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Glutathione is a tripeptide synthesized at cytosolic level, that exists in cells in a 
reduced form (thiol-reduced-GSH-) and in an oxidized form (disulfide-oxidized). 
The antioxidant function of GSH has led to speculation about its therapeutic 
role in numerous chronic diseases characterized by altered redox balance and 
reduced GSH levels, including, for instance, neurodegenerative disorders, cancer, 
and chronic liver diseases. Among these latter, non-alcoholic fatty liver disease 
(NAFLD), characterized by lipid accumulation in hepatocytes, in the absence of 
alcohol abuse or other steatogenic factors, is one of the most prevalent. The 
umbrella term NAFLD includes the pure liver fat accumulation, the so-called 
hepatic steatosis or non-alcoholic fatty liver, and the progressive form with 
inflammation, also known as non-alcoholic steatohepatitis, which is related to 
the increase in oxidative stress and reactive oxygen species, eventually leading to 
liver fibrosis. Although the pathogenetic role of oxidative stress in these diseases 
is well established, there is still limited evidence on the therapeutic role of GSH in 
such conditions. Hence, the aim of this review is to depict the current molecular 
and pharmacological knowledge on glutathione, focusing on the available studies 
related to its therapeutic activity in NAFLD.
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1. Introduction

Glutathione is a tripeptide found in many tissues at relatively high concentrations, namely 
1–10 mM in cells, similarly to glucose, potassium, and cholesterol, with a critical role in several 
physiological processes, such as redox balance preservation, reduction of oxidative stress 
through detoxification from xenobiotic and endogenous compounds, and immune system 
modulation (1). The action of glutathione on oxidative stress has led to speculation on the 
possible therapeutic role of this molecule for several chronic diseases with altered redox balance.

Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, 
characterized by an excessive hepatic fat accumulation in the absence of alcoholic abuse, steatogenic 
medications or others concomitant liver diseases (2). NAFLD could be considered an hepatic 
manifestation of metabolic syndrome, with a strong association with obesity, type  
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2 diabetes, hypertension, and dyslipidaemia (3). Given the close 
association between NAFLD and metabolic dysfunction, a panel of 
experts proposed in 2020, not without some controversy, to rename this 
condition as metabolic-(dysfunction) associated fatty liver disease (4).

Although the pathogenic role of oxidative stress in NAFLD 
pathogenesis is well established (5), there are limited studies available 
in the literature investigating the potential effect of glutathione 
supplementation in this condition. The aim of this narrative review is 
to provide a broad overview on the pharmacologic aspects of 
glutathione, with a focus on current clinical data on its use for 
metabolic liver disease.

2. Glutathione: Pharmacological 
aspects

Glutathione is a tripeptide (γ-L-glutamyl-L-cysteinylglycine) 
consisting of glutamate, cysteine and glycine, with an atypical peptide 
bond between glutamate residue and cysteine, via the γ-carboxyl 
group. It exists in cells in two states: thiol-reduced (GSH) and 
disulfide-oxidized (GSSG). The reduced form (GSH) is the 
predominant one, accounting for more than 98% of total glutathione. 
Most of the GSH (80–85%) is stored in the cytosol, 10–15% in the 
mitochondria (with an equal concentration between matrix and 
cytosol, thus requiring specific transport systems) and a small part in 
the endoplasmic reticulum (ER) (1, 6, 7).

2.1. Thiol-reduced glutathione (GSH) 
synthesis

GSH is made available in cells through 3 processes, summarized 
in Figure 1.

The first process consists in the de novo synthesis of GSH from its 
component amino acids, through two ATP-consuming enzymatic 
reactions. It occurs exclusively in the cytosol, where glutamate cysteine 
ligase (GCL) and glutathione synthetase (GS) perform their function. 
The first step involves the binding of glutamic acid and cysteine, 
catalyzed by GCL, to form glutamylcysteine. This rate limiting step is 
controlled by the cellular availability of cysteine and GCL activity. This 
assumption is supported by the finding that only the overexpression of 
GCL, and not of GS, results in increased GSH levels (6). On the other 
hand, GSH exerts a negative feedback inhibition on GCL. In the second 
step, the homodimeric enzyme GS, a member of the ATP-grasp 
superfamily, rapidly catalyzes the binding of γ-glutamylcysteine with 
glycine, obtaining GSH (8, 9). GS, differently from GCL, is not feedback-
inhibited by GSH and it is not associated with a regulatory subunit. Thus, 
GS activity appears to be mainly controlled by substrate availability.

The second pathway of GSH synthesis is that related to the 
recycling of cysteine. GSH is exclusively degraded at the extracellular 
level by cells expressing γ-glutamyltranspeptidase (GGT), such as 
those of the hepatobiliary tree and of other organs like the heart, 
kidney, lungs, pancreas, and seminal vesicles. GGT allows the 
degradation of GSH and the recycling of its constituent amino acids, 
such as glutamic acid and cysteine, to generate new GSH (so called 
γ-glutamyl cycle). The resulting cysteine is unstable at extracellular 
level, and it is rapidly autoxidizes to cystine. Nevertheless, cystine is 
taken up by some cells (i.e., endothelial cells) and, given the high 

reducing conditions, is intracellularly reduced to cysteine, employed 
for the synthesis of GSH (10, 11). This direct transport of extracellular 
cystine does not take place in hepatocytes, where the reduction of 
cystine to cysteine occurs mainly in the outer cell membrane as a 
consequence of GSH efflux (11). The extracellular L-cysteine/L-
cystine redox balance, and thus the synthesis of GSH, is finely 
regulated by the intracellular conversion of L-cystine into L-cysteine 
(10), and its impairment is related to oxidative stress and other 
pathological disorders.

The last GSH synthetic process is the one depending on the 
conversion of the oxidized dimer GSSG to 2 reduced GSH molecules 
in cells by glutathione reductase (GR), an ubiquitous enzyme of the 
family of disulfide reductases, in the presence of NADPH and flavin 
adenine dinucleotide -FAD-. GR can perform its enzymatic activity in 
the cytoplasm, but also in the ER and within lysosomes, mitochondria 
and the nucleus. Since it participates in the synthesis of GSH, this 
enzyme plays a key role in the cellular redox homoeostasis (12).

The majority of plasmatic GSH originates from the liver, and for 
this reason an impairment in hepatic GSH synthesis has a systemic 
impact on redox balance and oxidative stress (1, 6, 7, 11).

2.2. The antioxidant role of GSH

GSH is implicated in several functions, including antioxidant 
defense with reduction of oxidative stress and maintenance of redox 
balance, metabolic detoxification from xenobiotics and exogenous 
compounds, cell cycle regulation, and immune system modulation, as 
well as fibrogenesis (1).

Its main role is to shield cellular macromolecules from endogenous 
and exogenous reactive oxygen species (ROS) and nitrogen ones. In 
particular, GSH catalytically detoxifies from hydroperoxides, 
peroxynitrite, and lipid peroxides and directly scavenges various 
oxidant molecules, like superoxide anion, hydroxyl radical, nitric 
oxide, and carbon radicals. Furthermore, GSH deals directly with 
heavy metals and persistent organic pollutants (POPs), direct causes 
of oxidative stress. POPs are mainly excreted through conjugation with 
GSH and this mechanism is extremely important for the health status, 
since exposure to POPs has been associated to diabetes, cardiovascular 
diseases and many other chronic diseases (1, 13).

ROS production can occur at several intracellular sites but, for 
most cells, takes place in the mitochondria and the mitochondrial 
electron transport chain is the main cellular process of ROS generation 
in physiological circumstances (14). For superoxide anion, the main 
ROS, a first line of defense is represented by the enzyme superoxide 
dismutase, localized in the mitochondrial matrix. This enzyme is able 
to convert the superoxide anion into hydrogen peroxide (H2O2). Once 
obtained, H2O2 can be degraded in mitochondria via the GSH redox 
system, employing glutathione peroxidases (Gpxs) and GRs, but also 
through peroxiredoxins (Prxs), a family of thiol-specific peroxidases.

Gpxs exist in multiple isoforms, with different cellular localization 
and different substrate specificity (15). Of these, Gpx1, localized 
mainly at the mitochondrial level (16), is the isoform most active in 
the liver (17). Gpxs are the main enzymes involved in scavenging ROS 
at high intracellular concentrations, protecting cells from oxidative 
stress-induced damage. At nanomolar concentrations of H2O2, Prxs 
seem to be more active, given their higher intracellular concentration 
and rate constant (18).

https://doi.org/10.3389/fmed.2023.1124275
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Santacroce et al. 10.3389/fmed.2023.1124275

Frontiers in Medicine 03 frontiersin.org

GSH, exploiting the redox-active thiol residue (-SH) of cysteine, 
exerts its antioxidant function mainly via Gpxs-mediated reactions, 
which result in peroxide buffering with simultaneous oxidation of 
GSH to GSSG (19). The obtained GSSG is potentially toxic and, under 
oxidative stress, its excessive accumulation can manifest its toxicity. 
First of all, GSSG may activate the SAPK/MAPK pathway, leading to 
cell apoptosis. In addition, GSSG retained in mitochondria during 
oxidative stress can lead to the S-gluthionylation of target proteins 
with mitochondrial dysfunction (20, 21). The S-glutathionylation is a 
process in which the interaction between GSSG and cysteinyl residues 
of proteins results in the formation of mixed disulfides (22). This 
physiological mechanism, which is useful for the post-translational 
modification of multiple proteins and for the regulation of signal and 
metabolic pathways, can turn harmful in case of oxidative stress, with 
the above-mentioned mitochondrial damage. To prevent the GSSG 
toxicity, this molecule is rapidly transformed in its reduced variant 
(GSH) by high intracellular levels of GRs, with the aim of maintaining 
an appropriate redox balance in the cell (1). Hence, the GSH/GSSG 
ratio represents a marker of oxidative stress.

Besides the neutralization of free radicals produced in phase 1 
liver metabolism of chemical toxins, GSH also participates in the 
protection from the resulting electrophilic substrates through the 
intervention of glutathione-S-transferases (GSTs). GSTs are phase 2 
enzymes, ubiquitously distributed in the cell. The ones locate in 
mitochondria have both GSH-transferase and peroxidase activity (23). 
They are therefore able, by exploiting the properties of GSH, to activate 
conjugation and peroxide reduction of dangerous products.

Also, GSH facilitates the transport and excretion of toxins, 
through the formation of S-conjugates of activated intermediates, 
which are water soluble and undergo renal excretion.

Finally, GSH is also a cofactor for several antioxidant enzymes. 
Among the antioxidant molecules of low molecular weight are 
vitamins E and C, obtained from the diet. In particular, vitamin E, 
after acting as an antioxidant by reducing lipid radicals, is restored to 
its reduced form by vitamin C. In turn, the oxidized vitamin C, thanks 
also to GSH, can revert to its reduced form (7). GSH therefore enables 
the recycling of vitamins C and E, again protecting the body from 
oxidative stress (1).

FIGURE 1

Schematic representation of the main molecular mechanisms of reduced glutathione (GSH) synthesis and the intracellular distribution of this molecule. 
GSH production occurs through three main pathways: (1) de novo synthesis via a 2-step process catalyzed by glutamate cysteine ligase (GCL) and 
glutathione synthetase (GS), which is primarily controlled by the cellular levels of cysteine. Moreover GCL activity is in part regulated by GSH feedback 
inhibition; (2) recycling of cysteine from conjugated glutathione via γ-glutamyltranspeptidase (GGT) in the γ-glutamyl cycle; (3) regeneration of the 
oxidized glutathione (GSSG) to GSH by glutathione reductase (GR). Most (80–85%) of the cellular GSH is in the cytosol; 10–15% is in the mitochondria 
and a small percentage is in the endoplasmic reticulum (ER). Created with “Biorender.com.” ADP, adenosine diphosphate; ATP, adenosine triphosphate; 
ER, endoplasmic reticulum; GCL, glutamate cysteine ligase; GGT, γ-glutamyltranspeptidase; GR, glutathione reductase; GS, glutathione synthetase; 
GSH, thiol-reduced glutathione; GSSG, disulfide-oxidized glutathione; NADP+, oxidized nicotinamide adenine dinucleotide phosphate; NADPH, 
reduced nicotinamide adenine dinucleotide phosphate; −--|, inhibition.
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2.3. Depletion of GSH and therapeutic 
implications

The depletion of GSH levels has been demonstrated in aging and 
multiple chronic degenerative diseases, including neurodegenerative, 
cardiovascular, pulmonary, immune disorders and cancers (24, 25). 
There are cumulating data on reduced GSH levels and the consequent 
increased susceptibility to oxidative stress in many human diseases, 
contributing to the onset and worsening of these conditions.

For this reason, many studies have been conducted on the best 
methods to increase intracellular and intramitochondrial levels of 
GSH. A first approach to promote glutathione production might 
be  the administration of specific precursors, cofactors or specific 
foods and nutrients that may increase or maintain optimal 
glutathione levels. Examples are cysteine supplements in the form of 
whey or N-acetylcysteine, antioxidant vitamins (B,C,E), alpha-lipoic 
acid, selenium or phytonutrients (i.e., Brassica vegetables and green 
tea) (25). However, data are scant and controversial, resulting in 
limited efforts to study the effect of nutritional interventions on GSH 
status. Further studies are needed to clarify optimal dose and delivery 
forms and one mandatory target should be  the identification of 
sub-groups of individuals most likely to respond to particular 
supplements, nutrients or foods.

On the other hand, the obvious strategy to increase GSH levels is 
its direct administration. The main routes of administration of 
glutathione are oral, intramuscular, and intravenous. Intravenous GSH 
has a short half-life but has shown to be effective in several diseases. 
For example, the GSH intravenous administration in patients with 
Parkinson’s disease determined significant improvements, which 
lasted for 2–4 months after the administration (26). Also oral 
administration, although with conflicting results, resulted in increased 
serum GSH levels with reduced oxidative stress and beneficial effects 
in several diseases (27, 28). Richie et al. recently found that oral GSH 
at either 250 or 1,000 mg/day was associated to significant increase in 
the body storage of GSH in non-smoking adults, in a dose-dependent 
manner (27). They also noticed a decrease in the markers of oxidative 
stress at 6 months, as shown by the improvement in the GSSG/GSH 
ratio. Furthermore, recent studies suggested that GSH oral 
administration in liposomal or sublingual forms may have a better 
bioavailability, with a favorable impact on systemic GSH levels (29, 
30). For example, a novel GSH formulation bypassing the 
gastrointestinal digestion through an oral absorption, gave positive 
results in raising GSH blood concentration in vitro and in vivo (31). 
Moreover, this molecule showed a promising hepatoprotective 
function in a murine model of acute liver injury (32).

3. Non-alcoholic fatty liver disease: 
Pathogenesis and clinical features

NAFLD is the most common liver disease, characterized by an 
excessive hepatic fat accumulation in the absence of alcoholic abuse, 
steatogenic medications or others concomitant liver diseases (2). 
NAFLD could be considered an hepatic manifestation of metabolic 
syndrome, given the strong association with obesity, type 2 diabetes, 
hypertension and dyslipidaemia (3). This entity comprises NAFL and 
NASH, the latter being its progressive form and affecting about 
10–20% of patients.

NAFLD appears to be more frequent in industrialized countries, 
its global prevalence is about 25% and varies across different 
geographical areas, being higher in Middle East and South America 
and lower in Africa (33). The overall prevalence of NASH is uncertain, 
as it relies on third-level referral centers with availability of liver 
biopsies, and is estimated between 1.5 and 6.45% (34).

According to the European Clinical Guidelines, NAFLD is defined 
either by the presence of steatosis in >5% of hepatocytes at the liver 
biopsy or by a proton density fat fraction >5,6% assessed by proton 
magnetic resonance spectroscopy or magnetic resonance (2). NASH 
is defined by evidence of hepatocyte injury (ballooning) and 
inflammation, with or without fibrosis, in a liver biopsy. 20% of 
patients with NASH develop cirrhosis and have a high risk of 
hepatocarcinoma. (35). The pathogenesis of NAFLD, schematically 
represented in Figure 2, is multifactorial and multiple mechanisms 
have been proposed to explain the process of excessive liver lipid 
accumulation, with the subsequent possible inflammation and fibrosis 
(36). According to the classic “two-hits” model, the increased insulin 
resistance, secondary to metabolic syndrome, determines an excessive 
lipid accumulation in healthy hepatocytes (first “hit”), mainly through 
an increased mobilization of free fatty acids from visceral adipose 
tissue to the liver. This process leads to NAFL, still reversible condition. 
The increased oxidative stress seems to be the second “hit” in the 
progression from NAFL to NASH: the increase in ROS and 
consequently in lipid peroxidation has been associated to 
hepatocellular damage, inflammation, and eventual fibrosis due to the 
activation of hepatic stellate cells. Moreover, ROS inhibit hepatocyte 
secretion of VLDL and promote hepatic insulin resistance, inducing 
liver fat accumulation and necro-inflammation. The oxidative stress 
also contributes to atherosclerosis, representing a possible link 
between NAFLD and metabolic syndrome (37). In addition, 
antioxidants that protect the liver from ROS damage and lipid 
peroxidation may be depleted: GSH, vitamin E, vitamin C and beta-
carotene were found to be  reduced in the NASH setting (38, 39). 
Closely related to oxidative stress is the so-called dicarbonyl stress, i.e., 
the accumulation of dicarbonyl metabolites leading to cell and tissue 
disfunction (40). Altered functioning of the glyoxalase enzyme system, 
with associated accumulation of glycation products, has been shown 
as another possible pathogenic mechanism in NAFLD (41, 42).

More recently, a “multiple hits” theory has been proposed, with 
the addition of other pathogenic factors in NAFLD development: 
low-grade chronic inflammation, genetic and epigenetic mutations, 
and intestinal microbiota. A condition of low-grade inflammation 
has been related to NAFLD, with an abnormal production of 
cytokines and adipokines, such as interleukin (IL)-6, tumor necrosis 
factor (TNF)-α, IL-1, leptin. In particular, lower levels of adiponectin 
and increased expression of TNF-α and its soluble receptor have 
been recently related to the development of NASH (43). A role for 
genetic has been demonstrated, with evidence of an increased risk 
of NAFL in patients with polymorphisms, like those associated to 
patatin-like phospholipase domain containing 3 (PNPLA3) 
rs738409, transmembrane 6 superfamily member 2 (TM6SF2) 
rs58542926 and membrane bound O-acyltransferase domain 
containing 7 (MBOAT7) rs641738 (44–47). Conversely, patients who 
carry variants in hydroxysteroid 17-beta dehydrogenase 13 
(HSD17B13, rs72613567) and mitochondrial amidoxime-reducing 
component 1 (MARC1, rs2642438) are more protected than the 
general population (48, 49). Finally, the gut microbiome may 
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contribute to NAFLD pathogenesis: an increased intestinal 
permeability could lead to the entry of endotoxins in portal 
circulation and activation, through toll-like receptor 4, of Kupffer 
cells, with consequent inflammation (50–53).

Most patients with NAFLD are asymptomatic, and the diagnosis 
is mainly made incidentally on the basis of liver biochemistry or 
abdominal ultrasound abnormalities. Common symptoms include 
right upper quadrant pain and fatigue. The most common laboratory 
alterations are elevation of liver enzymes, with serum alanine 
aminotransferase higher than aspartate aminotransferase (ALT>AST) 
(54), although transaminase levels may be within limits in more than 
one third of cases, and hyperferritinemia (55), which has been 
demonstrated to be  a marker of sever histologic damage and an 
independent predictor for liver fibrosis (56, 57). In a recent work by 
Corradini et al., variants of genes related to iron metabolism were 
shown to be  associated with hyperferritinemia and more severe 
NAFLD (58).

Diagnosis is made by exclusion of alcohol abuse and other 
causes of liver disease (HBV-related hepatitis, HCV-related 

hepatitis, autoimmune liver diseases, polycystic ovary syndrome, 
drug-induced liver disease and congenital causes such as hereditary 
hemochromatosis, Wilson’s disease, alpha-1 antitrypsin deficit). In 
association with the assessment of liver enzymes levels in serum, 
ultrasound (US) is the first line procedure to screen patients for 
NAFLD. Although US in a non-invasive and practical method, it 
has low sensitivity for mild levels of steatosis and cannot be used 
for the distinction between NAFLD and NASH, without a 
concomitant liver biopsy. Thus, vibration-controlled transient 
elastography (VCTE) or magnetic resonance elastography are used 
to identify early phases of the disease. If significant fibrosis is 
confirmed, patients should be referred to a specialist to perform 
liver biopsy and confirm the diagnosis histologically (59). In 
Chinese guidelines, high serum levels of CK-18 fragments (M30 
and M65) have been proposed as a possible indicator to perform a 
liver biopsy (60).

Chronic inflammation is the driving force for the onset and 
progression of fibrosis in NASH (61). Liver fibrosis represents, 
together with the comorbidities of metabolic syndrome, a significant 

FIGURE 2

Non-alcoholic fatty liver disease (NAFLD) pathogenesis: “multiple hits” theory. The pathogenesis of NAFLD is multifactorial and multiple mechanisms 
have been proposed to explain the process of excessive liver lipid accumulation, with the subsequent possible inflammation and fibrosis. According to 
the classic “two-hits” model, the increased insulin resistance, secondary to metabolic syndrome, determines an excessive lipid accumulation in healthy 
hepatocytes (first “hit”), mainly through an increased mobilization of free fatty acids (FFA) from visceral adipose tissue to the liver. This process leads to 
the non-alcoholic fatty liver (NAFL), still reversible condition. The increased oxidative stress seems to be the second “hit” in the progression from NAFL 
to non-alcoholic steatohepatitis (NASH): the increase in reactive oxygen species (ROS) and consequently in lipid peroxidation has been associated to 
hepatocellular damage, inflammation and eventual fibrosis due to the activation of hepatic stellate cells (HSC). More recently, a “multiple hits” theory 
has been proposed, with the addition of other pathogenic factors in NAFLD development: low-grade chronic inflammation, genetic and epigenetic 
mutations, and intestinal microbiota. Created with “Biorender.com.” FFA, free fatty acids; HSC, hepatic stellate cells; IL, interleukin; MBOAT7, membrane 
bound O-acyltransferase domain containing 7; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis; PNPLA3, patatin-like 
phospholipase domain containing 3; ROS, reactive oxygen species; TM6SF2, transmembrane 6 superfamily member 2;TNF-α, tumor necrosis factor-
alpha; ↔, reversible condition.
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TABLE 1 Main studies on the role of reduced glutathione (GSH) treatment in patients with metabolic liver disease.

Study Country Year Type of 
the 
study

Study 
population

Treatment Outcomes Follow-
up

Main 
findings

Ref

Dentico 

et al.

Italy 1995 50 pts  

25 controls

NAFL  

No biopsies

1800 mg/day IV 

for 30 days (25 

pts) 600 mg/day 

IM for 30 days (25 

pts)

AST, ALT, GGT, 

bilirubin, MDA

4 month ↓AST, ALT and 

GGT ↓MDA 

No bilirubin 

improvement 

No adverse 

effects  

Efficacy high-

dose treatment

77

Irie et al. Japan 2016 15 pts NAFL (n = 5) 

NASH (n = 10) 

Pre-treatment 

biopsies

300 mg/day PO 

for 3 months

ALT, GGT, 

8-OHdG, IHC 

expression of GSH

3 month ↓ ALT, GGT 

and 8-OHdG in 

NASH (in 

NAFLD no 

statistical 

significance) 

GSH liver 

expression 

abundant 

(especially in 

NAFLD) 

Possible 

prevention of 

progression 

from NAFLD to 

NASH

78

Honda 

et al.

Japan 2017 29 pts NAFL  

No biopsies

300 mg/day PO 

for 4 months

ALT, US (CAP) 4 month ↓ ALT  

CAP 

Improvement

79

ALT, alanine aminotransferase; AST, Aspartate aminotransferase; CAP, controlled attenuation parameter; GGT, gamma-glutamyl transferase; IHC, immunohistochemistry; IM, intramuscular; 
IV, intravenous; MDA, malondialdehyde; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis; PO, per os; pts patients; US, ultrasound; 8-OHdG, 8-hydroxy-2-
deoxyguanosine; ↓, reduction.

prognostic determinant in NAFLD. For this reason, a major goal in 
NAFLD management is the prevention of fibrosis and its detection in 
the earliest stages to avoid progression to cirrhosis. Liver biopsy is the 
diagnostic gold standard for fibrosis. However, it is an invasive 
technique with possible complications, therefore non-invasive tests 
(NITs) have been identified (62). According to the latest EASL 
Clinical Practice Guidelines, non-invasive scores, serum markers, 
liver stiffness and imaging methods should be used for ruling out 
rather than diagnosing advanced fibrosis in low-prevalence 
populations and should be preferentially employed in patients at risk 
of advanced liver fibrosis (63). Crucial NITs in NAFLD patients 
stratification are especially the fibrosis-4 (FIB-4) - an index that takes 
into account age, transaminases and platelet count- and the liver 
stiffness evaluation by VCTE. As concerns fibrosis evaluation through 
cross-sectional imaging techniques, especially magnetic resonance 
elastography, their use is limited at the moment to tertiary referral 
centers and for experimental studies, in light of their cost, the limited 
availability and the procedural length. Finally, it is worth mentioning 
the new glutamate-serine-glycine (GSG) index which, combining 
three amino acids involved in glutathione synthesis, provides a good 
assessment of NAFLD severity and allows the discrimination of liver 
fibrosis (64).

4. The therapeutic role of GSH in 
NAFLD

As already mentioned, oxidative stress is a pathophysiological 
hall-mark of metabolic liver disease (65–68). Under this condition, 
ROS overproduction appears to be associated with an impairment of 
intracellular GSH homeostasis, leading to a reduction in GSH levels 
and in its antioxidant and hepato-protective function (69, 70). Based 
on these assumptions, a role for GSH in the treatment of liver disease 
has been hypothesized for NAFLD (71).

While several clinical studies examined the favorable effect of 
reduced GSH short-term or long-term administration on alcohol-
induced liver diseases (72–76), the available literature on the effect of 
GSH on NAFLD is limited -see Table 1-, and the studies at hand are 
to be considered pilots (77–79).

An early work, presented in 1995 by Dentico and colleagues, 
evaluated the effect of 30-day administration of high doses of 
intravenous or intramuscular GSH on liver cytolysis indexes in 
patients with chronic steatosic liver disease (77). No adverse effects 
were reported and a significant reduction in liver tests (specifically 
transaminases and gamma-glutamyltranspeptidase -GGT-), with 
many cases of bio humoral parameters normalization, was detected in 
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all treated patients, even several months after treatment interruption. 
In addition, confirming the efficacy of GSH treatment, a reduction in 
malondialdehyde, a marker of hepatic cell damage, was detected.

A subsequent study of Irie and colleagues in 2016 showed that the 
use of oral glutathione, at a daily dosage of 300 milligrams per day, 
may prevent NASH progression from NAFLD (78). A higher level of 
oxidative stress was detected in patients with NASH compared to 
NAFLD and a reduction in the levels of 8-hydroxy-2-deoxyguanosine 
(8-OHdG) and GGT, as markers of oxidative stress, was highlighted 
in NASH patients treated with GSH, with a consequent reduction of 
alanine transaminase (ALT). Also, they evaluated the 
immunohistochemical expression of GSH on pre-treatment biopsies, 
finding a stronger expression of GSH in NAFL than NASH. These 
results suggested a possible progression from NAFLD to NASH due 
to oxidative stress and demonstrated a potential therapeutic role for 
GSH in controlling the progression of liver damage.

The study by Honda et al., conducted in 2017, was an open-label, 
single-arm, multicentre pilot study that evaluated the therapeutic 
effect of oral glutathione administration (300 mg/day) in patients 
with NAFLD through the evolution of biochemical indices (ALT) and 
liver fat levels assessed by VCTE (79). ALT levels significantly 
decreased following treatment with GSH for 4 months, with a 
consequent decrease in liver fat levels non-invasively evaluated using 
elastography with controlled attenuation parameter.

These preliminary studies suggest a potential therapeutic effect 
of oral administration of GSH in NAFLD. However, the small 
sample-size, the short treatment period, the absence of control 
groups, the lack of liver biopsy evaluation after treatment are just 
some of the limitations of these studies. More studies are needed to 
elucidate the mechanism behind the effect of GSH and large-scale 
trials are necessary to confirm the therapeutic role for 
GSH. According to ClinicalTrials.gov, as of 5th December 2022, no 
phase III clinical trial on the use of GSH in NAFLD is currently 
ongoing or recruiting.

5. Conclusion

NAFLD is a liver disease characterized by a high prevalence in the 
general population. Although several drugs are under investigation, 
there are currently no approved drugs for NAFLD (80). The complex 
pathophysiology and heterogeneity of the disease raises the 
speculation that combined treatment will be  required for many 

patients. Therefore, the need for new therapies able to cure and 
prevent the progression of this condition is increasingly urgent.

The pathogenetic role of oxidative stress in NALFD is well 
known and would explain the rationale for the use of GSH as a 
potential therapy. The studies currently available on the use of both 
oral and parenteral GSH are promising but represent only pilot 
studies for the time being. Indeed, these studies are burdened by 
several limitations, most importantly the small sample size and the 
lack of evaluation of the therapeutic effect of GSH by liver biopsy, 
which to date is the gold standard for the definition of steatosis and 
fibrosis levels. Further studies are needed to confirm the actual 
benefit of this molecule on metabolic liver diseases and define the 
best route of administration and the most appropriate dosage, 
allowing its use in clinical practice.
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