
including blood cells, immune cells, or platelets. Current 
pre-clinical and clinical research has focused on HSCs and iPSCs as 
the initial source for engineered allogeneic cell products. We have 

demonstrated that human CD34+ cord blood-derived HSCs could 
be cultured, engineered, and differentiated into CAR-engineered 
iNKT (CAR-iNKT) cells with high yield and purity. These cells 
show high tumor-killing specificity and efficacy in murine models 
(6, 15, 16). In addition, current research involving iPSCs show that 
these cells can be guided across human leukocyte antigen (HLA) 
barriers to differentiate into many therapeutic cell types including 
CD8 T cells and NK cells (17–19). Clinical trials for iPSC-derived 
CAR-NK cells show promising results against hematological and 
solid malignancies in humans (19). Thus, drawbacks in 
manufacturing throughput and efficacy characteristic of primary 
immune cell therapies could be overcome through incorporation of 
stem cells (6, 19).

Nevertheless, allogeneic cell-based cancer immunotherapy still 
has several noteworthy limitations. Most notably, graft 
immunosuppression challenges both off-the-shelf cell products and 
autologous cell-based therapies alike. For instance, the heterogeneous 
tumor microenvironment (TME) associated with solid tumors 
suppresses effector cell activation and antitumor capacity through 
anti-inflammatory agents including tumor-associated macrophages 
(TAMs), myeloid-derived suppressor cells (MDSCs), and anti-
inflammatory cytokines (9, 20). Additionally, allogeneic cell products 
typically induce dual GvHD and host-versus-graft (HvG) effects from 
immunogenic HLA mismatch between donor and recipient (10, 19). 
TCR recognition of effector cells against healthy host cells by donor 
effector cells unleashes cytotoxic cascade through expression of FAS 
ligand, perforin, and granzymes (10). iPSC-dervied NK cells have 
demonstrated the capability to produce a hyperinflammatory 
environment, inducing cytokine release syndrome (CRS) in recipients 
(21). Additionally, HvG effect in host rejection of graft cells reduces 
the antitumor efficacy and persistence of allogeneic cells, precluding 
maximum therapeutic capacity (11).

To address these problems, diverse approaches have been explored 
and implemented in cancer research, leading to significant 
advancement in effector cell capabilities. The invention of genetic 
engineering techniques such as viral transduction, CRISPR-Cas9, and 
transcription activator-like effector nuclease (TALEN) largely expands 
the potential to artificially modulate genetic expression of therapeutic 
cells. In this review, we discuss the major obstacles that hinder cancer 
treatment and summarize current genetic engineering strategies to 
overcome these difficulties (Table  1). Enhancement of antitumor 
efficacy, amelioration of GvHD, reduction of HvG effect, and 
improvement of safety profiles are essential directions for the 
progression and adoption of next generation of allogeneic cell-based 
cancer immunotherapy.

2. Engineering strategies to enhance 
antitumor efficacy

2.1. Engineering of chimeric antigen 
receptors (CARs)

CARs are an engineering milestone in synthetic biology 
responsible for unprecedented response rates in patients since its 
initial U.S. FDA approval in 2017 for CD19-targeting CAR-T cell 
therapy against relapsed or refractory B cell acute lymphoblastic 
leukemia (ALL) (22). CARs were first developed in T cells with four 
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distinct functional domains: an extracellular antigen-recognition 
domain, a flexible hinge region, a transmembrane domain, and an 
intracellular T cell signaling domain (23). The extracellular antigen-
binding domain could be comprised of various structures including 
single chain variable fragments of antibodies (scFv) (24), cell 
receptors (25), ligands (26), other derived peptides programmed for 
specific interactions (27), or nanobodies (28). This domain is 
constructed with a range of specificities to the specified target to 
provide ample stimulation while avoiding activation-induced cell 
death (23). Several studied targets for the extracellular domain in 
hematological malignancies include, but are not limited to, CD19, 
CD20, CD22, CD30, CD38, and BCMA. Targets in solid tumors 
include human epidermal growth factor 2 (HER2), epidermal 
growth factor receptor (EGFR), GD2, mucin 1, mesothelin, 
programmed death ligand 1 (PD-L1), and CD171, among 
others (29).

The hinge region connects the extracellular domain to the 
transmembrane domain, which then connects the structure to the 
intracellular signaling domain. First-generation CARs are composed 
of this basic structure, with the intracellular domain typically a CD3ζ 
domain for T cell activation (30). Second-and third-generation CARs 
consist of one or two additional costimulatory domains, respectively; 
most commonly, 4-1BB or CD28 costimulatory domains are can 
included to provide enhanced activation and expansion (31). Fourth-
generation CARs include a cytokine-releasing cassette that is 
constitutive or induced, allowing for increased toxicity or proliferation 
by cytokine stimulation (e.g., IL-12, IL-15, and IL-18) (31, 32).

CARs are most commonly engineered on T cells harvested from 
the patient receiving treatment. So far, patient-derived T cells are the 
base of each FDA-approved CAR-T cell therapy, with allogeneic T cells 
posing the risk of graft-versus-host alloreaction due to 
histoincompatibility (29). CAR-T cells also pose increased risk due to 
cytokine release syndrome (CRS) and neurotoxicity (33). Alternative 
cells for CAR-engineering include NK (34) and unconventional innate 
T cells, such as iNKT, MAIT and gamma delta T (γδ T) cells (14). 
These alternative effector cells demonstrate reduced risk of 
allorejection and exhibit potential for off-the-shelf cell products 
derived from healthy donor PBMCs and stem cells (14). Furthermore, 
they exhibit a shorter duration of activity and cause less severe 
toxicities, while also utilizing multiple cytotoxic mechanisms that are 
not dependent on CAR signaling to enhance tumor targeting (35, 36).

One popular extracellular domain for CAR-NK cells is NKG2D, 
an NK activating receptor that recognizes stress-induced ligands 
including MICA, MICB, and ULBP that are expressed on 
DNA-damaged or transformed cells (37). NKG2D-CAR-NK cells 
exhibit enhanced killing and higher specificity than conventional NK 
cells, with the ability to augment persistence with IL-15 co-expression 
(37, 38). Furthermore, compared to CAR-T cells, NKG2D-CAR-NK 
cells exhibit lower expression of cytotoxic molecules such as granzyme 
B, perforin, and IFN-γ while showing better tumor-killing and 
survival in vivo, attributed to an increase in the expression of 
immunological activation genes (37). iNKT cells also exhibit benefits 
in CAR-engineering against hematological malignancies, targeting 
acute myeloid leukemia and B cell lymphoma more efficiently than 
CAR-T cells while ameliorating GvHD from allogeneic transplantation 
(14). GvHD ablation by iNKT cells was shown to be achieved by the 
rapid depletion of CD14+ myeloid cells responsible for exacerbated 
alloreaction in mice (14).

2.2. Incorporation of cytokine armoring 
genes

One barrier restricting cell-based cancer therapy is limited efficacy 
due to the downregulation of costimulatory molecules on tumor cells 
(39). The genes responsible for producing cytokines, which are crucial 
for the proper function and persistence of immune cells, have been 
modified and incorporated into engineered cells, resulting in an 
improved ability of these cells to specifically target tumors. IL-15 is an 
important cytokine in CD8+ T cell and NK cell stimulation and 
proliferation (40). It has been demonstrated the engineered ectopic 
expression of IL-15  in CD19-CAR-T cells results in 3-to 15-fold 
greater expansion, survival, antitumor efficacy, and decreased PD-1 
expression in vivo (41). Membrane-bound IL-15 engineered on CD19-
CAR-T with a platform to promote T-memory stem cells (TSCM) 
showed similar effects, increasing persistence in vivo and promoting 
a CD45ROnegCCR7+CD95+ phenotype akin to TSCM. T-cell persistence 
independent of CAR signaling was achieved by the membrane-bound 
IL-15 due to STAT5 signaling, enabling CAR-T cells to undergo long-
term memory stem-cell differentiation (42). IL-2 has been studied as 
a key stimulant of T cells similar to IL-15, however its constitutive 
stimulation of immunosuppressive regulatory T cells limits its 
effectiveness in cancer therapies. IL-2 is also associated with 
activation-induced cell death, limiting long-term activation and 
durability in vivo (43).

IL-7 is an important cytokine for lymphoid differentiation from 
hematopoietic stem cells. Administration of IL-7 exhibits increases in 
CD4+ and CD8+ T cells in circulation dependent on dose (44). In 
comparison to IL-15, IL-7 promotes the expansion of naïve T cells and 
leads to a more potent tumor-killing response (44). Transgenic IL-7 
expression in CAR-T cells has therefore been explored and proven to 
increase tumor-targeting and killing in the presence of regulatory T 
cells in hematological and solid tumors (45). Specifically, CD20-, 
CD19-, GD2-, and mesothelin-CAR-T cells showed enhanced 
proliferation and cytotoxicity. These were much improved with the 
co-expression of CCL19 or CCL21 to further improve chemotaxis and 
proliferation (45, 46).

IL-12 is associated with a pro-inflammatory immune response in 
both innate and adaptive immune cells. Genetically modifying CAR-T 
cells to express IL-12 upon CAR or TCR stimulation under the control 
of the NFAT promoter provides T cells with a steady and high level of 
IL-12 secretion. By controlling IL-12 expression with an NFAT 
response, IL-12 is restricted in tissues the effector cells pass through, 
limiting toxicity in healthy tissues (47). In tumor tissues IL-12-
engineered CAR-T cells exhibited elevated IFN-γ secretion, greater 
antitumor efficacy, and greater innate immune response (47). By 
activating both the innate and adaptive immune response, IL-12 may 
enhance tumor-targeting against cells that have undergone antigen-
escape to avoid killing by antigen-specific CAR-T cells. Innate 
response is evidenced by elevated levels of macrophages, NK, and 
NKp46+ cells following IL-12 expression within the tumor 
environment (48). Studies have also shown that IL-12 increases 
antigen processing and presentation to increase T cell stimulation 
indirectly (49). Engineering inducible IL-12 activation is being 
investigated in phase I/II clinical trials for an EGFR-specific CAR-T 
cell against metastatic colorectal cancer (43).

IL-21 is an essential cytokine for optimal proliferation, 
differentiation, and activation of T cells utilizing the STAT3 pathway 
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(49). Batra et al. demonstrated that GPC3-CAR-T cells coexpressing 
IL-21 effectively target GPC3-positive tumor lines, with the most 
robust expansion and persistence in cells expressing combined IL-21 
and IL-15 (50). IL-21-expressing cells exhibited greater cytotoxicity to 
tumor cells and greater survival in mice than IL-15 or IL-2 treated 
CAR-T cells despite higher levels of IFN-γ and Bcl-2 expression (43, 
50, 51). Because the levels of circulating IL-15 and IL-21 in mouse 
peripheral blood were 100-1,000-fold lower than the maximum 
tolerable dose in humans, systemic toxicities are not anticipated with 
CAR-T cells coexpressing these cytokines (50, 51). The efficacy of 
these engineered T cells are being evaluated in two ongoing clinical 
trials (NCT02932956 and NCT02905188) for GPC3+ liver cancer and 
hepatocellular carcinoma (52).

2.3. Blockade of immune checkpoint 
receptors

Immune checkpoint blockade has rapidly become one of the most 
promising therapeutic strategies for triggering anti-tumor immunity. 
As a key component of the immune system, immune checkpoints are 
essential for preserving self-tolerance as well as regulating the intensity 
and duration of physiological immune response in peripheral tissues 
to protect cells from being attacked indiscriminately (53). Tumor cells 
are able to express immune checkpoint ligands interacting with 
receptors on immune cells to inhibit their activity, and thereby bypass 
the immune system. This has limited cell therapies by enabling tumor 
cells to mask themselves from immune cells, causing immune 
resistance. To address the immune suppression against tumors from 
this ligand-receptor interaction, antibodies for immune checkpoint 
blockade have shown promise in blocking the interaction to enable 
tumor-targeting by immune cells (Figure 1).

Among the diverse immune checkpoint proteins, two of the most 
extensively studied are programmed cell death protein 1 (PD-1) and 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) (54). 
Generally, PD-1 is responsible for maintaining peripheral tolerance 
during cancer, infection, or chronic inflammation (54, 55). PD-1 
ligands PD-L1 and PD-L2 expressed in tumor cells bind to PD-1 
expressed on the surface of T cells, leading to inhibitory checkpoint 
signaling that reduces cytotoxicity and T-cell exhaustion (56). The 
PD-1/PD-L1/2 interaction downregulates the immune responses and 
provides an opportunity for tumor cells to persist uninterrupted. In 
response to this immune resistance, anti-PD-1 treatment is aimed at 
enhancing T cell function by blocking the inhibitory signals (53). By 
identifying mutated peptides, such as neoantigens, tumor-infiltrating 
T cells can trigger a potent immune response (57). Specifically, 
nivolumab, an FDA-approved antibody targeting human PD-1, has 
shown clinical efficacy in 2010 and 2012 against mesothelioma and 
gastric cancer (58, 59). According to a phase I  clinical study of 
nivolumab, treatment efficacy was correlated with the expression of 
PD-1 ligands in tumor cells (58). However, PD-1 ligands are 
differentially expressed across different tumors; it is predicted that the 
therapeutic effect is selective for PD-1high tumors (e.g., lung cancer, 
glioblastoma, melanoma) (55, 60).

CARs also provide a potent mechanism for PD-1 blockade. 
Because of the immunosuppressive TME and feeble natural immune 
responses against tumors, clinical trials utilizing checkpoint inhibitors 
have shown limited effectiveness regarding some types of tumors, such 

as pancreatic ductal adenocarcinoma (61, 62). Despite the promise of 
PD-1 blockadeas a form of cancer therapy, its efficacy may be limited 
for certain types of cancer and between patients due to tumor 
heterogeneity. CARs can disrupt the interaction between PD-1 and 
PD-L1 to effectively treat PD-L1+ cancers. For example, in pancreatic 
cancer (PaC) third-generation CARs with costimulatory domains 
such as CD28, CD137, and OX40, can effectively target PD-L1 on PaC 
cells. Furthermore, in xenograft/orthotopic mouse models, the 
targeting specificity of CARs largely determines the cytotoxic activity 
of the engineered CAR-T cells, with greater binding affinity of the scFv 
associated with greater cytotoxicity (62–64).

In contrast to PD-1, the CTLA-4 immune checkpoint regulates 
T-cell proliferation in lymph nodes during the early stages of an 
immune response (65). CTLA-4 maintains immune balance by 
downregulating the function of activated T cells through inhibitory 
signals from binding B7, a membrane protein expressed on activated 
antigen presenting cells (APCs) (65). Anti-CTLA-4 monoclonal 
antibodies such as ipilimumab bind CTLA-4 to shut down inhibitory 
signals, enabling CTLs to persist with their cytotoxic activities against 
cancer cells (53). Furthermore, preclinical data has indicated that 
CTLA-4-blockade has a significant effect on boosting the anti-tumor 
response, suggesting that targeting CTLA-4 could serve as a viable 
method for activating cytotoxic T-lymphocytes (CTLs) in cancer 
therapy (66–68). In metastatic melanoma, ipilimumab improved 
patients’ survival after established lines of treatments had failed (69, 
70). CRISPR-Cas9 has been utilized to target CTLA-4 as well. To 
construct CTLA-4 knockout CTLs, lentiviral vectors containing guide 
RNA specific for CTLA-4 are used to create double-strand breaks and 
block CTLA-4 expression (71). Following CTLA-4 knockout, anti-
tumor cytotoxicity and cytokine secretion by CTLs are notably 
increased, as well as the apoptosis and caspase activities of tumor cells. 
This is indicative of an overall improvement in antitumor efficacy 
following CTLA-4 knockout with CRISPR-Cas9 (71).

In addition to PD-1 and CTLA-4, several new immunological 
checkpoints have been discovered. Lymphocyte activation gene-3 
(LAG-3), adjacent to the CD4 gene on chromosome 12, is a negative 
regulator for T cell activities (54). Structural similarities between 
LAG-3 and CD4 make MHC-II a high-affinity ligand of LAG-3 (72). 
CRISPR-Cas9 is also employed to understand the mechanisms behind 
LAG-3 checkpoint regulation. After using CRISPR-Cas9 with 
electroporation to knockout LAG-3 in both T cells and CAR-T cells, 
the immune phenotype and viability of the edited cells are not 
significantly different from the control cells in vitro. However, in vivo 
studies demonstrate that LAG-3 modulates pool size and 
downregulates T cell expansion, evident from increased T cell 
populations in LAG-3 knockout models (73, 74). Though further 
research is required to understand the functions of LAG-3, gene-
editing provides a potential mechanism for enhancing lymphocyte 
recognition of tumor cells.

T cell immunoglobulin mucin family member 3 (TIM-3), also 
known as hepatitis A virus cellular receptor 2 (HAVCR2), has been 
increasingly studied because of its distinct characteristics as a 
suppressive marker. As a type I transmembrane protein, TIM-3 is 
essential for suppressing Th1 responses and the production of 
cytokines, including TNF and INF-γ. TIM-3-associated dysregulation 
is usually implicated in autoimmune disease. Generally, Tim-3 
expression on T cells is inversely linked with the progression of 
autoimmune disorders (75). Furthermore, as the TIM-3 expression 
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level increases, the level of T cell exhaustion increases as well, marking 
the gradual loss of T cell function during long-term viral infections 
and tumor growth. Studies on both human and mouse tumors indicate 
that TIM-3 controls T cell exhaustion in tumor-infiltrating leukocytes 
(TILs), acting as a checkpoint for tumor immunity (75). High TIM-3 
expression on CD8+ T cells has been correlated with poor prognosis 
in cancer patients. Moreover, TIM-3 and PD-1 expression on CD8+ 
TILs are highly correlated (76). With increased research in TIM-3 and 
CRISPR knockouts, evidence is mounting that double-positive 
TIM-3+PD-1+ CD8+ T cells are linked to higher levels of T cell 
exhaustion (77). Further research utilizing TIM-3 knockouts will 
be  able to uncover the mechanisms behind TIM3-mediated 
suppression and may evidence greater potential for therapeutics.

NKG2A, an inhibitory regulator in the NKG2 family of proteins, 
is an important immune checkpoint for both CD8+ T cells and NK 
cells. Similar to other immune checkpoints, NKG2A binds to its 
ligand, peptide-presenting human leukocyte antigen-E (HLA-E), to 
activate inhibitory signals (78). The expression pattern of NKG2A in 
CD8+ T cells is highly regulated. In healthy individuals, NKG2A 
expression is minimal in CD8+ T cells, whereas during tumor 
development and persistent viral infection, the expression level 
increases (79, 80). Cytokines (e.g., IL-2, IL-4, and IL-6) can effectively 
modulate NKG2A expression on CD8+ T cells. NKG2/CD94 receptor 
interaction conducts inhibitory signals in CD8+ T cells, leading to a 
decrease in cytotoxic activity (81). NKG2A is present in about half of 
the human peripheral blood NK cells. Although NKG2/CD94 
activation has a restrictive effect on the cytotoxicity of NK cells, 
interrupting the receptor-ligand interaction with HLA-E reinvigorates 
NK killing (78). Tumors often overexpress HLA-E and are thus able 
to suppress NK antitumor activity. In fact, HLA-E overexpression is 
associated with poor prognoses in several cancers, including 
glioblastoma and breast cancer (82, 83). NKG2A-mediated immune 
suppression in NK cells has been alleviated via NKG2A protein 
expression blocker (PEBL) transduction and anti-NKG2A antibody 
interference. PEBL transduction has been shown to induce a higher 
level of NK cell cytotoxicity without risking the relapse of NKG2A 

expression (84). Based on data from murine models, downregulating 
NKG2A effectively enhances anti-tumor immune response in both 
CD8+ T cells and NK cells (84).

Antigen spreading, a result of sequential immune response, must 
be taken into consideration during immune checkpoint blockade (85). 
This phenomenon involves broadening the immune response from 
the initial targeted response against a particular epitope to include 
other subdominant or previously unrecognized epitopes. Such a 
process may occur in response to self and foreign peptides, and it can 
lead to a more diverse an `11d robust immune response against the 
target antigen (86). Although past clinical trials did not investigate 
antigen spreading in immune checkpoint inhibition, there have been 
reports demonstrating that patients responding to the treatment 
experienced the recruitment and expansion of tumor-specific T cells 
that were not detectable before the therapy (87–90). Additionally, 
there has been experimental evidence indicating that checkpoint 
inhibition therapy was able to induce antigen spreading (85). Further 
studies are needed to analyze how the occurrence of antigen spreading 
could enhance the efficiency of immune checkpoint inhibition therapy.

2.4. Modulation of transcription factors and 
epigenetic enzymes

Transcription factors and epigenetic enzyme modulation play vital 
roles in immune cell activation, differentiation, and effector function 
(91). One frequently studied enzyme is the histone methyltransferase 
EZH1, an antagonistic lymphoid potential regulator during embryonic 
hematopoiesis. Human induced pluripotent stem cells (iPSCs) are 
essential resources for cell therapies, but deriving mature cell types can 
be difficult (92). Studies have shown that using iPSCs derived from T 
cells that have productively altered TCRs or incorporating organoid 
or thymic culture systems results in improved T cell maturation in 
vitro (93–95). To further improve the outcomes, EZH1 programming 
is included during cell derivation. By coupling a stroma-free T cell 
differentiation system with EZH1-knockdown-mediated epigenetic 
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FIGURE 1

Multiple engineering strategies to mitigate the immune checkpoint receptor-mediated immunosuppression. (A) Various ligand-receptor interactions 
are involved in the immunosuppression and decrease antitumor reactivity of therapeutic cells. (B) Engineering therapeutic cells to ablate their immune 
checkpoint receptors and interrupt ligand-receptor interactions for enhanced antitumor reactivity.
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engineering, iPSC-derived T (EZ-T) cells can be produced. These 
artificially generated cells possess mature molecular markers similar 
to those found on peripheral blood-derived TCRαβ T cells and exhibit 
a very diverse TCR repertoire (92). Effector and memory T cell subsets 
are produced as a result of EZ-T cell activation. EZ-T cells display 
robust anti-tumor responses both in vitro and in vivo in xenograft 
models after being transduced with CARs. Developmentally mature 
T cells can be  efficiently produced from iPSCs and employed in 
adoptive cell therapy due to epigenetic remodeling of EZH1 
repression (92).

Another crucial reprogramming method for increasing anti-
tumor efficacy is via DNA methyltransferase 3A (DNMT3A), an 
enzyme that catalyzes 5-methylcytosine methylation (96). DNMT3A 
is an essential factor in both embryonic and hematopoietic stem cell 
(HSC) differentiation (96). The loss of DNMT3A causes long-term 
HSC differentiation impairment in vivo (97). Mutations of DNMT3A 
can be  found in human HSCs and are often associated with 
hematological malignancies (96). Due to this characteristic of 
DNMT3A, reprogramming has become a research target and 
therapeutic method for both hematological and solid malignancies. 
Epigenetically altered CAR-T cells with modulated DNMT3A have 
been studied to further understand the role of DNMT3A in anti-
tumor activities. One significant drawback of traditional CAR-T cell 
therapy is exhaustion during prolonged antigen exposure. Under 
antigen stimulation, the expression of DNMT3A is upregulated by T 
cells. While the DNMT3A-regulated epigenetic changes in CAR-T 
cells induce exhaustion, removing DNMT3A from CAR-T cells 
improves the anti-tumor activities and avoids possible dysfunction in 
an IL-10-dependent manner (98). CRISPR-Cas9 can be  used to 
generate CAR-T cells with DNMT3A knocked out with consequent 
constant proliferation and successful control of tumor development in 
vivo, exhibiting the benefits of targeting DNMT3A in 
immunotherapies (99).

2.5. Induction of CD16 to mediate 
antibody-dependent cellular cytotoxicity 
(ADCC)

One mechanism ADCC is mediated is through immunoglobulin 
G (IgG) Fc receptor FcγRIIIa, otherwise known as CD16a. On NK 
cells CD16a is associated with CD3ζ or Fcɛ receptor I (FcɛRI) γ chains. 
When it binds to the Fc portion of IgG, CD16a causes the cell to 
undergo biochemical events similar to T cell activation and lead to 
cytotoxicity (100, 101). Following NK cell activation, a disintegrin and 
metalloproteinase-17 (ADAM17) cleaves CD16a, reducing ADCC 
capacity and leading to NK cell dysfunction (101). FDA-approved 
monoclonal antibodies such as rituximab (anti-CD20) and 
trastuzumab (anti-CD19) are aimed at bringing NK cells within 
proximity of tumor cells and activating ADCC function to kill the 
tumor (102).

Zhu et al. have engineered “off-the-shelf ” NK cells from induced 
pluripotent stem cells (iPSC) and engineered high-affinity 
non-cleavable CD16a (hnCD16a) to maintain NK cytotoxicity (102). 
These cells expressed similar NK activation and maturation markers 
but showed much higher CD16a expression and persistence. This was 
achieved by replacing a serine residue with a proline in the membrane 
proximal region of the CD16 receptor (103). In vitro and in vivo assays 

demonstrate hnCD16a-NK cells with a single dose of monoclonal 
antibody mediate ADCC against lymphoma and ovarian cancer, with 
better survival than PBMC-NK cells (102). Engineered hnCD16-NK 
cells from iPSCs serve as a potential allogeneic cell therapy because of 
the lack of HLA specificity in NK cells. Cichocki et al. (104) reported 
engineered CD16-CAR-NK cells with membrane-bound IL-15 from 
iPSCs capable of targeting multiple myeloma and being mass 
produced. These data showed enhanced durability without 
supplemention with stimulatiory cytokines against NSG models of 
multiple myeloma. Because of their potential for adoptive transfer 
without inducing GvHD, several clinical trials are in progress to 
induce ADCC against B cell lymphoma, pancreatic and other 
advanced solid tumors, and multiple myeloma via monoclonal 
antibody/CD16-NK cell combined treatment (105).

3. Engineering strategies to ablate 
endogenous TCR expression

Expression of HLA molecules largely mediates the clinical 
manifestation of GvHD for adoptive cell therapy recipients on account 
of alloreactivity against host-mismatch recognition. Prior studies have 
shown the capacity to suppress GvHD while maintaining the desired 
GvL reaction through depletion of mature alloreactive graft cells 
(106–109), dosage titration (110), and allo-anergization through 
exposure to host cells ex vivo (111, 112). The standardization of 
genetic editing techniques has since drawn attention towards the 
viability of employing genome-based methods to preclude GvHD 
onset. In particular, disrupting expression of a functional TCR at the 
constituent TCR receptor α constant (TRAC) and β constant (TRBC) 
loci effectively curtails graft cell capacity for immunoresponse, 
including alloreaction (113, 114). In order to produce a viable graft, 
insertion of a chimeric antigen receptor (CAR) gene at the TRAC/
TRBC loci can effectively substitute a functional TCR. A wide variety 
of differentially expressed tumor-associated antigens have been 
identified within malignancies (e.g., BCMA, CD19, GD2, and 
Mesothelin) which can be selectively targeted by the CAR depending 
on tumor expression profile (115–117). Clinical trials administering 
CD19-targeting CAR-T cell therapy that lacked endogenous TCR 
demmonstrated enhanced tumor recognition despite its missing 
receptor, suggesting the feasibility of adopting a universal CAR-T 
therapy for cancer treatment (118–120).

However, limitations including antigen escape and graft impurity 
limit the safety of adopting a “universal” CAR-T cell-based therapy 
(121). Other promising methods employ a transgene encoding a 
non-conventional TCR that does not engage in alloreactivity while 
retaining TCR-mediated antigen recognition; so far this strategy has 
been most prominently adopted using NY-ESO-1 TCR transgene. The 
NY-ESO-1 TCR displays enhanced affinity for the antigen NY-ESO-1 
when complexed with HLA-A2, both of which are highly expressed 
on the surface of multiple myeloma MM and testicular cancer cells 
(122, 123). A study performed by Mastaglio et al. employed zinc finger 
nuclease (ZFN) to disrupt the TRAC locus with a copy of the 
NY-ESO-1 TCR gene produce NY-ESO-1 T cells; compared to a 
non-TCR knockout graft, NY-ESO-1 T cells maintained similar 
reduction of NY-ESO-1+ MM tumor burden while abating GvHD 
response (124). Single TRAC knockout was sufficient to abolish 
endogenous TCR formation and suppress alloreactivity, attributed to 
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non-productive mispairing of the remaining TCR β chain with 
NY-ESO-1 TCR α chain.

Another viable alternative lies in using unconventional T cell 
subsets, such as iNKT cells, that recognize antigens via an invariant 
TCR, independent of HLA. The human iNKT TCR is composed of a 
Vα24-Jα17 chain paired with a heavily restricted repertoire of Vβ 
chains, primarily Vβ11 (125, 126). Unlike conventional TCRs, the 
iNKT TCR recognizes antigens in an HLA-independent manner, 
restricted to glycolipids presented by CD1d, a non-classical MHC 
molecule (127). By virtue of their inability to recognize HLA antigen 
complexes, iNKT cells possess powerful antitumor capacity without 
the risk of inducing GvHD response (6, 128). Additionally, iNKT 
expression of NK activating receptors (i.e., DNAM-1, NKG2D, 
NKp33) permit alternative, TCR-independent recognition of tumors 
(129, 130). Clinical engraftment of iNKT cells against a variety of 
malignancies, including MM (130), lung cancer (131), and head and 
neck cancer (132), demonstrated significant reduction in tumor 
burden with greater safety profile compared to checkpoint inhibitor 
and CAR-T cell therapies. The improved safety of iNKT cell adoptive 
transfer, as well as its dual employment of innate and adaptive immune 
response position iNKT cells as a prime candidate for allogeneic 
“off-the-shelf ” cancer immunotherapy.

4. Engineering strategies to reduce 
host-versus-graft (HvG) effect

4.1. Ablation of HLAs

Beta-2 microglobulin (B2M) monomers form a functional 
complex with major histocompatibility class I (MHC I) molecules that 
are universally expressed on the surface of nucleated cells (133). The 
mature MHC I  complex organizes presentation of intracellular 
antigens towards its cognate CD8 co-receptor expressed by single 
positive CD8 cytotoxic T cells. Cytosolic proteins are degraded into 
antigen peptides and loaded onto MHC Class I molecule (134). This 
complex translocates to the cell surface for TCR-mediated recognition 
of loaded antigens, inducing activation of CD8+ cytotoxic lymphocytes 
(Figure 2A). Expression of MHC I restricts the implementation of 
allogeneic therapy twofold. First, MHC I  mismatch on graft cells 
activates endogenous lymphocytes producing a HvG effect that limits 
the survival and persistence of therapeutic donor cells (135). Secondly, 
cell therapies that function using TCR-mediated pathways recognize 
MHC I mismatch on host cells and induce onset of GvHD. Because 
proper MHC I  loading and recognition requires complexing with 
B2M, methods to deplete its expression abrogate the HvG effect and 
augment engraftment success rate. In conjunction with using cell 
types that employ MHC-independent recognition pathways, such as 
iNKT and NY-ESO TCRs as mentioned above, successful adoption of 
an allogeneic “off-the-shelf ” cell therapy becomes feasible.

Engineered MHC I  deficient cells may be  employed to 
successfully target tumors through a combination of CRISPR-Cas 
9 knockdown of endogenous TCR and transduction of a CAR 
moiety to provide MHC I-independent tumor recognition 
capacity. Using lentivirus transduction, Ren et  al. produced 
allogeneic CD19-targeting CAR-T (CAR19-T) cells possessing 
abrogated expression of the TCR, HLA class I  molecules, and 
immune checkpoint PD-1 (136). When CAR19-T cells were 

co-cultured with allogeneic PBMCs, alloreactivity was largely 
diminished indicating their favorable profile for allogeneic 
engraftment. This was similarly applicable within our studies 
BMCA-targeting CAR iNKT (BCAR-iNKT) cells that were 
depleted for B2M (11). Within an in vivo multiple myeloma mouse 
xenograft model, depleted BCAR-iNKT cells achieved longer 
survival than non-depleted counterparts while still maintaining 
total tumor clearance. For both CAR-T and CAR-iNKT based 
therapies, ablation of B2M or HLA I expression renders a potent 
strategy to abrogate HvG effects and promote long-term 
graft persistence.

Human Leukocyte Antigen-DR isotype (HLA-DR) is an MHC 
class II surface antigen-presenting molecule, with expression restricted 
to professional APCs, including B cells, macrophages, and dendritic 
cells. Morphologically, HLA-DR is a heterodimer composed of α and 
β chains then complex to recognize its cognate CD4 co-receptor (137). 
In contrast to MHC I which presents cytosolic antigens, MHC II 
molecules present exogenous antigens for recognition by single 
positive CD4 helper T cells (Figure  2B). Expression of HLA-DR 
mediates both direct and indirect HvG effect through respective 
recognition of either graft-derived or endogenous APCs (138). The 
direct pathway holds more relevance for acute allograft rejection, 
while the indirect pathway remains a causal factor for chronic graft 
rejection (139). Through depletion of HLA-DR expression on effector 
cell transplants, alloreactive host lymphocytes cannot be primed for 
both direct and indirect HvG effect.

As a relatively early technology, zinc finger nucleases (ZFNs) were 
successfully utilized to ablate HLA expression in allogeneic 
hematopoietic stem cells (HSCs) while maintaining pluripotency 
(140). More recently, CRISPR-Cas 9 multiplex gene editing has 
provided an avenue for more specific disruption of HLA II α genes, 
including HLA-DRA, DQA, and DPA (141). After 13 days of 
quadruple gRNAs transfection, Lee et  al. observed that the gene-
edited CD3+ T cells composed 62.1% of HLA-I/II-double-negative 
cells, while retaining surface phenotype and functionality. However, 
for generation of universally compatible iPSCs (142), results concluded 
that TALEN restriction enzymes had the greatest consistency; they 
were more maneuverable than ZFNs and had fewer off-target events 
than CRISPR/Cas 9. Even when stimulated with high concentrations 
of IFN-γ, TALEN-treated fibroblasts lacked HLA-DR expression, 
which was maintained within iPSCs generation (142). HLA-DR 
knockout remained effective and safe in these therapies, suggesting 
their potential to modify effector cells to prevent HvG effect in cancer 
immunotherapy (143).

Class II transactivator (CIITA) is a transcriptional coactivator that 
regulates IFN-γ-activated MHC gene expression. CIITA primarily 
controls expression and production of MHC class II molecules but 
also plays a role in supporting constitutive expression of MHC 
I expression (144). Thus, CIITA is a viable target to induce knockout 
of MHC II, thus reducing HvG incidence mediated by HLA class II 
molecules. Through multiplex gene editing, researchers disrupted the 
CIITA gene in human PSCs (145). In vitro and in vivo immunoassay 
suggested that alloreactive response against gene-edited PSCs was 
minimized, suggesting this strategy’s potential to develop a universal 
cell therapy (146). Our own experiments to develop allogeneic 
HSC-derived iNKT cells, have produced CIITA-KO and B2M-KO 
universal BCAR iNKT cells that could completely abrogate HvG effect 
(6), emphasizing effectiveness within fully differentiated T cell subsets.
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4.2. Overexpression of inhibitory ligands

HLA class I histocompatibility antigen, alpha chain E (HLA-E) 
and alpha chain G (HLA-G) are non-classical MHC class 
I  molecules that act as inhibitory ligands for NK cells (147). 
Recognition of HLA-E by CD94/NKG cell receptors, protects 
targeted cells from NK cell-mediated lysis (148). Although HLA 
ablation may abate targeting from host lymphocytes, these cell 

therapies alone remain vulnerable to NK cell recognition pathways 
(148, 149). Engineering HLA-E/HLA-G overexpression may 
provide protective effects within effector cells, thus safeguarding 
them from innate targeting to enhance in vivo persistence (150, 
151). Zhao et al. successfully generated human embryonic stem 
cells (hESCs) with high expression of HLA-G (152), providing 
protective effects against NK cell-mediated cytotoxicity. In a 
similar vein, Torikai et al. utilized a Sleeping Beauty (CD19RCD28) 
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FIGURE 2

Multiple engineering strategies to reduce host-versus-graft (HvG) effect. (A,B) The ablation of HLA molecules expressed on therapeutic cells by 
knocking out HLA-related genes (e.g., B2M, HLA-DR, and CIITA), avoiding CD8+ and CD4+ T lymphocyte-mediated HvG effect. (C,D) The 
overexpression of inhibitory ligands (e.g., HLA-E and CD47) of therapeutic cells. The binding of inhibitory ligands prevents NK signaling pathway and 
macrophage phagocytosis, reducing NK cell-and macrophage-mediated HvG effect.
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transposon system to homogenously induce overexpression of 
HLA-E in CAR19-T cells, consequently reducing measured cell 
lysis in vitro (153). Using AAV-mediated gene editing to insert the 
gene for HLA-E at the B2M locus in hPSCs, Gornalusse et  al. 
generated cells overexpressing HLA-E single-chain dimers or 
trimers while disrupting HLA-A/B/C production. These gene-
edited human PSCs demonstrated strong resistance against NK 
cell killing as well as minimal recognition by CD8+ cytotoxic 
lymphocytes (154). Regardless of strategy, insertion of HLA-E/G 
genes provided sufficient protection against NK cell-mediated 
killing enhancing effector cell survival and persistence 
(Figure 2C).

CD47 is a transmembrane glycoprotein expressed universally 
among human cells (155, 156), and is upregulated within tumors to 
promote survival (157–159). Through interaction with signal receptor 
protein-alpha (SIRPα) expressed on macrophages, targeted cells 
inhibit phagocytosis and cell digestion to evade eradication (155, 156, 
159). Macrophages largely contribute to HvG effect through both 
direct killing as well as their pro-inflammatory function in activating 
markers, cytokine profile, and engagement in ADCC (160–162). To 
prevent macrophage killing, exploitation of CD47/SIRPα pathway 
provides a potential remedy; akin to CD47hi tumors, graft cells 
engineered to overexpress CD47 evade macrophage-mediated 
phagocytosis (163). By combining lentivirus transduction of CD47 
with gRNA guided CRISPR-Cas 9 knockdown of B2M and CIITA, it 
is feasible to engineer HLA−CD47hi effector cells that are immune to 
both T cell and macrophage mediated HvG effect (163, 164). 
Compared to non-engineered allogeneic grafts, CD47 modified cells 
showed enhanced survival and persistence within in vivo mouse 
xenograft models (163). By incorporating CD47 to evade macrophage 
killing, engrafted effector cells promote low HvG response, enhancing 
their long-term ability to suppress tumor growth (Figure 2D).

4.3. Disruption of CD52 to avoid total 
lymphodepletion

Lymphodepletion is a crucial step in cell therapies to reduce 
suppressive immune cells and decrease immunogenicity of the host 
immune system prior to cell transfer. One method for temporary 
lymphodepletion is to use alemtuzumab, a monoclonal antibody that 
targets CD52 and induces ADCC against mature lymphocytes but not 
naïve lymphocyte progenitors (165); however, this method cannot 
be used for adoptive transfer due to indiscriminate targeting of healthy 
and cancerous lymphocytes (165). One genetic engineering approach 
to address this challenge is the disruption of CD52 expression with 
TALEN mRNA to eliminate the binding cite of alemtuzumab in order 
to maintain antitumor efficacy. This approach is used in CD19-CAR-T 
cells against lymphoma, generating a CAR-T cell product capable of 
allogeneic engraftment (165). Engineering CD52 deficient CAR-T 
cells allows for concurrent treatment of alemtuzumab and CD19-
CAR-T cells for combined host cell depletion and donor cell 
engraftment. Several clinical trials utilize this TALEN-mediated 
CD52-knockout for successful selective lymphodepletion in allogeneic 
CD19-CAR-T cell therapy (166). Genetically engineering a 
mechanism for selective lymphodepletion provides an opportune 
avenue for allogeneic transfer of CAR-T cells without the risk 
of GvHD.

5. Engineering strategy to improve 
safety profile

Despite the aforementioned engineering strategies to ameliorate 
GvHD, safety remains an issue for allogeneic cell products, which 
may cause unpredictable effects post therapeutic cell infusion (2, 3). 
Engineered cell products such as CAR-T cells might produce lifetime 
sustainment in patients as well as elicit adverse effects related to 
permanent gene transfer (2). CRS and neurotoxicity are also 
common safety risks for cell-based immunotherapy (3, 4). To achieve 
more desirable safety profile and avoid harm to patients, the 
introduction of suicide genes has provided an effective approach to 
allow selective destruction of modified cells at a designated time 
point (2, 5).

Suicide gene technology could be classified into three groups (5). 
First, gene-directed enzyme prodrug therapy (GDEPT) converts a 
nontoxic drug into a toxic compound through a genetically encoded 
molecule, usually the herpes simplex virus thymidine kinase 
(HSV-TK) (1, 2, 5). Second, apoptotic genes such as human caspase-9 
could be linked to a drug binding domain for conditional dimerization 
(5), and administration of a non-therapeutic small molecule 
dimerizer would induce apoptosis (5). The third category utilizes 
monoclonal antibody-mediated cell removal mechanisms to eliminate 
allogeneic cells with a specific membrane protein expression (e.g., 
CD20) (5).

Among the three categories, HSV-TK is the most extensively 
tested suicide gene therapy utilized in human cells (2). The HSV-TK 
gene has been inserted into donor cells using retroviral or lentiviral 
transduction, which are then selected for purity (3, 5). The transduced 
cells constantly express the TK gene, which could phosphorylate 
pyrimidine and guanosine analogs (e.g., acyclovir, ACV; ganciclovir, 
GCV; penciclovir, PCV) (6). The phosphorylation leads to DNA 
misconformation through integration of DNA polymerase, eventually 
resulting in cell death (6). Thus, administration of guanosine analogs 
could eliminate more than 90% of circulating TK gene-engineered 
cells in most cases (5).

Our previous studies demonstrated the use of TK suicide gene in 
allogeneic cell-based cancer immunotherapy, where the lentivector 
was constructed through integration of an iNKT TCR gene with an 
sr39TK gene (3). The humanized SR39 (SR39h) was tested to be the 
most sensitive TK variant to suicide induction (6). Human HSCs were 
transduced with this Lenti/iNKT-sr39TK vector and further 
differentiated into allogeneic iNKT cells (3). The yield and functions 
of iNKT cell products were not affected by the incorporation of a 
suicide gene, displaying strong antitumor killing efficacy to multiple 
caners including melanoma, myelogenous leukemia, lung cancer, 
prostate cancer, and multiple myeloma (3). Therefore, TCR 
engineering, as well as CAR engineering and HLA ablation, could 
be combined with suicide gene engineering at the same time (3). 
Furthermore, Qin et  al. established a safety-cell system through 
linking HSV-TK gene and a cell-division gene (CDK1), protecting the 
suicide system from inactivation in dividing cells (3). They found that 
the safety-cell system with GCV could eliminate all mitotically active 
cells and thus represented a safety measure before cell infusion into a 
patient (167). The incorporation of suicide genes provides additional 
safety measures for allogeneic cell-based immunotherapy, minimizing 
the potential risks for cancer patients for clinical development of 
future drugs.
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6. Discussion

As a promising immunotherapy, allogeneic cell-based therapy has 
been increasingly studied for cancer treatment. This review 
comprehensively introduced current strategies of genetically 
engineering cells, especially allogeneic cell products, for strengthening 
the anti-tumor reactivity and reducing alloreactivity, thereby 
improving treatment efficacy. Cell engineering provides a platform to 
enhance anti-tumor efficacy of engrafted cells. Patient-derived T cells 
genetically engineered to express CAR are the typical base for CAR-T 
cell therapy but still carry a potential risk for GvHD and HvG. In 
response to this problem, alternative cells, such as NK and 
unconventional innate T cells, are utilized for safer CAR engineering. 
Another engineering method is the incorporation of cytokine 
armoring genes, which leads to the production of cytokines required 
for T cell growth, including IL-15, IL-2, IL-7, IL-12, and IL-21, hence 
strengthening tumor-killing abilities. Moreover, the blockade of 
several immune checkpoints, such as PD-1, CTLA-4, and LAG-3, 
represents an alternative way of inducing anti-tumor immunity. 
Eliminating these crucial ligand-receptor interactions prevents tumor 
cells from bypassing eradication from the immune system, as these 
greatly confer immune resistance to cancerous cells. Additionally, 
immune checkpoint blockade therapies have been utilized in 
combination with CAR T cell therapy. One study has shown that for 
human triple-negative breast cancer cells with mesothelin 
overexpression that can be targeted by CAR T cells, by counteracting 
the inhibitory effect of PD-1 on CAR-T cells through CRISPR-Cas9 
ribonucleoprotein-mediated editing, PD-1hi population was 
significantly reduced with a minimal impact on the proliferation of T 
cells. In contrast, CAR-T cells with PD-1 disruption demonstrated 
improved tumor control and relapse prevention compared to CAR T 
cells with or without αPD-1 antibody blockade. These findings 
support the integration of immune checkpoint blockade with CAR-T 
cells to advantageously manipulate solid tumors and offer an 
alternative method to CAR-T cell therapy (168). Graft anti-tumor 
responses can also be  improved through the modulation of 
transcription factors and epigenetic enzymes, two widely studied 
methods being the knockdown of EZH1 and DNTM3A. In addition, 
maintaining the cytotoxicity of NK cells through the induction of 
CD16 has shown promise in suppressing tumor cells as well.

To ensure the safety of allogeneic cell-based therapy, strategies 
have been designed to reduce post-treatment alloreactivity. One way 
to ameliorate potential GvHD is to ablate TCR expression, which can 
be achieved through disruption of endogenous TCR and substitution 
with a CAR moiety to maintain tumor recognition. Alternatively, 
incorporating the NY-ESO-1 TCR transgene enables the encoding of 
a non-conventional TCR, which is not implicated in alloreactive 
pathways. In addition, unconventional T cell subsets, including iNKT 
cells, provide possibilities of limiting alloreactivity through 
endogenous, HLA-independent recognition pathways. From the 
perspective of the HvG effect, studies have indicated that ablating 
HLAs, including B2M, HLA-DR, and CIITA could successfully 
augment graft success rate. Moreover, overexpressing inhibitory 
ligands, such as HLA-E, protects effector cells from NK cell-mediated 
killing, whereas CD47 incorporation enables effector cells to evade 
macrophages activity. Finally, disrupting the expression of CD52 plays 
a vital role in successful lymphodepletion, an essential step for 
preventing GvHD. The combination of various strategies for 

enhancing anti-tumor efficacy and suppressing alloreactivity suggests 
a promising future for allogeneic cell products in 
cancer immunotherapy.

One type of current allogeneic CAR cell therapy, ALLO-715, 
utilizing BCMA-targeting CAR T cells, has been tested in part A of 
in-human phase 1 trial against multiple myeloma (MM) named 
UNIVERSAL (169). TALEN technology enables two additional 
alterations in this therapy: TRAC knockout and CD52 knockout. 
Removing TRAC downregulates the expression of the TCRαβ 
complex, thereby preventing the recognition of histocompatibility 
antigens mediated by TCRαβ, lowering the risk of GvHD consequently. 
In addition, CD52 is expressed on multiple immune cell types whose 
implications with HvG effect would diminish ALLO-715 persistence. 
Therefore, to ensure the cell expansion and persistence of ALLO-715, 
patients undergo lymphodepletion in conjunction with ALLO-647 
engraftment, using anti-CD52 blockade. Favorable outcomes, such as 
lower rates of CRS and neurotoxicity, reflect the feasibility and overall 
safety of ALLO-715 administration.

Another existing type of off-the-shelf allogeneic CAR-T cells is 
UCART19, whose mRNA encoding TALENs knocks out the TCR-α-
constant-chain-encoding and CD52 genes (12). Such a function 
reduces the risk of GvHD in utilizing allogeneic UCART19. 
Therapeutic effects of UCART19 have been tested in two clinical trials, 
PALL trial for children and CALM trial for adults, for treating 
pediatric and adult B-cell acute lymphoblastic leukemia, where 
UCART19 cells generated through recombinant lentiviral 
transduction were infused after the 7-day lymphodepletion treatment. 
Despite the occurrence of adverse events, such as CRS, satisfying 
outcomes include in vivo expansion of UCART19 and antileukemic 
response in a relatively safer manner. These trials demonstrate the 
feasibility of employing allogeneic UCART19 to treat B-cell acute 
lymphoblastic leukemia, especially when facing the rapid progression 
of the disease and the unavailability of autologous CAR-T-cell 
treatment. In addition, such trials provide a template for practically 
incorporating allogeneic cell products with multiple genetic 
engineering strategies, heralding the promise of allogeneic cell-based 
cancer therapy. In spite of the prospect of allogeneic CAR-T-cell 
products like UCART19, one accompanying limitation is 
manufacturing complexity (6). Since the risk of GvHD resides in HLA 
incompatibility for conventional TCRαβ T cells, endogenous TCR 
expression attenuation is required, which guarantees safety but 
simultaneously increases production difficulty.

In response to this problem, generating stem cell-derived products 
to express CARs and TCRs for tumor suppression offer possible 
alternatives (13). In addition to conventional CAR-T cells, 
CAR-engineered stem cells like CAR-NK and CAR-myeloid cells lead 
to a more extensive anti-tumor response. One study has demonstrated 
the performance of CAR-NK cell therapy against CD19-positive 
lymphoid tumors (170). Researchers derived the HLA-mismatched 
anti-CD19 CAR-NK cells from cord blood. Retroviral vector for 
transduction encoded anti-CD19 CAR, IL-15, and inducible caspase 
9. In phase 1 and 2 trials, most patients experiencing engineered 
CAR-NK cell infusion showed quick responses to the therapy without 
accompanying side effects such as CRS, neurotoxicity, and 
hemophagocytic lymphohistiocytosis, except for hematologic toxic 
events related to lymphodepletion chemotherapy. In addition, GvHD 
did not occur after CAR-NK cell administration, indicating the 
viability and safety of allogeneic CAR-NK cell therapy.
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Despite the promising features of current allogeneic CAR cell 
therapies mentioned above, a few drawbacks should be considered. In 
the application of BCMA-targeting CAR-T cells and UCART19 cells, 
the ablation of TCR and CD52 might lead to increased manufacturing 
difficulties and high costs (6, 12, 118, 171, 172). In contrast, although 
the cord blood-derived CAR-NK cells effectively avoid the risk of 
GvHD, the sensitive and complex process of thawing blood units could 
potentially lower the treatment’s efficacy. Furthermore, the availability 
of allogeneic CAR cell therapies depends on several factors. For 
example, due to the limited length of lentiviral/retroviral vectors 
required for transduction (169), transgene should be optimized before 
practical administration. Development of new gene delivery systems 
might overcome this problem. Although the occurrence of side effects 
is controlled at a relatively low level, such adverse problems remain 
unsolved. As seen in CRS, since IL-6, IL-1, and nitric oxide (NO) 
secreted by recipient macrophages mediate the severity of the syndrome 
rather than cytokines obtained from CAR T cells, blocking IL-6 and 
IL-1 and inhibiting inducible NO synthase (iNOS) provides an 
ameliorating effect (173). Moreover, as human microglia generate iNOS 
and proinflammatory cytokines via IL-1 activation, IL-1 blockade also 
plays an essential role in alleviating CAR-T cell-mediated neurotoxicity 
(173). Further studies should focus on discovering alternatives for 
improving the safety control of allogeneic CAR cell therapies.

Similar to the UCART19 therapy mentioned above, genetically 
engineered stem cells can also be utilized in allogeneic treatment. 
Specifically, in HSC transplantation (HSCT), it is possible to produce 
immune cells that target specific tumors over an extended period 
using genetically modified cells. On the contrary, PSCs, including 
ESCs and iPSCs, can self-renew while preserving pluripotency and 
provide endless supplies for target cells. Furthermore, the accessible 
source PBMCs allows for convenient iPSC reprogramming. By 
starting the engineering process with a small number of stem cells, the 
cost can be controlled while efficiency is enhanced.

However, while various engineering strategies and high 
accessibility of cell sources indicate the potential application of stem 
cell-based cancer therapy, several limitations are worth mentioning. 
For example, incorporating additional genes such as the sr39TK/GCV 
suicide switch may increase the immunogenicity and dependence on 
the cell cycle (6). Moreover, during the induction of T cells from iPSC 
and T-iPSC, uncharacterized serum and feeder cells of murine origin 
occur despite the successful generation, which is incompatible with 
the production at a clinical level (19). Therefore, future investigations 
should focus on improving the overall quality of genetically engineered 
cells and optimizing the generation process, thereby further improving 
the practicality of deriving immune cells from undifferentiated stem 

cells and advancing the development of allogeneic cell-based 
immunotherapy for cancer.
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