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1Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China, 2School of Computer

Science and Technology, Shandong University of Technology, Zibo, Shandong, China

Background and aims: The diagnosis of chronic atrophic gastritis (CAG) under

normal white-light endoscopy depends on the endoscopist’s experience and is

not ideal. Artificial intelligence (AI) is increasingly used to diagnose diseases with

good results. This review aimed to evaluate the accuracy of AI-assisted diagnosis

of CAG through a meta-analysis.

Methods: We conducted a comprehensive literature search of four databases:

PubMed, Embase, Web of Science, and the Cochrane Library. Studies published

by November 21, 2022, on AI diagnosis CAG with endoscopic images or videos

were included. We assessed the diagnostic performance of AI usingmeta-analysis,

explored the sources of heterogeneity through subgroup analysis and meta-

regression, and compared the accuracy of AI and endoscopists in diagnosing CAG.

Results: Eight studies that included a total of 25,216 patients of interest, 84,678

image training set images, and 10,937 test set images/videos were included. The

results of the meta-analysis showed that the sensitivity of AI in identifying CAG

was 94% (95% confidence interval [CI]: 0.88–0.97, I2 = 96.2%), the specificity was

96% (95% CI: 0.88–0.98, I2 = 98.04%), and the area under the summary receiver

operating characteristic curve was 0.98 (95% CI: 0.96–0.99). The accuracy of AI in

diagnosing CAG was significantly higher than that of endoscopists.

Conclusions: AI-assisted diagnosis of CAG in endoscopy has high accuracy and

clinical diagnostic value.

Systematic review registration: http://www.crd.york.ac.uk/PROSPERO/,

identifier: CRD42023391853.

KEYWORDS

chronic atrophic gastritis, artificial intelligence, deep learning, endoscopy, systemic

review, meta-analysis

1. Introduction

According to global cancer data released by the International Agency for Research

on Cancer (IARC), approximately 1.09 million new cases of gastric cancer (GC) and

approximately 770,000 deaths were recorded in 2020, ranking fifth in incidence and fourth

in mortality (1). Professor Correa proposed that the development of intestinal-type gastric

adenocarcinoma follows a cascade pattern: from normal gastric mucosa to chronic non-

atrophic gastritis (CNAG), followed by chronic atrophic gastritis (CAG), atypical hyperplasia

(dysplasia), and finally to intestinal GC (2, 3). This model has been widely recognized (4–6).

A Dutch study found that the annual incidence of GC was 0.1 and 0.25% for patients with

atrophic gastritis (AG) and intestinal metaplasia (IM), respectively (7). The risk of GC is
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higher in the CAG population in East Asia, and a long-term follow-

up study in Japan found that the 10-year cumulative GC incidence

after Helicobacter pylori eradication ranged from 3.4 to 16% in

patients with moderate-to-severe atrophy and from 11 to 16% in

patients with IM (8). A Korean study found that 52.5% of patients

with diffuse GC had AG, and 18.4% had severe AG (9). CAG is a

precancerous disease; therefore, early diagnosis of CAG is vital in

preventing GC (10, 11).

Gastroscopic biopsy of the gastric mucosal tissue for

histopathological analysis is the “gold standard” for diagnosing

CAG (12, 13). In clinical endoscopy, gastric mucosal tissues are

first observed by conventional white-light endoscopy, and the need

for endoscopic biopsy depends on the endoscopist’s experience.

A study showed that the sensitivity of conventional normal white

light endoscopy (WLE) for diagnosing CAG is only 42% (14).

Another study showed that the diagnostic sensitivity and specificity

of conventional WLE for gastric mucosal atrophy were 61.5 and

57.7% for the gastric sinus, and 46.8 and 76.4% for the gastric

body, respectively (15). In recent years, electronic or virtual color

endoscopy has received increasing attention for the diagnosis CAG

because it allows for more accurate detection of lesion (16, 17).

However, these advanced techniques are usually further steps taken

when CAG is already suspected after WLE, and the accuracy of

endoscopic diagnosis still relies on the endoscopist’s experience

(18). It is difficult to avoid missed diagnoses due to fatigue and

inexperience of endoscopists. Biopsies are expensive and time-

consuming, and could increase the risk of gastric mucosal bleeding.

Therefore, developing a method to identify CAG objectively, stably,

and accurately is important to reduce the workload of endoscopists

and to prevent the occurrence of GC.

In recent years, artificial intelligence (AI) technology,

particularly deep learning, has become a popular analytical tool

for medical imaging (19). AI techniques have been widely used

in computer-aided diagnosis (20–22). In computer vision, the

primary tasks of deep learning include image classification,

object detection, and semantic segmentation. Image classification

determines the category to which a given image belongs, and typical

algorithms include VGGNet (23), ResNet (24), TResNet (25), and

SE-ResNet (26). Object Detection is used to identify objects and

their positions in the image and frame them with rectangles,

such as R-CNN (27), YOLO (28, 29), and SSD (30). Semantic

segmentation involves recognizing the objects and their positions

in the image and outlines them in the image. Typical algorithms are

U-Net (31), UNet++ (32), and DeeplabV3 (33). The differences

between the three algorithms are shown in Figure 1. If AI can

accurately identify CAG on endoscopy, it will greatly alleviate the

current problems faced in CAG diagnosis. However, this requires

Abbreviations: AI, Artificial intelligence; AUC, Area under the sROC curve; BLI,

Blue laser imaging; CAG, Chronic atrophic gastritis; CI, Confidence interval;

DL, Deep learning; DOR, Diagnostic odds ratio; FN, False negative; FP, False

positive; IM, Intestinal metaplasia; LCI, Linked color imaging; NBI, Narrow-

Band imaging; NLR, Negative likelihood ratio; PLR, Positive likelihood ratio;

sROC: summary Receiver Operating Characteristic; TN, True negative; TP,

True positive; WLE, White light endoscopy; WLI, White light imaging.

a combination of existing studies to quantify the accuracy of AI in

detecting CAG.

This meta-analysis aimed to systematically review and analyze

the diagnostic performance of AI in CAG. It mainly includes the

overall performance of AI in CAG diagnosis, comparison between

AI and endoscopists, and analysis of various factors that influence

the diagnostic performance of AI.

2. Methods

This systematic review followed the guidelines of the preferred

reporting items for systematic review and meta-analysis of

diagnostic test accuracy studies (PRISMA-DTA) (34). The

PRISMA-DTA checklist is shown in Supplementary Table S1.

Before initiating the study, it was registered with the International

Prospective Register of Systematic Reviews (PROSPERO) on

October 31, 2022 (ID: CRD42022371134). All data for this study

were collected from the literature, and ethical approval was

not required.

2.1. Searching strategy

We systematically searched the following four databases:

PubMed, Embase,Web of Science, and Cochrane Library. PubMed,

Embase, and Web of Science are widely used medical databases,

while the Cochrane Library is a database related to evidence-based

medicine. The last search was conducted on November 21, 2022

and covered all articles in the four databases up to the time of the

search. The keywords searched included ten terms related to AI and

five related to CAG. The keywords related to AI included “artificial

intelligence,” “deep learning,” “machine learning,” “computer

aided diagnosis,” “neural networks,” “transfer learning,” and

“transformer.” The keywords related to CAG include “atrophic,”

“atrophy,” “gastritis,” “intestinal metaplasia,” and “endoscopy.” The

search strategy is presented in Supplementary Table S2.

2.2. Study selection

Two authors (NW and FY) independently screened the

retrieved articles to determine whether they met the inclusion

criteria. When judgment could not be made based on the title and

abstract, the full text of the article was reviewed. All disagreements

were resolved through discussion with YS.

The inclusion criteria were as follows: (1) Studies using AI to

diagnose CAG; (2) diagnosis was based on endoscopic images or

videos; (3) compositions of the dataset were described in detail; (4)

clear diagnostic criteria, pathology or expert consensus.; (5) studies

that provided the number of true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN), either directly, or

indirectly; and (6) for similar studies by the same author or team,

preference was given to prospective studies and those with larger

sample sizes.

The exclusion criteria were as follows: (1) studies without

primary data (e.g., narrative reviews, comments, letters); (2) studies

whose full text was unavailable; and (3) studies with insufficient
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FIGURE 1

The di�erence between the three types of deep learning algorithms. (A) Image classification. (B) Object detection. (C) Semantic segmentation.

data to obtain TP, FP, TN, and FN.We contacted the corresponding

author of the article by email to obtain relevant data and will

include the article if we can receive a response before the official

publication of this meta-analysis.

2.3. Data extraction

NW and TT independently extracted data for inclusion in the

study, and all disagreements were resolved by discussion with YS.

For each study, the following data were collected: first author, year

of publication, country or region, diagnostic criteria, endoscopy

type, data source, number of patients, number of images/lesions

in the training set, number of patients/images/videos/lesions in

the test set, AI algorithm, and number of TP, FP, TN, and FN. In

a study with multiple sets of test data, we selected according to

the following rules: (1) preference for prospective test results; (2)

preferences were given to external test results; and (3) preference

was given to test results with a large sample size.

We also extracted data related to the endoscopic diagnosis of

CAG by endoscopists to compare with the diagnostic performance

of AI.

2.4. Quality assessment

The most commonly used instrument for evaluating the

quality of diagnostic trials is the Quality Assessment of Diagnostic

Accuracy Studies Version 2 (QUADAS-2) tool (35). There is no

widely accepted assessment tool for the quality assessment of

diagnostic assistance provided by AI. We referenced two studies

(36, 37) and added four questions to QUADAS-2 to precisely assess

the studies included in this meta-analysis. The following were

also added to the patient selection section: (1) whether the data

source and data set division is described in detail. (2) Whether

the preprocessing process of the data was described. The following

were added to the index test section: (1) whether the type of

endoscopy used is clearly described and (2) whether the test set

setting is reasonable.

2.5. Statistical analysis

To evaluate the performance of AI in diagnosing CAG, we

summarized the sensitivity, specificity, positive likelihood ratio

(PLR), negative likelihood ratio (NLR), diagnostic odds ratio

(DOR), and 95% confidence intervals (CI) based on the extracted

TP, TN, FP, and FN data. The summary receiver operating

characteristic (sROC) curve was plotted and the area under the

curve (AUC) was calculated. The higher the PLR value, the better

the AI can confirm the diagnosis of CAG. The smaller the NLR

value, the better the AI can exclude CAG. AUC and DOR are

comprehensive indicators of diagnostic performance, and larger

values indicate stronger diagnostic capability of AI.

Publication bias was analyzed using the Deek’s test and funnel

plot, and publication bias was significant at P < 0.05. To explore

the accuracy of AI in identifying CAG in different subgroups

and possible sources of heterogeneity in the study, we performed

subgroup analysis andmeta-regression with the following grouping

conditions: training set size, AI algorithm type, endoscope type, test

set as image or video, and diagnostic criteria. The heterogeneity of

the included studies was tested using the Cochrane Q test, with I2

> 50% or a P value < 0.05, indicating significant heterogeneity.

We assessed the quality of the included studies using Review

Manager 5.4 (Cochrane Collaboration, Oxford, UK) and completed

all statistics and analyses using Stata/SE 16.0 (StataCorp LLC,

College Station, TX, USA) with the MIDAS package installed.

3. Result

3.1. Included studies

The literature search retrieved 10,494 studies, of which 3,016

duplicates were automatically removed using a software. A total of

7,444 mismatched studies were manually removed by reading the

abstracts. After reading the full texts of the remaining articles, 26

more studies were excluded. Finally, eight studies were included

in this meta-analysis (38–45); details of the articles are shown in

Table 1, and the flow chart of study selection is shown in Figure 2.

One study (46) was excluded because TP, TN, FP, and FN data were

unavailable. Two studies (43, 47) were from the same team, one of
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which (47) constructed and tested a CAG diagnostic model, and

the other (43) performed a further test; hence, we selected the more

extensive test set of data (43) included in this meta-analysis. Two

other studies (41, 48) were also from the same team; one study (41)

used AI to identify AG and IM, and another study (48) added the

identification of GC to the former, and we chose the first (41) to be

included in this meta-analysis. Three studies were excluded because

only IM was identified (49–51).

3.2. Quality assessment

The included studies were evaluated using the QUADAS-2 tool.

Five articles had low levels of bias, two articles had a high bias, and

one article had an unclear bias, as shown in Figure 3. Yang et al. (45)

evaluated the model using a data-enhanced test set and considered

it to have a high risk of bias. The study by Zhao et al. (43) did not

mention the type of endoscope used and was considered to have an

unclear risk of bias.

The study by Qu et al. (39) did not use pathological findings

as a diagnostic criterion but used expert consensus. There is a

discrepancy between CAG diagnosis through endoscopic images

and pathological results. However, the use of chromoendoscopy

images (52) and the consensus of experts can reduce these errors.

After discussions among all the authors, we decided to include this

study, but it had a high risk of bias.

3.3. Characteristics of the included studies

Five of the eight studies were retrospective (38, 40–42, 45),

and three were prospective (29, 43, 44). All eight studies used

deep-learning techniques: five used image-classification algorithms

(38, 41, 42, 44, 45), one used an object-detection algorithm (39),

one used a semantic-segmentation algorithm (43), and one used

a combination of image classification and semantic segmentation

(40). All studies were tested using static image models, and four

studies used prospective videos to validate the models further

(39, 40, 43, 44). Regarding the type of endoscopy, four studies

included only normal white-light endoscopy (38, 40–42), three used

enhanced endoscopy (39, 44, 45), and one did not specify the type of

endoscopy (43). Seven studies used pathology as the gold standard,

and one used expert consensus as the decision criterion (39).

Two studies used the internal image test set (38, 45), two

studies used the external image test set (41, 42), one study used

the retrospective video test set (40), and three studies used the

prospective video test set (39, 43, 44). The number of test set images

or videos equals the sum of TP, FP, TN, and FN values. The type and

number of test sets mentioned here refer only to the data extracted

by this systematic review.

Qu et al. (39) developed a complete gastrointestinal lesion

identification system that can identify ten diseases, including CAG.

Only test data for CAG identification were included in the meta-

analysis.

Mu et al. (40) developed an AI-based assisted diagnosis system

for identifying four lesions: GA, IM, erosive, and hemorrhagic T
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FIGURE 2

PRISMA flow diagram for study selection.

FIGURE 3

Summary of risk of bias and applicability of concerns graph.

gastritis. The entire system consisted of five deep-learning models.

We extracted the results of the DCNN2 model to identify CAG.

Lin et al. (41) developed a computer-aided decision system

for identifying the GA and IM. We obtained TP, FP, TN, and FN

data by calculation, and the GA and IM identification results were

combined and included in this meta-analysis.

Luo et al. (42) developed two AI models. Model 1 was used

to identify CAG and the degree of atrophy, and both training and
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FIGURE 4

Forest plot of sensitivity and specificity of AI in identifying CAG.

testing of model 1 used gastric sinus images. Model 2 was used to

identify CAG, and the performance of model 2 was evaluated using

three test sets, referred to as test sets 3, 4, and 5 in this study. Test set

3 was the internal test set, and test sets 4 and 5 were the external test

sets; however, test set 5 did not contain the gastric sinus images. We

selected the evaluation results of model 2 in test set 4 for inclusion

in this meta-analysis.

Xu et al. (44) developed a real-time detection system for

identifying GA and IM and tested it on internal, external, and

prospective videos. We obtained TP, FP, TN, and FN data by

calculating the recognition results of GA and IM and recomputed

the sensitivity, specificity, and accuracy of CAG.

3.4. Performance of AI in CAG diagnosis

We performed a pooled analysis of the eight included studies

to assess the overall performance of AI in the endoscopic-assisted

diagnosis of CAG. As shown in Figure 4, the pooled sensitivity

and specificity were 94% (95% CI: 0.88–0.97, I2 = 96.2%) and

96% (95% CI: 0.88–0.98, I2 = 98.04%), respectively, both of which

showed significant heterogeneity. The pooled PLR, NLR, and DOR

were 21.58 (95% CI: 7.91–58.85, I2 = 96.23%), 0.07 (95% CI: 0.04–

0.13, I2 = 95.95%, Supplementary Figure S1), and 320.19 (95% CI:

128.5–797.84, I2 = 100%, Supplementary Figure S2), respectively.

The PLR greater than 10 indicated that AI could confirm the

diagnosis of CAG. The NLR less than 0.1 indicated that AI could

effectively exclude CAG. The DOR is significantly greater than 1,

which indicates that AI has a good discrimination of CAG.

The sROC curve is shown in Figure 5, and the AUC was 98%

(95% CI: 0.96–0.99). The sROC is a composite index reflecting the

sensitivity and specificity of continuous variables, and the closer the

AUC value is to 1, the better the diagnosis. This shows that AI has

excellent performance in the diagnosis of CAG.

We evaluate the clinical diagnostic capability of the AI models

by means of Fagan plot (Figure 6). The global prevalence of CAG in

the general population when biopsy is considered to be 33% (95%

CI: 0.26–0.41) (53). We set the pretest probability to 33%, with a

91% probability of a positive patient being diagnosed with CAG and

a 3% probability of a negative patient being diagnosed with CAG.

The above data indicate that the diagnosis of CAGwith AI has good

accuracy and important clinical application.
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FIGURE 5

sROC curves for the diagnosis of CAG using AI. Each circle indicates

an individual study, red diamond represents summary sensitivity and

specificity.

3.5. Subgroup analysis and meta-regression

The I2 values for pooled sensitivity and specificity were 96.2 and

98.04%, respectively, indicating high heterogeneity of the included

studies. We performed a subgroup analysis and meta-regression

analysis to explore possible sources of heterogeneity based on the

test set type (image or video), endoscopic imaging type (WLI or

other), algorithm type (image classification or object detection with

semantic segmentation), diagnostic criteria (pathology or other),

endoscope type (pure normal white light endoscopy or other), and

the number of training set images (whether the number of images

was greater than 7,000. In 7,000 is a median that exactly divides

the eight studies equally into two groups). The results are shown in

Figure 7 and Table 2.

Meta-regression analysis showed that the number of training

set images (p = 0.04) significantly affected sensitivity and could be

a potential source of sensitivity heterogeneity. Algorithm type (p=

0.03) had a significant effect on specificity, and diagnostic criteria

(p = 0.00) had a highly significant effect on specificity, which may

be a potential source of heterogeneity in specificity. Other factors

had no statistically significant effects on sensitivity and specificity.

Although the study by Zhao et al. (43) did not specify the type of

endoscopic imaging, we categorized it as a pure white light imaging

or another form of imaging, neither of which had a significant effect

on the results.

To further explore the heterogeneity of the studies, we

performed a pooled analysis after removing each study individually.

The results did not change significantly, indicating that the

combined results were relatively stable.

FIGURE 6

Fagan nomogram of the accuracy of AI in the diagnosis of CAG.

3.6. Publication bias

We used the Deeks’ funnel plots to evaluate publication bias. As

shown in Figure 8, there was no significant publication bias in the

included studies (p= 0.19). Although the Deeks’ test was used, only

eight studies were included, and there was still a risk of significant

publication bias.

3.7. AI vs. endoscopists

From the eight included studies, we extracted five groups of

data comparing (AI) with endoscopists (38, 40, 41, 43, 44). An

essential condition for inclusion was that the same dataset had to

be used for AI vs. endoscopist comparisons.

The study by Qu et al. (39) was excluded because no

comparison between AI and endoscopists was found. The study

by Luo et al. (42) was excluded because it used a test set

containing only gastric sinus images for the comparison of AI with

endoscopists. The study by Yang et al. (45) was excluded because it

failed to extract the endoscopist’s TP, FP, TN, and FN values. Details

of the included studies are presented in Table 3.
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FIGURE 7

Meta-regression and subgroup analyses for potential sources of heterogeneity. WLI: endoscopic imaging type is WLI or other; image: test set as

image or video; classification: AI algorithm an image classification algorithm or other algorithms; pathology: whether to use pathology as a

diagnostic criterion; trainGt7000: whether the number of images was greater than 7,000.

We pooled the data of the AI and endoscopists and performed

a subgroup analysis. The results were as follows: the sensitivities of

AI and endoscopists in diagnosing CAG were 95% (95% CI: 0.91–

1.00) and 73% (95% CI: 0.55–0.91) (p = 0.1), and the specificities

were 96% (95% CI: 0.95–0.98) and 82% (95% CI: 0.78–0.86) (p

= 0.00), respectively. AI had higher sensitivity and specificity

than endoscopists, with no statistically significant difference in

sensitivity and a highly significant statistical difference in specificity

between the two.

4. Discussion

This systematic review and meta-analysis aimed to analyze the

accuracy of AI techniques in aiding endoscopic-assisted diagnosis

of chronic atrophic gastritis. To our knowledge, this study is

the first meta-analysis of the accuracy of endoscopic AI in

diagnosing CAG and comparing it with that of endoscopists.

A total of eight studies involving 25,216 patients of interest,

84,678 image training set images, and 10,937 test set images/videos

were included.

The overall performance of AI in diagnosing CAG was pooled.

The pooled sensitivity and specificity were 94% (95% CI: 0.88–

0.97, I2 = 96.2%) and 96% (95% CI: 0.88–0.98, I2 = 98.04%),

respectively. The composite AUC and DOR to assess diagnostic

accuracy were 98% (95% CI: 0.96–0.99) and 320.19 (95% CI: 128.5–

797.84, I2 = 100%), respectively. The above data suggest that AI

has an excellent diagnostic performance for CAG on endoscopic

images or videos. We further compared the performance of AI

with that of endoscopists in diagnosing CAG and found that the
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TABLE 2 Subgroup analyses and meta-regression results.

Parameter Category Studies(n) Sensitivity
(95%CI)

P Specificity
(95%CI)

P

WLI Yes 5 0.94 (0.89–0.99) 0.54 0.94 (0.86–1.00) 0.38

No 3 0.92 (0.84–1.00) 0.98 (0.94–1.00)

Image Yes 4 0.96 (0.92–0.99) 0.63 0.94 (0.85–1.00) 0.55

No 4 0.90 (0.82–0.98) 0.97 (0.93–1.00)

Classification Yes 5 0.96 (0.93–0.98) 0.72 0.92 (0.84–1.00) 0.03

No 3 0.86 (0.77–0.96) 0.99 (0.97–1.00)

Pathology Yes 7 0.94 (0.91–0.98) 0.18 0.93 (0.89–0.97) 0.00

No 1 0.75 (0.51–1.00) 1.00 (1.00–1.00)

TrainGt7000 Yes 4 0.91 (0.84–0.99) 0.04 0.97 (0.94–1.00) 0.28

No 4 0.95 (0.91–1.00) 0.93 (0.84–1.00)

WLI, endoscopic imaging type is WLI or other; image, test set as image or video; classification, AI algorithm an image classification algorithm or other algorithms; pathology, whether to use

pathology as a diagnostic criterion; trainGt7000, whether the number of images was greater than 7,000.

FIGURE 8

Deeks’ funnel plot asymmetry test for publication.

sensitivity and specificity of AI were significantly higher than those

of endoscopists.

There was high heterogeneity among the included studies.

Meta-regression analysis was used to determine whether pure

normal white light endoscopy or other enhanced endoscopy

was used and whether the test set consisted of pictures or

videos that did not significantly affect the pooled diagnostic

results. The different algorithm types significantly affected the

pooled specificity (p = 0.03), with the classification algorithm

subgroup having a significantly higher specificity than the other

algorithm subgroups. However, endoscopists prefer AI to label

the lesion site clearly in an image or video. The number

of training set images significantly affected the aggregation

sensitivity output (p = 0.04). The sensitivity of aggregation

was significantly higher for the subgroup with more than

7,000 training set pictures than for the subgroup with <7,000

images. Hence, more training set images may lead to a higher

sensitivity. The effect of pathology as the gold standard was

highly significant for combined specificity, with only one of

the eight studies not using pathology as the gold standard,

which could be a potential source of heterogeneity in the

pooled results.
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TABLE 3 AI vs. endoscopist related studies.

Study Diagnostician TP FP TN FN

Guimarães et al. (38) AI 30 5 0 35

Endoscopist 24 8 6 32

Mu et al. (40) AI 41 3 1 35

Endoscopist 37 4 5 34

Lin et al. (41) AI 357 22 11 706

Endoscopist 148 118 220 610

Zhao et al. (43) AI 284 10 54 328

Endoscopist 212 61 126 277

Xu et al. (44) AI 14 1 2 7

Endoscopist 14 3 2 5

This systematic review andmeta-analysis had some limitations.

(1) Few studies were included, and with eight studies, seven

of which were conducted in China, the results may not be

representative of the broader population. (2) The pooled results

had a high degree of heterogeneity, as not using pathology as the

“gold standard,” using different AI algorithms, and using different

numbers of training sets are potential sources of heterogeneity.

(3) The performance of AI was overestimated. Some studies used

test sets with small sample sizes to train the models. Most studies

screened training images, which may have caused the AI models

to be overfitted. Some studies did not use external test sets or

prospective validation sets to test the models, which may have

masked the overfitting problem and caused the AI performance to

be overestimated.

Despite the excellent performance of AI diagnosis of CAG in

endoscopy, there are some pending issues in this area. (1) The

performance of AI models cannot be measured uniformly owing

to the lack of publicly available datasets. Each study used its own

collected dataset for performance evaluation, and different imaging

types, image screening processes, and image/video quality can lead

to differences in experimental results. (2) Most studies did not

include any interference from other diseases. Only two studies

identified other diseases (39, 40). Some diseases can seriously

impact the mirror diagnosis of CAG, such as erosive gastritis.

The performance of AI requires further validation after including

the interference from other diseases. (3) Limited replicability of

the studies. Most studies included in this systematic review did

not make their codes open. This has hindered the validation of

their algorithms by other researchers. Code-sharing is essential

to repeat the experiment and promote continued progress in

the field.

This systematic review and meta-analysis provides a

comprehensive overview and quantitative analysis of the current

research on AI-assisted diagnosis of CAG and shows that it has

good diagnostic performance. Thus, it can be used as an effective

auxiliary diagnostic tool in clinical practice. It can provide an

accurate diagnosis and reduce the associated time and costs. At the

same time, we should also be aware of the limitations of AI models:

(1) Limited training data can affect the accuracy and generalization

ability of the model. (2) Insufficient diversity of training data can

lead to bias in the prediction of the model. (3) The real endoscopic

environment is muchmore complex than the training environment

of the model, which may lead to misdiagnosis or missed diagnosis

during actual clinical use.

In conclusion, the results of our meta-analysis suggest that

AI can provide more accurate diagnostic information on CAG

and has high clinical diagnostic value. We hope that our findings

will contribute to advance the development and application of AI

technology in clinical practice.
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