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Background: The aim of our study was to externally validate the predictive capability

of five developed coronavirus disease 2019 (COVID-19)-specific prognostic tools,

including the COVID-19 Spanish Society of Infectious Diseases and Clinical

Microbiology (SEIMC), Shang COVID severity score, COVID-intubation risk score-

neutrophil/lymphocyte ratio (IRS-NLR), inflammation-based score, and ventilation in

COVID estimator (VICE) score.

Methods: The medical records of all patients hospitalized for a laboratory-confirmed

COVID-19 diagnosis between May 2021 and June 2021 were retrospectively

analyzed. Data were extracted within the first 24 h of admission, and five different

scores were calculated. The primary and secondary outcomes were 30-day mortality

and mechanical ventilation, respectively.

Results: A total of 285 patients were enrolled in our cohort. Sixty-five patients

(22.8%) were intubated with ventilator support, and the 30-day mortality rate was

8.8%. The Shang COVID severity score had the highest numerical area under the

receiver operator characteristic (AUC-ROC) (AUC 0.836) curve to predict 30-day

mortality, followed by the SEIMC score (AUC 0.807) and VICE score (AUC 0.804).

For intubation, both the VICE and COVID-IRS-NLR scores had the highest AUC (AUC

0.82) compared to the inflammation-based score (AUC 0.69). The 30-day mortality

increased steadily according to higher Shang COVID severity scores and SEIMC

scores. The intubation rate exceeded 50% in the patients stratified by higher VICE

scores and COVID-IRS-NLR score quintiles.

Conclusion: The discriminative performances of the SEIMC score and Shang COVID

severity score are good for predicting the 30-day mortality of hospitalized COVID-

19 patients. The COVID-IRS-NLR and VICE showed good performance for predicting

invasive mechanical ventilation (IMV).
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1. Introduction

In December 2019, there was an emerging viral infection
outbreak in Wuhan, China. The pathogen was later identified as
a new strain of coronavirus, severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2), and the disease it caused was named
coronavirus disease 2019 (COVID-19). The disease rapidly spread
from Wuhan to the rest of the world (1).

The disease severity ranged widely, from asymptomatic or
minor symptoms, such as rhinorrhea, productive cough, anosmia,
ageusia, and fever, to more severe conditions, such as pneumonia,
acute respiratory failure, and even acute respiratory distress
syndrome (ARDS). It can progress rapidly (2, 3) and advanced
life support with intensive care, such as oxygen therapy, non-
invasive ventilation (NIV), and invasive mechanical ventilation
(IMV), may be warranted. Excessive demand on healthcare services
overwhelmed healthcare systems worldwide (4–7). Administration
triage for optimized patient care became essential.

Clinical evaluation alone may lead to misjudgment, under- or
overestimation of disease severity and result in suboptimal medical
treatment and admission to an inappropriate setting (8). Disease
severity scores have been proposed since the early 1980s to help
physician decision-making and predict outcomes. For instance, the
CURB-65 (confusion, uremia, respiratory rate, BP, age ≥ 65 years)
score and qSOFA (quick sepsis-related organ failure assessment)
score are clinically relevant predictive tools for community-acquired
pneumonia and sepsis, but their risk prediction performance in
COVID-19 is not satisfactory (9, 10).

Several predictive scores had been published (11–20), but only
a handful of them had ever been validated externally (10). The
first wave of the COVID-19 pandemic in Taiwan occurred with a
delay of several months in comparison with the first waves in other
countries; nevertheless, the waves had similar viral characteristics.
During the first wave, all COVID-19 patients had to be admitted to
a hospital for quarantine according to the Taiwan Centers for Disease
Control (CDC) regulation (21), regardless of the severity. Therefore,
our cohort may be more representative of the spectrum of COVID-
19 disease and be a good cohort to validate the accuracy of the
previous predictive scores. The Spanish Society of Infectious Diseases
and Clinical Microbiology (SEIMC) score (11) and the Shang
COVID severity score (12) were developed to predict mortality, while
the COVID-intubation risk score-neutrophil/lymphocyte ratio (IRS-
NLR) score (13), inflammation-based risk score (14), and ventilation
in COVID estimator (VICE) (22) score were designed to predict the
need for IMV. All five predictive scores are useful since only clinical
parameters and commonly available laboratory results were included,
but the accuracy of these scores has been uncertain. Herein, the
primary aim of the present study was to validate these severity scores
and predictive models to predict mortality and the need for IMV.

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus-
2; COVID-19, coronavirus disease 2019; ARDS, acute respiratory distress
syndrome; NIV, non-invasive ventilation; IMV, invasive mechanical ventilation;
DNI, do not intubate; CAD, coronary artery disease; SD, standard deviation;
AUC, areas under the curve, CIs, confidence intervals; CRP, C-reactive
protein; ROC, receiver-operator characteristic, DIC, disseminated intravascular
coagulation.

2. Materials and methods

2.1. Study design and patient selection

We retrospectively studied all COVID-19 adult patients admitted
for COVID-19 from 1 May 2021 to 30 June 2021, the first wave
of COVID-19 infection in Taiwan with low COVID-19 vaccination
coverage, to MacKay Memorial Hospital, a tertiary referral center
in Taipei, Taiwan. All patients were confirmed to be diagnosed by a
polymerase chain reaction using a nasopharyngeal sample. Patients
who were under 20 years of age or identified as “do not intubate
(DNI)” were excluded. The patients’ medical records and laboratory
results were reviewed. Five different kinds of predictive scores were
calculated, including the Shang COVID severity score (12), SEIMC
score (11), COVID-IRS-NLR score (12), inflammation-based risk
scoring system (14), and VICE score (22). The Institutional Review
Board of MacKay Memorial Hospital approved this study with
approval number 21MMHIS330e.

2.2. Outcome measurement

Our primary outcome was 30-day mortality. The secondary
outcome was intubation with IMV support. Of note, non-IMV and
high-flow nasal cannula were not included in the secondary outcome.
The patients were followed until they expired or were discharged,
depending on which developed first.

2.3. Definitions

The severity of COVID-19 scores was calculated by laboratory
tests performed on or within 24 h of hospital admission. The patients
were assessed for the presence of diabetes mellitus, coronary artery
disease (CAD), and home statin medication history, and these factors
were extracted from the electronic medical records. The estimated
glomerular filtration rate (eGFR) was defined as the modification
of diet in renal disease [Modification of diet in renal disease
(MDRD) equation, which was 186 × (creatinine) (−1.154) × (age)
(−0.203) for males and 186 × (creatinine) (−1.154) × (age)
(−0.203) × 0.742 in females].

2.4. Statistical analysis

Categorical variables are presented as numbers (percentages).
The frequencies of categorical variables were compared using the chi-
squared test or Fisher’s exact test. Continuous variables are reported
as the mean ± standard deviation (SD). The means of two continuous
variables were compared by the independent samples t-test. We
used a univariable logistic regression model to determine variables
that would be included in our predictive risk score algorithms for
mechanical ventilation needs and in-hospital death. In addition,
variables with p < 0.05 were considered statistically significant and
then were entered into a multivariate logistic regression model
to determine independent predictors. We built receiver operating
characteristic (ROC) curves to assess the predictive performance of
all scores for the primary and secondary outcomes. We calculated
pooled areas under the curve (AUCs) and 95% confidence intervals

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2023.1121465
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1121465 February 2, 2023 Time: 15:21 # 3

Chung et al. 10.3389/fmed.2023.1121465

(CIs). The Hosmer–Lemeshow test was used to evaluate the goodness
of fit for logistic regression models. For all tests, a two-sided p-value
less than 0.05 was considered significant. Data were analyzed using
SPSS software (version 22; IBM Corporation, Armonk, NY, USA).

3. Results

A total of 311 patients were enrolled in this study period and were
followed until they were discharged from our hospital or died. A total
of 26 patients who refused intubation during respiratory failure
with DNI orders were excluded, leaving 285 patients for inclusion
in the analysis.

3.1. Patient characteristics

The patient characteristics are shown in Table 1. The mean
age was 61.5 ± 14.8 years, and 156 patients (54.7%) were male.
Additionally, patients with the comorbidity of diabetes accounted for
29.8% of the cohort, and CAD patients accounted for 7.4% of our
cohort. The lowest SpO2 level recorded within 24 h of admission was
93.7 ± 6.2%, and the SpO2/FiO2 ratio was 402.4 ± 106.2. A total of
65 patients (22.8%) were intubated with ventilator support, and 25
patients died with an 30-day mortality of 8.8%. Only 4.6% (13/285) of
our cohort received one dose of a COVID-19 vaccine at the time of
admission. The majority of our population were not vaccinated.

Clinical and laboratory parameters that were associated with 30-
day mortality and the need for IMV were identified (Tables 1, 2).
The factors on admission were consistently predictive of both
mortality and a requirement for IMV, and these factors included age,
lowest SpO2, D-dimer, albumin, and C-reactive protein (CRP) level.
Comorbid CAD is a predictor of mortality only. The odds ratio (OR)
of age in mortality was 1.07 (95% CI: 1.03–1.11) and 1.03 (95% CI:
1.01–1.05) in IMV requirement. The CRP level is the most predictive
laboratory parameter in both mortality and IMV need, with ORs of
1.13 (95% CI: 1.07–1.19) and 1.14 (95% CI: 1.09–1.19), respectively.

3.2. Comparison of mortality and
intubation rate by risk class

Figure 1 shows the mortality rate and ventilation rate across
different scoring system risk classes, including the COVID-19 SEIMC
score, COVID-IRS-NLR score, inflammatory score, Shang COVID
severity score, and VICE score. There was a significant difference
in the mortality rate and intubation rate among the lowest- to
highest-risk classes in all five scoring systems. The 30-day mortality
increased steadily according to higher COVID-IRS-NLR, Shang
COVID severity score, and SEIMC score. The intubation rate
exceeded 50% in the patients stratified by higher VICE score and IRS-
NLR score quintiles, which revealed 76.2 and 90.9% in the 4th and 5th
quintiles in the VICE score and 56.8, 100, and 100% in the 3rd–5th
quintiles in the IRS-NLR score, respectively.

TABLE 1 Baseline characteristics and laboratory findings among survivors and non-survivors among hospitalized COVID-19 patients.

All patients Non-survivors at
30 days

Survivors at
30 days

P-value Univariate

N = 285 N = 25 N = 260 Odds ratio (95% CI) P-value

Age (years) 61.5 ± 14.8 71.7 ± 10.3 60.6 ± 14.9 <0.001 1.07 (1.03–1.11) <0.001

Gender (male, %) 156 (54.7%) 16 (64.0%) 140 (53.8%) 0.40

DM 85 (29.8%) 11 (44.0%) 74 (28.5%) 0.11

CAD 21 (7.4%) 5 (20.0%) 16 (6.2%) 0.03 0.26 (0.09–0.79) 0.02

Statin use 29 (10.2%) 5 (20.0%) 24 (9.2%) 0.15

Lowest SpO2 (%) 93.7 ± 6.2 88.6 ± 8.5 94.1 ± 5.7 0.004 0.92 (0.87–0.96) 0.001

eGFR (MDRD) (ml/min/1.73 m2) 76.8 ± 36.3 53.6 ± 60.3 79.0 ± 32.3 0.05

BMI (kg/m2) 26.0 ± 4.9 25.1 ± 7.1 26.1 ± 4.6 0.52

SEIMC_score 7.8 ± 5.2 12.5 ± 5.2 7.3 ± 4.9 <0.001 1.17 (1.09–1.25) <0.001

IRS-NLR_score 2.7 ± 2.4 5.4 ± 3.2 2.5 ± 2.1 <0.001 1.51 (1.28–1.78) <0.001

Inflammatory_score 2.8 ± 1.9 4.3 ± 1.4 2.6 ± 1.8 <0.001 1.63 (1.27–2.10) <0.001

Shang_severity_score 2.2 ± 1.6 4.0 ± 1.3 2.0 ± 1.5 <0.001 2.40 (1.72–3.36) <0.001

VICE_score 0.18 ± 0.23 0.46 ± 0.32 0.16 ± 0.20 <0.001 51.8 (12.1–221.1) <0.001

Procalcitonin (ng/ml) 1.1 ± 7.7 8.0 ± 21.3 0.4 ± 4.3 0.10

D-dimer (ng/ml) 1,459.3 ± 1,998.2 3,634.3 ± 3,273.2 1,245.2 ± 1,690.4 0.001 1.00033 (1.00019–1.00047) <0.001

Platelet (µL) 202,722.3 ± 86,245.4 185,240.0 ± 68,694.5 204,423.0 ± 87,690.0 0.29

White blood cell count (L) 7,657.2 ± 7,765.6 9,668.0 ± 6,835.2 7,462.4 ± 7,834.3 0.18

Albumin (g/dl) 3.9 ± 0.6 3.4 ± 0.6 3.9 ± 0.5 <0.001 0.24 (0.11–0.52) <0.001

CRP (mg/dl) 7.1 ± 6.8 13.3 ± 8.3 6.5 ± 6.4 <0.001 1.13 (1.07–1.19) <0.001

DM, diabetes mellitus; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate; MDRD, modification of diet in renal disease; BMI, body mass index; CRP, C-reactive protein, LDH,
lactic dehydrogenase.
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TABLE 2 Baseline characteristics and laboratory findings with and without ventilator use with COVID-19 infection.

Ventilation use No ventilation use P-value Univariate

N = 65 N = 220 Odds ratio (95% CI) P-value

Age (years) 65.8 ± 11.5 60.3 ± 15.4 0.002 1.03 (1.01–1.05) 0.009

Gender (male, %) 42 (64.6%) 114 (51.8%) 0.09

DM 24 (36.9%) 61 (27.7%) 0.17

CAD 7 (10.8%) 14 (6.4%) 0.28

Statin use 6 (9.2%) 23 (10.5%) 1.00

Lowest SpO2 (%) 90.0 ± 9.2 94.7 ± 4.4 <0.001 0.88 (0.83–0.93) <0.001

eGFR (MDRD) (ml/min/1.73 m2) 67.9 ± 42.5 79.4 ± 34.0 0.03

BMI (kg/m2) 25.0 ± 5.9 25.9 ± 4.5 0.92

SEIMC_score 9.7 ± 3.9 7.2 ± 5.4 <0.001 1.09 (1.04–1.15) 0.001

IRS-NLR_score 5.0 ± 2.8 2.0 ± 1.7 <0.001 1.81 (1.53–2.13) <0.001

Inflammatory_score 3.7 ± 1.7 2.5 ± 1.8 <0.001 1.45 (1.24–1.71) <0.001

Shang_severity_score 3.2 ± 1.4 1.8 ± 1.5 <0.001 1.76 (1.44–2.15) <0.001

VICE_score 0.40 ± 0.30 0.11 ± 0.15 <0.001 187.0 (45.1–766.1) <0.001

Procalcitonin (ng/ml) 2.5 ± 12.5 0.7 ± 5.6 0.27

D-dimer (ng/ml) 2,609.7 ± 3,084.2 1,116.9 ± 1,368.6 <0.001 1.00032 (1.00018–1.00046) <0.001

Platelet (µL) 188,328.1 ± 60,221.6 206,948.2 ± 92,196.0 0.06

White blood cell count (L) 8,384.4 ± 5,714.4 7,444.7 ± 8,268.7 0.40

Albumin (g/dl) 3.6 ± 0.5 3.9 ± 0.6 <0.001 0.35 (0.20–0.61) <0.001

CRP (mg/dl) 12.0 ± 7.8 5.6 ± 5.8 <0.001 1.14 (1.09–1.19) <0.001

DM, diabetes mellitus; CAD, coronary artery disease; eGFR, estimated glomerular filtration rate; MDRD, modification of diet in renal disease; BMI, body mass index; CRP, C-reactive protein, LDH,
lactic dehydrogenase.

3.3. Performance of risk prediction and
modeling for COVID-19 mortality

The area under the ROC curves (AUC) for 30-day mortality
for each prognostic score for COVID-19 is shown in Figure 2A
and Table 3. The Shang COVID severity score showed the highest
prediction of mortality, with an AUC of 0.836. The AUCs for the
SEIMC score and VICE score were 0.807 and 0.804, respectively,
suggesting good predictive performance for 30-day mortality. The
performance of the DICE score was not validated because of missing
values in our cohort and loss of statistical power.

Sex and other reliable mortality-associated variables, including
age, lowest SpO2, CRP, albumin, and D-dimer, were selected. Logistic
regression models were generated by combining the scoring systems
with the above variables (Table 4). The risk predictive model with
the VICE score, Shang COVID severity score, and IRS-NLR score
showed significant prognostic accuracy for mortality [OR: 19.6;
(3.06–126.0); 1.71 (1.09–2.69); 1.31 (1.06–1.62), respectively]. The
Hosmer–Lemeshow test of all the models yielded a non-significant
statistic, indicating that there was no departure from perfect fit.

3.4. Performance of risk prediction for
intubation and further modeling

The ROC curves for the IMV requirement for each scoring
system in COVID-19 patients are shown in Figure 2B and Table 3.

The IRS-NLR and VICE scores showed the strongest prediction of
mortality, with AUCs of 0.82 for both.

Logistic regression models were generated by combining scoring
systems with sex, age, lowest SpO2, CRP, albumin, and D-dimer
(Table 5). The risk predictive models with the VICE score and IRS-
NLR score showed the greatest prognostic accuracy of intubation
[OR: 84.9 (14.6–492.4) and 1.62 (1.33–1.99), respectively]. The
Hosmer–Lemeshow test of all the models yielded a non-significant
statistic, indicating that there was no departure from perfect fit.

4. Discussion

This study evaluated the performance of the COVID-19 SEIMC
score, the COVID-IRS-NLR score, the inflammatory-based risk
score, the Shang COVID severity score, and the VICE prediction rule
in predicting 30-day mortality and IMV requirements in hospitalized
COVID-19 patients. In our cohort, the SEIMC score and Shang
COVID severity score were good models for predicting 30-day
mortality. For intubation prediction, the IRS-NLR, and VICE score
prediction rules showed the best performance.

Our results reinforce the results of several previous studies
that found specific initial parameters to be significant predictors
of poor outcome in patients with COVID-19. Age (23, 24), lower
SpO2 (25), higher D-dimer, higher CRP, and hypoalbuminemia (26)
increased the chances of mortality and ventilation requirements
in our study. Previous studies found that an increase in D-dimer
and fibrinogen is associated with an increase in COVID-19 severity
and mortality (27–30). Increased D-dimer represents activation of

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2023.1121465
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1121465 February 2, 2023 Time: 15:21 # 5

Chung et al. 10.3389/fmed.2023.1121465

FIGURE 1

Distribution of the SEIMC, IRS-NLR, inflammatory, Shang et al., and VICE scores by risk class in our patients. (A) The mortality rate was plotted against five
score stratifications. (B) The intubation rate was plotted against five score stratifications. The correlation between each of the five scoring systems and
the increase in severity. *p < 0.001; SEIMC, Spanish Society of Infectious Diseases and Clinical Microbiology; IRS-NLR, intubation risk
score-neutrophil/lymphocyte ratio; VICE, ventilation in COVID estimator.

coagulation cascades secondary to systemic inflammation and causes
microthrombi formation inside the blood vessels that can induce
disseminated intravascular coagulation (DIC) (31). CRP levels are
reliable markers for prognostic factors (32). Taken together, these
results indicate that COVID-19 virus-induced inflammatory and
hypercoagulation responses drive the severity of disease (33).

Hundreds of prognostic scoring systems have been developed
and studied during the COVID-19 pandemic to predict different
outcomes, including mortality (11, 12, 15), severe illness (16–18),
critical illness (34), intensive care unit (ICU) admission (19, 20,
35), or IMV use (13, 14). The definition of severe COVID-19 varies
across different studies, and the hospitalization criteria may differ by
disease prevention policy across countries. The complexity of the ICU
admission criteria may fluctuate and be affected by demography and
ICU bed scarcity (10). Therefore, the outcomes used in our study, 30-
day mortality and IMV, are the most clinically relevant, while they
have objective and reduced diversity.

Clinical scoring systems are designed to aid decision making
and add to clinical judgment in different healthcare services. Some

simplified scoring methods are designed to frequently assess dynamic
requirements for escalating levels of respiratory support and to
rescore after interventions, such as the Brescia-COVID respiratory
severity scale (BCRSS) (36) and the Quick COVID-19 Severity Index
(qCSI) (37). These kinds of scoring systems are practically applicable
in emergent department settings, which allows quick triage. Most
COVID-19 risk scores aimed to predict ultimate outcomes by using
the initial evaluation, while some scores use parameters that have not
been routinely collected in our cohort [such as CT scan (38) or red
cell distribution width (39)]. Further prospective studies are needed
for further validation.

To date, the largest, multicenter cohort of 14,343 patients to
validate systematically selected prognostic scores for 30-day in-
hospital mortality had been demonstrated that 4C mortality (15)
and ABCS score had modest utility (AUC > 0.75) (10). The
SEIMC scores had low prediction in that French cohort but good
prediction in our cohort. The Shang et al. (12) severity score
possesses the highest AUC-ROC curve in our patient population.
The mortality rate observed within our cohort was much lower
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FIGURE 2

(A) The receiver-operator characteristic (ROC) curve (with AUC) for predicting mortality among patients with coronavirus disease 2019 (COVID-19) in our
cohort. (B) The ROC curve for predicting mechanical ventilation requirements among patients with COVID-19 in our cohort. HR, hazard ratio; AUC, area
under the curve; SEIMC, Spanish Society of Infectious Diseases and Clinical Microbiology; IRS-NLR, intubation risk score-neutrophil/lymphocyte ratio;
VICE, ventilation in COVID estimator.

TABLE 3 Summary of the prognostic performance of different severity scores for mortality/intubation in hospitalized patients with COVID-19.

Risk score Variables Risk stratification in original study OR (95% CI) for
mortality,

intubation*

RO-AUC for
mortality,

intubation*

Shang COVID
severity score (12)

Age, coronary heart disease,
Lymphocyte < 8%,

Procalcitonin > 0.15 ng/ml,
D-dimer > 500 ng/ml

Total score > 2 points defined as high risk; mortality rate 10%
vs. 81.1% in low-risk group vs. high-risk group (p < 0.01)

2.40 (1.72–3.36), 1.76
(1.44–2.15)

0.836, 0.73

SEIMC (11) Age, lowest SpO2 , NLR, eGFR,
dyspnea, sex

6–8 points defined as high risk, mortality rate was
10.6–19.5%; 9–30 points defined as very high, mortality rate

was 27.7–100.0%

1.17 (1.09–1.25), 1.09
(1.04–1.15)

0.807, 0.70

Inflammation-based
risk score (14)

WBC ≥ 9.3 × 103 cells/µL, CRP
level ≥ 13.0 mg/L, serum albumin

level ≤ 3.6 g/dl

5–6 points defined as severe risk, 71% of IMV rate 1.63 (1.27–2.10), 1.45
(1.24–1.71)

0.775, 0.69

VICE (17) DM, SpO2/FiO2 , LDH 4th quintile defined as 0.52–0.81 points, 66.30% of IMV rate
5th quintile defined as 0.81–0.99 points, 90.20% of IMV rate

51.8 (12.1–221.1), 187.0
(45.1–766.1)

0.804, 0.82

COVID-IRS-NLR
score (13)

Respiratory rate, SaFiO2 , LDH,
NLR

5–8 points defined as high risk, 36.6–69.5% of IMV rate
9–11 points defined as very high risk, 90.9–92.8% of IMV rate

12–13 points defined as very high risk, 100% of IMV rate.

1.51 (1.28–1.78), 1.81
(1.53–2.13)

0.781, 0.82

eGFR, estimated glomerular filtration rate; SpO2 , peripheral arterial oxygen saturation; FiO2 , fraction of inspired oxygen; SaFiO2 , ratio of oxygen saturation to fraction of inspired oxygen; CRP,
C-reactive protein; NLR, neutrophil to lymphocyte ratio; DM, diabetes mellitus; CRP, C-reactive protein; LDH, lactic dehydrogenase; IMV, invasive mechanical ventilation; OR, odds ratio; ROC-
AUC, receiver-operator characteristic with area under the curve; CI, confidence interval.
*Results of external validation within our cohort.

than expected in the Shang et al. (12) cohort. The mortality
rate was 81.1% among the high-risk group (above 2 points),
and the observed mortality rate of the high-risk group in our
cohort was only 19.6%. The differences between the two cohorts
may be because they faced the first wave of COVID-19, and
there were no well-established treatment strategies. In contrast,
the SEIMC score predicted the mortality rate in our cohort more
precisely (11), while incremental risk stratification represented
increased mortality.

The COVID-IRS-NLR and VICE score showed the strongest
prediction and greatest accuracy of IMV among our patient

population. The intubation rate of the high-risk and very high-
risk patients based on the COVID-IRS-NLR score and those who
were in quintiles 4th and 5th based on the VICE score was high
(13, 22), and these factors may warrant intubation. Early intubation
could prevent patient self-inflicted lung injury (40). However, IMV
is also associated with complications, such as prolonged sedation
and paralysis, infection, and barotrauma (41), and it was reasonable
to treat the patients in the low-risk group using a high-flow nasal
cannula or awake proning rather than early intubation.

Triage is important in the face of the COVID pandemic (42). If
we can foresee the possible progress of the patient’s condition during
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TABLE 4 Models of predictors of mortality.

Models Risk score Odds ratio (95% CI) P-value Hosmer and Lemeshow test

X2 df P-value

Model 1 SEIMC_score 1.03 (0.85–1.25) 0.74 6.73 8 0.57

Model 2 IRS-NLR score 1.31 (1.06–1.62) 0.01 5.84 8 0.67

Model 3 Inflammatory_score 1.39 (0.90–2.13) 0.28 6.83 8 0.56

Model 4 Shang_severity_score 1.71 (1.09–2.69) 0.02 14.3 8 0.07

Model 5 VICE score 19.6 (3.06–126.0) 0.002 8.49 8 0.39

Model 1: age + sex + SpO2 at 24-h admission + C-reactive protein (CRP) + albumin + D-dimer + Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) score.
Model 2: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + IRS-NLR_score.
Model 3: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + inflammatory score.
Model 4: age + gender + SpO2 at 24-h admission + CRP + albumin + D-dimer + Shang_severity_score.
Model 5: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + VICE_score.

TABLE 5 Models of predictors of ventilation use.

Models Risk score Odds ratio (95% CI) P-value Hosmer and Lemeshow test

X2 df P-value

Model 1 SEIMC_score 0.98 (0.86–1.12) 0.77 4.89 8 0.77

Model 2 IRS-NLR_score 1.62 (1.33–1.99) <0.001 8.31 8 0.40

Model 3 Inflammatory_score 1.18 (0.88–1.58) 0.28 6.71 8 0.57

Model 4 Shang_severity_score 1.22 (0.90–1.66) 0.20 7.08 8 0.53

Model 5 VICE_score 84.9 (14.6–492.4) <0.001 6.25 8 0.62

Model 1: age + sex + SpO2 at 24-h admission + C-reactive protein (CRP) + albumin + D-dimer + Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) score.
Model 2: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + IRS-NLR_score.
Model 3: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + inflammatory score.
Model 4: age + gender + SpO2 at 24-h admission + CRP + albumin + D-dimer + Shang_severity_score.
Model 5: age + sex + SpO2 at 24-h admission + CRP + albumin + D-dimer + VICE.

the first episode, different approaches, treatment options, and patient
relocation can be arranged accordingly (43, 44). Patients who are
predicted to be less likely to worsen can be treated with a step-down
approach and at home without consuming medical resources (45).
Patients with a high risk of death or requiring mechanical ventilation
support should be admitted to the hospital ward or even the ICU.
Therefore, we can reduce the possibility of missed diagnosis of severe
COVID-19 and mortality (43).

The underlying reasons for the performance differences among
these severity scores could be multifactorial. Patient characteristics
(46), vaccination status (47), healthcare system (48), and the
variables included in each of the score all contribute to the
performance differences. Table 3 shows the different variables used
in each scoring systems. The variables could be categorized into
patient characteristics, symptoms/signs, laboratory data, and clinical
parameters, such as respiratory rate, SpO2/FiO2. Age was included
both in the SEIMC score and Shang COVID severity score which
were the better predictive scores of 30-day mortality. These finding
implied the importance of age in driving severity among hospitalized
COVID-19 patients (49). The good predictive scores for IMV in our
study were the COVID-IRS-NLR and VICE score, and the common
variables were lactic dehydrogenase (LDH) and SpO2/FiO2. Elevated
LDH was associated with poor outcome in COVID-19 patients
(50). SpO2/FiO2 may substitute for PaO2/FiO2 as a diagnostic and
prognostic marker in COVID-19 patients (51). The performance
differences do exist in different race/ethnicity and regions; external
validation is needed (52). Multi-center, cross-country studies to verify
the accuracy of these severity scores need to be conducted.

5. Limitations

This study had several limitations. First, it was conducted at a
single center, and the results may not be generalizable worldwide.
Second, the retrospective design with some missing values for several
important variables, such as body mass index (BMI) and statin use,
results in an inability to validate more scoring systems. Third, due
to the small number of cases in our cohort, it may not be significant
to identify new cut-off points in each score. Finally, our cohort was
composed of COVID-19 alpha variant patients and most of them
were unvaccinated. COVID-19 vaccination status is associated with
the severity of COVID-19 illness. The prediction ability of the five
risk scores for other variants or vaccinated populations is unknown.
Further well-designed prospective studies are needed to validate these
findings in the future.

6. Conclusion

The discriminative performance of the SEIMC score and Shang
COVID severity score were good for 30-day mortality in COVID-
19 hospitalized patients. For intubation prediction, the COVID-IRS-
NLR, and VICE score prediction rules showed the best performance.
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