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Background: Existing module-based di�erential co-expression methods identify

di�erences in gene-gene relationships across phenotype or exposure structures

by testing for consistent changes in transcription abundance. Current methods

only allow for assessment of co-expression variation across a singular, binary or

categorical exposure or phenotype, limiting the information that can be obtained

from these analyses.

Methods: Here, we propose a novel approach for detection of di�erential co-

expression that simultaneously accommodates multiple phenotypes or exposures

with binary, ordinal, or continuous data types.

Results: We report an application to two cohorts of asthmatic patientswith varying

levels of asthma control to identify associations between gene co-expression

and asthma control test scores. Results suggest that both expression levels and

covariances of ADORA3, ALOX15, and IDO1 are associated with asthma control.

Conclusion: ACDC is a flexible extension to existing methodology that can detect

di�erential co-expression across varying external variables.

KEYWORDS
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1. Introduction

Differential expression analysis has long been used to test for differences in

transcriptional dependencies across conditions, and may explain phenotypic variation in

a population. However, differential expression methods study each gene independent of

any other and therefore may not capture transcriptional differences due to changes in

gene-gene relationships. Differential co-expression methods test for differences in gene

covariances, and thus, such approachesmay illuminate regulatorymechanisms not identified

by differential expression analysis alone (1).

Module-based differential co-expression methods incorporate information about gene

connectivity, and assume that the genes within a module are correlated in the general

population. These approaches can have good statistical power due to a reduction in “noise”

(2), or unrelated variation of individual genes by collapsing related genes into a single

feature. Generally, these module-based methods can be distinguished from one another by,

(i) whether modules are defined by the user or the method, (ii) if differential co-expression

is detected within or between modules, and (iii) howmany conditions are assessed. Methods

may also detect differential co-expression for gene pairs across the phenotype of interest

and then apply post-hoc clustering methods to identify co-expressed modules. One highly-

cited method, CoXpress, determines differentially co-expressed modules given microarray

data (3). By cutting the trees determined by average-linkage hierarchical clustering at a
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user-defined threshold, genes are split into modules. Then, pairwise

correlation coefficients are used to created a distribution of

co-expression for each module under two conditions. If these

distributions are statistically significantly different from random

in one condition and not the other, the module is considered

differentially co-expressed.

While many methods exists for binary conditions and a

few for greater than two, we are unaware of any module-based

differential co-expression approaches designed to detect differences

across continuous conditions or multiple types of conditions

simultaneously. Here we describe a novel method, association

of covariance for detecting differential co-expression (ACDC), to

detect differential co-expression across multiple binary, ordinal,

or continuous phenotypes or exposures. We report an application

to gene expression measured in two independent cohorts of

asthmatics to determine whether genes in inflammatory pathways

are co-expressed across levels of asthma control.

2. Materials and methods

2.1. ACDC description

ACDC is designed to detect dependencies between gene-gene

co-expression (or connectivity) and a set of external features that

can be either exposures or responses. That is, ACDC is applied to

test for evidence of association between measures of co-expression

andmeasures of external features. Notably, the external features are

not constrained to be categorical, the typical requirement (2), but

could be continuous or ordinal.

The concept of covariance can be used to quantify the

dependence between two random variables and thus to quantify

gene-gene co-expression. It is possible for the covariance of

a pair of genes to depend on external features. For example,

suppose in a biological pathway, two genes tend to be co-

regulated and thus co-expressed, resulting in positive covariance.

A perturbation to the pathway could alter that relationship,

resulting in a change in co-expression and thus a change in

covariance. If candidate perturbagens and the expression of genes

in the pathway are measured, ACDC may be applied to detect

these types of effects simultaneously for the multiple genes and

perturbagens. Using a similar rationale, ACDC could be applied to

detect downstream results of pathway perturbations if the affected

phenotypes are measured.

Suppose all individuals have measurements for all M gene

expression features in the set, referred to here as a “module”, and

all P external features. Assume the vector of P external features are

distributed as multivariate normal,

xxx = (x1, x2, ..., xP)
T ∼ N (µx,6x) (1)

with xp representing each external feature. Though we describe

xxx as multivariate normal here, we can relax this assumption in

practice and allow other distributions and variable types, as in a

design matrix.

Suppose the M gene expression features are also distributed as

multivariate normal with the covariance matrix depending on xxx,

ggg =
(

g1, g2, ..., gM
)T

∼ N
(

µg ,6g |xxx
)

(2)

where gj denotes the expression of gene j. The covariance matrix

can be represented by,

(3)

The off-diagonal elements of 6g can be considered measures

of co-expression, and (for given values of xxx) estimated in the

conventional way,

σ̂j,k =
1

N − 1
6s

(

gs,j − ḡj
) (

gs,k − ḡk
)

. (4)

Note that this is essentially an average over individuals. Letting

s denote an individual, each contribution is,

σ̂j,k =
(

gs,j − ḡj
) (

gs,k − ḡk
)

(5)

These individual components have approximately the same

expectation as the scaled sum, therefore they can also be described

as estimators for σj,k. We leverage this property to test for

dependencies between the covariances and the external features.

We can denote the co-expression profile for a given module as,

CCC =
(

σ1,2, ..., σj,k, ...σ(M−1),M

)

; |CCC| =

(

M

2

)

= G. (6)

We are interested in dependencies that may exist between the

external features, xxx, and the gene-pair covariances, the off diagonals

of 6g . If we have a single external feature or a single pair of genes,

conventional general linear modeling (GLM) approaches could be

used to relate xxx to CCC. For multiple gene pairs and external features,

CCA can be applied, or sparse CCA for high dimensional settings.

CCA finds min [G, P] linear combinations, aaa ∈ R
P,bbb ∈ R

G, of CCC

and xxx, respectively, that maximize the correlation,

(

aaa′1,bbb
′
1

)

= argmax corr
(

aaaT1 xxx,bbb
T
1CCC

)

; ρ1 = corr
(

aaaT1 xxx,bbb
T
1CCC

)

, (7)

for example, for the first pair of canonical variables. Note that CCA

can be applied even if G and/or P is equal to one (4). Wilks–

Lambda can be used to conduct a joint hypothesis test of whether

the correlation coefficients found by CCA are significantly different

from zero,

H0 : ρi = 0, for all 1 ≤ i ≤ min [G, P]

HA : ρi 6= 0, for some 1 ≤ i ≤ min [G, P].
(8)

A rejected test implies dependent co-expression, i.e., that there

are linear combinations of gene-gene covariances associated with

linear combinations of external features.

False discovery rates (FDR) can be computed using the

Benjamini–Hochberg (BH) (5) method when multiple modules

are tested and parametric assumptions apply. If severe departures

from the assumed distributions may be present, permutation-

based approaches such as the Millstein and Volfson (MV) FDR (6)

method can be used.

and is also available from the CRAN repository, https://cran.r-

project.org/web/packages/modACDC/index.html
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TABLE 1 Patient demographics for ABRIDGE and CAMP cohorts.

ABRIDGE
(n = 245)

CAMP
(n = 604)

Age (years), mean± sd 22.02± 5.22 20.91± 2.22

Age at asthma diagnosis (years), mean± sd 4.96± 3.87 3.03± 2.38

Sex, male (%) 121 (49.39) 376 (62.25)

Race

European 34 413

Hispanic/Latino 177 59

Black/African American 0 90

American Indian or Alaska Native 1 4

East/Southeast Asian 0 5

Uncertain or other 33 33

Data collection site

CAMP 0 604

Children’s Health Study 107 0

Mexico City Childhood Asthma Study 138 0

2.2. Datasets

2.2.1. Asthma BRIDGE
The Asthma Biorepository for Integrative Genomic

Exploration (ABRIDGE) aimed to bring together data from

over 2,700 participants in ongoing (at the time) asthma studies (7).

Patients were recruited from six cohorts of the EVE Consortium,

a group of 11 academic sites who did genome-wide association

studies of asthma (8), and extensive phenotype and genomics data

are publicly available.

The discovery dataset includes gene expression in whole blood

from 245 patients with doctor-diagnosed asthma from ABRIDGE

(Table 1), profiled using the Illumina HumanHT-12 v4 Expression

array. Six-month asthma control test (ACT) scores were calculated

from questionnaire responses about wheezing with and without

exercise, patient waking due to wheezing, and the need for

Albuterol in the last 6 months (range: [4,20]), where higher scores

indicate suboptimal control (Figure 1A).

The gene expression profile data were normalized via a log2-

transformation and quantile-normalization. Duplicate probes were

condensed using the largest median absolute deviation, leaving only

probes with unique targets. The analysis includes 623 probes with

targets annotated for inflammatory response in Gene Ontology.

2.2.2. CAMP
The Childhood Asthma Management Program (CAMP) was

a randomized, placebo-controlled clinical trial started in the early

1990s for children with mild to moderate asthma. One thousand

and forty-one children were enrolled between 1993 and 1995 at

eight clinical centers, and extensive baseline data was collected and

is publicly available (GEO accession number GSE22324) (9).

Results from the initial analysis were followed up in an

independent dataset that included whole blood gene expression

from 604 asthmatics, primarily young adults who were enrolled

in CAMP as children (Table 1), profiled using the HumanRef8

v2 BeadChip array. Seven-day ACT scores were calculated using

baseline questionnaire responses about rescue and preventative

bronchodilator use, activity limits, and frequency of waking due

to wheezing in the past 7 days (range: [0,28]), where higher scores

indicate suboptimal control (Figure 1B). The same data processing

normalization steps were taken as in Asthma BRIDGE.

2.3. ABRIDGE and CAMP data analysis

To identify modules of correlated genes, we applied the

Partition data reduction method (10, 11), an agglomerative

approach that requires the user to specify an acceptable proportion

of information loss when collapsing all features to a single measure

such as the mean. Selection of the information loss threshold

was guided by the aim to maximize information explained in

the ACT score while minimizing noise. Further explanation

is provided in the Supplementary material (12). We used an

information loss constraint of 0.35 which corresponds to a

minimum of 65% information from the non-reduced data captured

by each new feature, as assessed by the intraclass correlation

coefficient (ICC). This reduction threshold resulted in roughly

50% reduction in features when compared to the full dataset

(Supplementary Figure 1).

In analyses of individual genes within modules of interest,

gene-ACT score relationships were modeled using ordinal logistic

regression, adjusting for patient age, race, sex, data collection

site, and the first three principal components (PCs), which may

capture global dependencies due to cell-type composition and

technical artifacts, of each gene expression data set. Associations

were identified at the 0.05 FDR level.

To clarify the novel attributes of ACDC, a comparative analysis

was conducted in the ABRIDGE cohort using CoXpress. The ACT

score was dichotomized at the median value to indicate better vs.

worse asthma control to conform to the coXpress requirement

of a binary phenotype. The Pearson correlation coefficient was

used as the similarity measure, and for module identification the

dendrogram was cut at a height of 0.35 for consistency with the

Partition approach.

3. Results

3.1. ACDC in ABRIDGE

ACDC was performed on 65 modules identified by Partition

in the ABRIDGE dataset. The results for the top five modules

based on BH FDR can be found in Table 2. Evidence suggestive of

differential co-expression as determined by CCA Wilks–Lambda

p ≤ 0.05 was found for two modules including genes NOD-like

Receptor Family Pyrin Domain Containing 12 (NLRP12), Meteorin

Like, Glial Cell Differentiation Regulator (METRNL), and Ghrelin

And Obestatin Prepropeptide (GHRL) in module A (BH FDR =

0.0737), and Adenosine A3 Receptor (ADORA3), Arachidonate

15-Lipoxygenase (ALOX15), and Indoleamine 2,3-Dioxygenase 1

(IDO1) in module B (BH FDR = 0.1569). We also computed
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FIGURE 1

(A) The distribution of 6-month ACT scores in ABRIDGE Whole Blood gene expression, with scores being calculated with information about

wheezing with and without exercise, patient waking due to wheezing, and the need for rescue medications in the last 6 months. (B) The distribution

of 7-day ACT scores in CAMP Whole Blood gene expression, with scores being calculated with information about the need for rescue and

preventative medications, activity limits, and patient waking due to wheezing in the past 7 days.

the non-parametric, permutation based FDR estimate Millstein–

Volfson (MV) to account for departures from the normality

assumption by the ACT variable, which is ordinal. However, the

results of the MV FDR test are in approximate agreement with the

BH FDR results, yielding two modules with evidence of differential

co-expression [(Supplementary Figure 2), FDR = 0.0554, 95% CI:

(0.0054, 0.5742)].

To further explore the relationship between co-expression of

genes in modules A and B and asthma control, Kruskal–Wallis

tests were performed to determine whether covariance measures

for all possible pairs of these genes differ across levels of the ACT

score components. Eight of the total 24 tests resulted in p-values

less than 0.05, with the top six coming from module B. The most

significant test involved the co-expression of IDO1 and ADORA3
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TABLE 2 Results of CCA analysis between gene-gene covariances and ACT score components for ABRIDGE and CAMP cohorts.

ABRIDGE CAMP

Module Genes CCA correlation
coe�cients

CCA
p-value

BH FDR
q-value

CCA correlation
coe�cients

CCA
p-value

A NLRP12,METRNL, GHRL 0.3021, 0.1957, 0.0276 0.0012 0.0737 0.1061, 0.0624, 0.0147 0.6823

B ALOX15, IDO1, ADORA3 0.2863, 0.1451, 0.1063 0.0040 0.1569 0.1574, 0.0823, 0.0761 0.0315

C IL5RA, PMP22 0.1860 0.0753 0.9999 0.1595 0.0038

D IL17RB, IL6 0.1740 0.1157 0.9999 0.1303 0.0361

E IL16, NLRC3, SLAMF1 0.2310, 0.1387, 0.0142 0.1195 0.9999 0.0556, 0.0534, 0.0106 0.9893

The top five modules in ABRIDGE out of the 65 are shown for brevity, and the analysis was repeated in the CAMP cohort for these five modules.

FIGURE 2

Violin plots for the most statistically significant gene-gene covariance measures (Equation 5) and 6-month ACT score components relationships for

the ABRIDGE cohort, where each dot represents values for one patient. Kruskal–Wallis was used to test for global di�erences, and Wilcoxon

signed-rank was used to test for pairwise di�erences. (A) IDO1 and ADORA3 covariance in 6-month frequency of waking from wheezing; (B) ALOX15

and ADORA3 covariance in 6-month Albuterol use; (C) ALOX15 and ADORA3 covariance in 6-month frequency of wheezing with exercising; (D)

ALOX15 and ADORA3 covariance in 6-month frequency of waking from wheezing.

and the frequency of waking from wheezing in the past 6 months (p

= 0.0021; Figure 2).

3.2. ACDC in CAMP

We performed ACDC using data from CAMP in an attempt

to replicate results observed for the top five modules identified

in ABRIDGE. We found evidence of differential co-expression for

module B (p = 0.0315) but not module A (p = 0.6823; Table 2).

Also, evidence of differential co-expression was observed for gene

pairs in modules C and D, which were not significant in ABRIDGE,

Interleukin 5 Receptor Subunit Alpha (IL5RA) and Peripheral

Myelin Protein 22 (PMP22) in module C, and Interleukin 17

Receptor B (IL17RB) and Interleukin 6 (IL6) in module D. Note

that these results have not been adjusted for multiple testing.

Kruskal–Wallis tests were also performed for the same

gene-pair covariances tested in ABRIDGE. Of the 24 tests
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FIGURE 3

Violin plots for the most statistically significant gene-gene covariance measures (Equation 5) and 7-day ACT score components relationships for the

CAMP cohort, where each dot represents values for one patient. Kruskal–Wallis was used to test for global di�erences, and Wilcoxon signed-rank

was used to test for pairwise di�erences. (A) IDO1 and ADORA3 covariance in 7-day frequency of rescue bronchodilator use; (B) ALOX15 and

ADORA3 covariance in 7-day frequency of rescue bronchodilator use; (C) ALOX15 and IDO1 covariance in 7-day activity limit.

performed, there were three with p-values less than 0.05,

all from module B. The most significant test compared the

co-expression of IDO1 and ADORA3 across levels of rescue

bronchodilator use in the past 7 days (p = 0.02) (Figure 3).

Additionally, we performed Kruskal–Wallis tests for all gene-pair

covariances and 7-day ACT components for the three modules

with CCA Wilks–Lambda p-values below 0.05. Of the 20 tests

performed, the same three pairs from module B showed evidence

of differential co-expression, but no others had p-values less

than 0.05.

3.3. Di�erential expression in ABRIDGE

Following the differential co-expression analysis, we

performed ordinal logistic regression for each of the

13 genes in the top five modules and found increased

risk of suboptimal acute asthma control for all genes in

modules B and C, after adjusting for covariates (Table 3).

Higher expression of ADORA3, ALOX15, and IDO1

was associated with suboptimal 6-month ACT scores

(Figure 4).

3.4. Di�erential expression in CAMP

Adjusted ordinal logistic regressions were performed for the

same 13 genes as the ABRIDGE cohort (Section 3.3). In the CAMP

cohort, the regressions also showed highly statistically significant

associations for all genes in modules B and C, and non-significant

associations for modules A and D (Table 3). Unlike the results

from ABRIDGE, a significant protective effect was seen for NOD-

like Receptor Family CARD Domain Containing 3 (NLRC3) [OR:

0.3926, 95% CI: (0.1864, 0.8268)]. Associations between these genes

and 7-day ACT scores (Figure 5) also imply that increasing gene

expression is associated with suboptimal acute asthma control.

3.5. Methods comparison

The five most differentially co-expressed modules identified

by the CoXpress analysis can be seen in Table 4. As a rule of

thumb for identifying differentially co-expressed modules, the

coXpress authors suggest prg1 ≤ 0.05 and prg2 ≥ 0.05, which

implies correlations different than zero in one of the classes

but not the other. None of the ABRIDGE modules met this

threshold, and values of prg1 , prg2 ≤ 0.05 for all of the five top
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TABLE 3 Results of ordinal logistic regression models of genes in top five modules from CCA on ACT scores for ABRIDGE and CAMP cohorts.

ABRIDGE CAMP

Module Gene Odds ratio (95% CI) p-value BH FDR q-value Odds ratio (95% CI) p-value

A

NLRP12 1.3124 (0.7871, 2.1883) 0.2974 0.3634 1.2604 (0.7462, 2.1287) 0.3868

METRNL 1.3057 (0.6326, 2.695) 0.4707 0.4707 1.2314 (0.6809, 2.2272) 0.4911

GHRL 1.4324 (0.7231, 2.8375) 0.3028 0.3634 1.5659 (0.9256, 2.6491) 0.0945

B

ALOX15 2.3842 (1.4548, 3.9075) 0.0006 0.0017 2.4116 (1.7256, 3,3702) 2.54e−7

IDO1 1.5986 (1.0665, 2.3962) 0.0231 0.0462 2.7940 (2.0725, 3.7667) 1.57e−11

ADORA3 2.4457 (1.4882, 4.0192) 0.0004 0.0017 3.2442 (2.1922, 4.8010) 3.99e−9

C
IL5RA 2.6363 (1.3527, 5.138) 0.0044 0.0143 3.1781 (1.996, 5.060) 1.10e−6

PMP22 2.2509 (1.4236, 3.5591) 0.0005 0.0027 3.8533 (2.5154, 5.903) 5.69e−10

D
IL17RB 0.5847 (0.1951, 1.7522) 0.3379 0.4816 0.9385 (0.353, 2.495) 0.8987

IL6 0.9377 (0.253, 3.476) 0.9233 0.9233 0.5636 (0.1785, 1.780) 0.3284

E

IL16 0.7992 (0.451,1.4162) 0.4425 0.4816 1.0757 (0.6459, 1.7917) 0.7791

NLRC3 0.5522 (0.212, 1.4382) 0.2240 0.4160 0.3926 (0.1864, 0.8268) 0.0139

SLAMF1 0.5928 (0.2865, 1.2267) 0.1588 0.3440 0.9415 (0.4921, 1.8011) 0.8554

Models were adjusted for patient age, sex, race, data collection site, and the top three PCs.

FIGURE 4

Violin plots for comparing unadjusted (A) ADORA3, (B) ALOX15, and (C) IDO1 expression across 6-month ACT score levels in the ABRIDGE cohort.

modules indicate that the intra-module correlations are non-zero

for patients with both better and worse asthma control. We note

that genes ADORA3 and ALOX15 appear in module 1, the most

differentially co-expressed module.

4. Discussion

Here, we have described a novel approach to differential

co-expression analysis that accommodates categorical, ordinal,
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FIGURE 5

Violin plots for comparing unadjusted (A) ADORA3, (B) ALOX15, and (C) IDO1 expression across 7-day ACT score levels in the CAMP cohort.

or continuous exposures or outcomes. We suggest that co-

expression features can be included in a linear modeling framework

either as predictors or outcomes. To handle multivariate external

features, we introduce ACDC, for either exploratory analyses

or formal hypothesis testing. This strategy contrasts to most

existing methods that test for differences in co-expression across a

small number of classes. Another key difference is that identified

modules can be small or large, which is not possible in many

other methods. For example, DICER only accepts modules

with at least fifteen genes (13). Although Partition was applied

here to identify modules of correlated genes, other methods

could be used, such as weighted gene co-expression network

analysis (WGCNA) (14). Additionally, this framework can be

applied to other types of molecular data, such as proteomics

or metabolomics.

Application of the ACDC differential co-expression approach

and ordinal logistic regression analyses identified three genes,

ADORA3, ALOX15, and IDO1 whose covariances and expression

levels were associated with 6-month and 7-day ACT scores in the

ABRIDGE and CAMP cohorts, respectively.

Adenosine is a nucleoside which exhibits increased production

during periods of lung inflammation. Mediation is controlled

through adenosine receptors like ADORA3. Previously, studies

have shown that while single nucleotide polymorphisms (SNPs) of

ADORA3 loci are not associated with asthma (15, 16), ADORA3

expression is associated with immunoglobulin E levels in whole

blood samples of asthmatic patients (17) and is differentially

expressed when comparing patients with severe asthma to

controls (18).

ALOX15 has both anti-inflammatory and inflammatory effects

depending on its regulation and has been previously implicated

in the development of inflammatory diseases, including asthma.

A few studies have shown that ALOX15 can be found in airway

mucosa of asthmatic patients (19, 20), and another study found

evidence of differential expression of ALOX15 between controls

and asthmatics (21). Additionally, one study found that haplotypic

genetic variation at the locus for ALOX15 is associated with

asthma (22).

The best understood function of IDO1 is it’s role as an

immunoregulator in cancer, inhibiting the body’s ability to fight

diseased cells, but its role in autoimmune responses is less clear. A

mouse study showed that the entire indoleamine family promotes

allergic airway inflammation (23), and a human study found

evidence of differential expression of IDO1 between patients with

severe eosinophilic asthma, a more severe subtype of asthma

typically found in adults and categorized by high peripheral blood

concentration of eosinophils, and healthy controls (24).

Though all three genes have been previously identified as

differentially expressed in asthma, there are varying degrees of

understanding as to the biological roles that they play. To our

knowledge, there are no studies that identify any of these genes as

differentially co-expressed in asthma. This additional information

could help to fill knowledge gaps about how the genes regulate or

co-regulate asthma control.

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1118824
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Queen et al. 10.3389/fmed.2023.1118824

TABLE 4 Results of coXpress analysis in ABRIDGE whole blood gene expression dataset.

Module Genes t1 t2 prg1 prg2 corrg1 corrg2 Mean di�erence

1 CCR3, ADORA3, ALOX15 14.84 5.80 0.02 0.03 0.71 0.49 0.22

2 CCL5, NKG7, ADA 19.31 8.48 0.02 < 0.001 0.71 0.60 0.11

3 TCIRG1, ADAM8, ZC3H12A, TNFAIP8L2 31.82 11.07 < 0.001 < 0.001 0.68 0.58 0.10

4 CTNNBIP1, ABCD1, EPHB6 37.44 43.46 < 0.001 < 0.001 0.69 0.60 0.09

5 SC11A1, IL1RN, IL1B, ALOX5AP, ALOX5, TLR6, FPR2,

TLR8,MYD88, SIRPA

70.59 38.03 < 0.001 < 0.001 0.72 0.63 0.08

t1 and t2 are the observed t-statistics in the better and worse control patient subgroups respectively, prg1 and prg2 are the probability of randomness statistics for the same groups, corrg1 and

corrg2 are the mean pairwise correlation coefficients for the genes in the same groups and mean difference is the mean, pairwise difference between the correlation matrices for the groups.

A limitation of this analysis is the difficulty differentiating

cause and effect between gene expression, acute asthma control,

and medication use. Does gene expression affect response to

asthma exacerbations or is it determined primarily by asthma

control medications? The directionality of the relationship

is particularly muddled by the inclusion of medication

use in the calculation of ACT scores, which is standard

practice (25).

The number of covariance features grows much more quickly

than the number of genes in a module (or other gene set).

Thus, for large modules it may be useful to reduce the

dimensionality of the co-expression features or apply a feature

selection mechanism in a preliminary step. We are working

to implement two dimension reduction approaches: first, sparse

CCA using elastic net penalized regression and second, applying

Partition to the co-expression matrix. Additionally, the ability to

adjust for covariates in the CCA step would add to the utility of

the approach.

In the comparison analysis using coXpress, an existing and

highly-cited module-based differential co-expression method,

genes ADORA3 and ALOX15 were identified among the most

important, but no modules reached statistical significance.

To achieve statistical significance, coXpress requires that

correlations be undetectable in one condition and detectable in

the other. Kruskal–Wallis tests of the co-expression matrices

showed differences in co-expression across levels of ACT,

indicating that while co-expression is present at all levels of

ACT, it is nevertheless different across levels. This type of

relationship cannot be captured by coXpress. Also, to use

coXpress, the ACT score must be dichotomized, which results in

information loss.

Further study is needed to understand the larger network

that includes ADORA3, ALOX15, and IDO1. All three are part

of the Nakajima Eosinophil pathway, a group of the top 30

eosinophil-specific genes (26). This pathway is not well-studied and

while much has been published about the role of eosinophils in

asthma, few studies have looked at the role this pathway plays in

asthma exacerbations or symptomology. More study is needed to

determine what drives the associations with covariances observed

here. They could be related to differences in the expression

of eosinophil genes between eosinophilic and non-eosinophilic

asthmatics. Alternatively, within eosinophilic asthmatics, within

non-eosinophilic asthmatics or for all subtypes, covariances may be

associated with symptom control. That is, differences in expression

of eosinophil genes within some of these groups may be associated

with symptom control or the associations may be driven by

differences between groups.

In summary, we propose a novel strategy for differential

co-expression analysis that is a flexible extension to prior

methodology. In applications to ABRIDGE and CAMP cohorts,

we find evidence of both differential co-expression and differential

expression across ACT scores for ADORA3, ALOX15, and IDO1,

all genes which have been previously implicated in asthma. These

genes may be involved in the underlying regulatory mechanisms

behind acute asthma control, however, further study is needed.
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