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Cuproptosis is a novel form of cell death, mediated by protein lipid acylation 
and highly associated with mitochondrial metabolism, which is regulated in the 
cell. Ulcerative colitis (UC) is a chronic inflammatory bowel disease that recurs 
frequently, and its incidence is increasing worldwide every year. Currently, a 
growing number of studies have shown that cuproptosis-related genes (CRGs) 
play a crucial role in the development and progression of a variety of tumors. 
However, the regulatory role of CRGs in UC has not been fully elucidated. Firstly, 
we  identified differentially expressed genes in UC, Likewise, CRGs expression 
profiles and immunological profiles were evaluated. Using 75 UC samples, 
we typed UC based on the expression profiles of CRGs, followed by correlative 
immune cell infiltration analysis. Using the weighted gene co-expression network 
analysis (WGCNA) methodology, the cluster’s differentially expressed genes 
(DEGs) were produced. Then, the performances of extreme gradient boosting 
models (XGB), support vector machine models (SVM), random forest models 
(RF), and generalized linear models (GLM) were constructed and predicted. 
Finally, the effectiveness of the best machine learning model was evaluated 
using five external datasets, receiver operating characteristic curve (ROC), the 
area under the curve of ROC (AUC), a calibration curve, a nomogram, and a 
decision curve analysis (DCA). A total of 13 CRGs were identified as significantly 
different in UC and control samples. Two subtypes were identified in UC based 
on CRGs expression profiles. Immune cell infiltration analysis of subtypes showed 
significant differences between immune cells of different subtypes. WGCNA 
results showed a total of 8 modules with significant differences between subtypes, 
with the turquoise module being the most specific. The machine learning results 
showed satisfactory performance of the XGB model (AUC  =  0.981). Finally, the 
construction of the final 5-gene-based XGB model, validated by the calibration 
curve, nomogram, decision curve analysis, and five external datasets (GSE11223: 
AUC  =  0.987; GSE38713: AUC  =  0.815; GSE53306: AUC  =  0.946; GSE94648: 
AUC  =  0.809; GSE87466: AUC  =  0.981), also proved to predict subtypes of UC 
with accuracy. Our research presents a trustworthy model that can predict the 
likelihood of developing UC and methodically outlines the complex relationship 
between CRGs and UC.
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Introduction

UC is a chronic and recurrent inflammatory bowel disease that 
begins in the rectal mucosa (1). Active superficial inflammation may 
extend proximally, accumulate, and spread to part of or the entire 
colon (2). Most people with UC are between the ages of 30 and 40. 
Typical clinical symptoms are frequent purulent stools, abdominal 
pain and diarrhea, urinary urgency, fatigue, and weight loss (3, 4). UC 
can be caused by a variety of factors, such as genetic susceptibility and 
stimulation by environmental triggers, but the exact etiology and 
pathogenesis are not known (5, 6). There has been a steady rise in the 
number of UC patients worldwide in recent years, resulting in a 
serious socio-economic burden. Therefore, we  need to further 
investigate potential new therapeutic targets to predict the 
development of the disease.

Cuproptosis is a novel form of cell death, mediated by protein 
lipid acylation and highly associated with mitochondrial 
metabolism, which is regulated in the cell (7). Copper is both an 
essential cofactor and an essential micronutrient for all organisms, 
but in excess, it can lead to cell death (8). According to a prior 
study, the lipidated parts of the tricarboxylic acid (TCA) cycle 
serve as the direct sites of copper’s direct binding, which causes 
copper-dependent mortality (9). Excess copper leads to the 
aggregation of lipoylated dihydrolipoamide S-acetyltransferase 
(DLAT), which triggers proteotoxicity and ultimately cell death 
(10). This is a novel type of cell death, in contrast to prior studies 
that have described a variety of types of carefully controlled 
programmed cell death, including apoptosis, pyroptosis, 
necroptosis, and iron apoptosis (11). Currently, multiple studies 
have shown that CRGs play an important regulatory role in the 
development and progression of a variety of tumors (12). However, 
there are no bioinformatics-based studies such as machine learning 
to demonstrate the regulatory role of CRGs in UC. Therefore, in 
the present study, we intended to comprehensively investigate the 
relevant CRGs in UC and their clinical significance. We selected 19 
CRGs for this study based on the published papers (NFE2L2, 
NLRP3, ATP7B, ATP7A, SLC31A1, FDX1, LIAS, LIPT1, LIPT2, 
DLD, DLAT, PDHA1, PDHB, MTF1, GLS, CDKN2A, DBT, GCSH, 
and DLST) (13–17). Furthermore, we constructed a pathway of 
cuproptosis based on previously published and comprehensive in 
vivo and in vitro experiments (Figure  1) (8, 9). Our analysis 
highlights the importance of CRGs in the development of UC and 
hopefully will provide a useful contribution to subsequent 
UC studies.

In the present study, we  used the GSE107499 dataset to 
systematically investigate for the first time the expression differences 
and immune correlations of CRGs between normal and UC samples. 
Based on the expression of CRGs, we divided 75 UC samples into two 
clusters, and then we looked at the immune cell differences between 
the two clusters as well as the relationship between immune cells and 
CRGs. Subsequently, the most differentially expressed gene modules 
were chosen after the WGCNA algorithm had discovered particular 
DEGs, and based on cluster-specific DEGs, a richness of biological 
activities and pathways were discovered. Additionally, by contrasting 
various machine learning model methods, several machine learning 
models were constructed, and we selected the best predictive model 
for subsequent analysis. Finally, the accuracy of the prediction models 

was validated using nomograms, calibration curves, DCA, and five 
independent external datasets.

Materials

Data sources and processing

The Gene Expression Omnibus (GEO) database (18) is a 
sub-database of the National Center for Biotechnology Information 
(NCBI) and is used to store gene expression datasets. We downloaded 
six datasets from the GEO database, GSE107499 (Controls = 44, 
UC = 75), GSE11223 (Controls = 73, UC = 129), GSE38713 
(Controls = 13, UC = 30), GSE53306 (Controls = 12, UC = 28), 
GSE94648 (Controls = 22, UC = 25), and GSE87466 (Controls = 21, 
UC = 87) (19–23). The GSE107499 dataset was used for the analysis of 
this study. Five data sets (GSE11223, GSE38713, GSE53306, 
GSE94648, and GSE87466) were used for independent validation. The 
raw gene expression data from the six GEO datasets were analyzed 
and standardized using the robust multiarray average method.

Identification of DEGs

We used the GEO database’s GEO2R tool to screen and visualize 
differentially expressed genes using | log FC | ≥ 1.0 and adjusted p 
value <0.05 as screening criteria. The GEO2R function is implemented 
based on the “limma” R package. The “limma” R package is a 
generalized linear model-based differential expression screening 
method that can obtain DEGs between different comparison groups 
and controls (24). Specifically, we obtain the gene expression profile 
data set, remove the genes with an expression value greater than 50%, 
then use the “voom” function to transform the data, further using the 
“ImFit” function to perform multiple The data were then transformed 
using the “voom” function, and further multiple regression using the 
“ImFit” function was performed to further compute moderated 
t-statistics, moderated F-statistics, and log-odds of differential 
expression by empirical Bayes moderation of the standard errors 
toward a common value to finally obtain the significance of differences 
for each gene. The Metascape database (25) is a biological database 
that allows enrichment analysis online. The Metascape database was 
then used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analysis and visualization of the 
differentially expressed genes in UC. Then, the correlation analysis 
and identification of DEGs in the CRGs of the GSE107499 dataset 
were performed using the “corrplot” R package based on Spearman’s 
statistical method and the “limma” R package.

Evaluation of immune cell infiltration based 
on the CIBERSORT algorithm

CIBERSORT is an analytical tool for estimating gene expression 
profiles and using gene expression data to make relative estimates of 
the abundance of cell types in mixed cell populations. CIBERSORT is 
based on linear support vector regression (26). We  estimated the 
relative abundance of 22 immune cell types in each sample of 
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GSE107499 gene expression data using the CIBERSORT algorithm 
and the LM 22 feature matrix. For each sample, CIBERSORT 
calculates an inverse fold product p value using Monte Carlo sampling. 
Each sample’s 22 immune cell proportions added up to 1 in total. Only 
samples with a p-value of 0.05 or lower were regarded as precise 
immune cell fractions. The relationship between CRGs and immune 
cells linked with UC was next examined. Initially, using spearman 
statistical methods, correlation coefficients between the expression of 
CRGs and the relative fraction of immune cells were looked at. A p 
value less than 0.05 was then identified as a significant association 
using the Spearman correlation coefficient. At last, the “corrplot” R 
tool (version 0.92) was used to show the findings.

Unsupervised clustering of UC patients

Based on data from associated copper death gene expression 
profiles, unsupervised cluster analysis (27) was carried out. Using a 

k-means algorithm with 1,000 iterations, the 75 UC samples were 
divided into various clusters. We determined the optimal number of 
clusters based on a combination of cumulative distribution function 
(CDF) curves, consistency matrices, and consistency clustering scores 
>0.8 and selected the maximum number of subtypes (k = 9) for analysis. 
Principal component analysis (PCA) (28), one of the most widely used 
algorithms for dimensionality reduction of data, was subsequently 
performed on the two clusters after clustering. Finally, the clustered 
groups were analyzed for differences and correlations in the CRGs.

WGCNA and gene set variation analysis 
(GSVA) of clusters

With the aid of the analytical technique WGCNA (29), it is 
possible to analyze the gene expression profiles of several samples, 
classify genes with similar expression patterns, and look into the 
associations between certain traits or phenotypes and modules. Using 

FIGURE 1

Cuproptosis pathway. FDX1 plays a crucial role as a copper ion carrier in the induction of cell death and is involved in the regulation of protein 
lipoylation. Elevated levels of copper promote the aggregation and functional impairment of lipoylated proteins, leading to instability of iron–sulfur 
cluster proteins, protein toxicity stress, and ultimately cell death. Moreover, excessive copper can bind to lipoylated DLAT, triggering abnormal 
oligomerization of DLAT and the formation of DLAT foci. This process contributes to cellular protein toxicity stress, further exacerbating cell death.
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the optimal soft threshold, a weighted proximity matrix was created, 
following which a topological overlap matrix was created. A unique 
color is assigned to every module. The module signature genes are a 
representation of the overall gene expression profile in each module. 
The importance of modules demonstrates the association between 
modules and illness states. GSVA in order to clarify the variations in 
the collection of enriched genes between various CRGs clusters. By 
contrasting the GSVA scores between the various CRGs clusters, many 
expression pathways and biological processes were discovered. 
Subsequently, the investigation of immune cell infiltration was then 
repeated for several CRGs clusters.

Building machine learning predictive 
models

In recent years, more and more machine learning and deep 
learning methods have been widely used in the medical field with 
outstanding results. XGB, SVM, RF, GLM, and adaptive boosting 
(AdaBoost) are some of the most commonly used methods for 
machine learning, while artificial neural networks (ANN), 
multilayer perceptron (MLP), and fully neural network (FNN), 
often referred to simply as neural networks, are the foundation of 
deep learning. Machine learning favors the interpretability of the 
model, while deep learning is more concerned with the accuracy 
of the model. Machine learning is more applicable to tabular data 
with a relatively small number of variables, while deep learning 
methods are specifically designed for large data and large feature 
sets and are more applicable to images or other data with a large 
number of variables (30, 31). Both AdaBoost and XGB are built 
based on the boosting algorithm. AdaBoost locates the deficiencies 
of the model by boosting the weights of the error points, while 
XGB locates the deficiencies of the model by counting the 
gradient. Therefore, compared with AdaBoost, the XGB model 
can use more kinds of objective functions (32). In addition, the 
dataset selected for this study is from the GEO database, which 
has a small sample size. Therefore, four machine learning 
methods—XGB, SVM, RF, and GLM—are used for this 
experimental study. The four machine learning models XGB, 
SVM, RF, and GLM were built using the “caret” R package (version 
6.0.91) to find differentially expressed genes shared by the UC and 
turquoise modules. XGB is a supervised model that enables 
thorough comparisons of classification error and model 
complexity. It is built on a set of gradient-enhanced augmented 
trees (33). A binary classification model called SVM transfers the 
feature vector of an instance to a set of spatial points. The 
optimum separating hyperplane that maximizes the positive and 
negative sample intervals on the training set will be  found via 
SVM, as will the best partitioning hyperplane that can distinguish 
between two classes and maximize the interval (34). RF is an 
integrated machine learning technique that predicts classification 
or regression utilizing different independent decision trees by 
randomly selecting samples and attributes during node splitting 
(35). GLM, a development of the linear model, establishes the 
mathematical expectation of the response variable by linking a 
linear combination of predictor variables (36). The four machine 
learning models discussed above were interpreted using the 
“DALEX” package (version 2.4.0), which was also used to show 

the residual distribution and feature significance. The “pROC” R 
package (version 1.18.0) was used to visualize the ROC curve. In 
conclusion, the primary predictive genes associated with UC were 
found to be the top five significant variables, and the best machine 
learning models were found.

Nomogram model construction and 
independent validation analysis

To determine the prevalence of UC, a nomogram model was 
developed. Each predictor is given a score, and the “total score” of all 
predictors is calculated by adding the individual scores of the 
predictors mentioned above. Using calibration curves and DCA, the 
Nomogram model’s prediction accuracy was calculated. In addition, 
five datasets (GSE11223, GSE38713, GSE53306, GSE94648, and 
GSE87466) were used for independent validation analyses. The ROC 
curves for these datasets were constructed and visualized using SPSS 
25.0 for the prediction model, which was used to validate the accuracy 
of the prediction model in differentiating between non-UC and 
UC patients.

Results

Identification of DEGs and differential 
analysis of CRGs

Figure  2 displays the study’s flow chart. First, differential 
expression analysis on the GSE107499 dataset was conducted to 
identify 849 DEGs, comprising 309 up-regulated genes and 540 
down-regulated genes (Figure 3A). The top 30 up-regulated and 
down-regulated genes were shown separately (Figure 3B). DEGs 
were also analyzed for GO and KEGG enrichment, and the findings 
demonstrated that the genes with differential expression were 
primarily engaged in immune-related pathways, such as leukocyte 
migration, leukocyte chemotaxis, cell chemotaxis in GO, and the 
cytokine-cytokine receptor interaction pathway in KEGG 
(Figure 3C). To elucidate the role of CRGs in the development of 
UC, the expression profiles of 19 CRGs were systematically 
evaluated using the GSE107499 dataset (Figure 4A). A total of 13 
CRGs associated with UC were identified. In UC samples, the 
expression of NLRP3 and CDKN2A was significantly upregulated 
compared to normal samples. Conversely, the expression of 
NFE2L2, ATP7B, FDX1, LIAS, DLD, DLAT, PDHA1, PDHB, DBT, 
GCSH, and DLST was significantly decreased in UC samples. 
Differential analysis (Figure 4B) and correlation analysis (Figure 4C) 
were performed, followed by the visualization of chromosomal 
positions (Figure 4D).

Evaluation of immune cell infiltration based 
on the CIBERSORT algorithm

The CIBERSORT algorithm was used to elucidate whether 
immune system differences existed between the UC and non-UC 
groups and to visualize differences in the proportions of the 22 
infiltrating immune cell types, showing significant differences in B 
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cells memory, T cells CD4 memory activated and Mast cells 
activated in UC patients (Figures 5A,B). The correlation analysis of 
the 13 CRGs with 22 immune cells showed that ATP7B showed a 
strong positive correlation with Eosinophils and Plasma cells, and 
a strong negative correlation with B cells memory and Macrophages 
M1. Eosinophils, T cells CD4 memory resting, and plasma cells all 
had a substantial positive connection with FDX1, as did T cells CD4 
memory activated and T cells follicular helper (Figure 5C). These 
findings could imply that genes associated to cuproptosis control 
the infiltration of these immune cells, which in turn controls the 
development of UC.

Unsupervised clustering of UC patients

Seventy five UC samples were clustered using a trustworthy 
clustering technique based on the expression profiles of 19 CRGs in 
order to determine the CRGs expression patterns in UC samples. As 
soon as the k value was set to 2, the number of clusters was at its most 
stable (Figure 6A), and within a minimum range of 0.2–0.6 for the 
consensus indices, the CDF curve changed (Figure 6B). The difference 
between the two CDF curves is shown by the area under the CDF 
curve when k = 2–9 (Figure 6C). Additionally, only when k = 2 was the 
concordance score for each subtype larger than 0.85 (Figure 6D). In 

FIGURE 2

Flow chart.
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summary, we finally divided the 75 UC samples into two clusters, 
including cluster 1 (n = 40) and cluster 2 (n = 35). The results of a 
subsequent PCA analysis showed significant differences between these 
two clusters (Figure 6E). In addition, analysis of differences between 
the CRGs and the two clusters after clustering showed that there 
remained 11 CRGs (PDHA1, NLRP3, LIAS, ATP7B, FDX1, DLD, 
DLAT, NFE2L2, CDKN2A, DLST, and DBT) that were significantly 
different between the two clusters (Figures 7A,B).

Immune cell infiltration analysis and GSVA 
analysis after clustering

For cluster 1 and cluster 2, we  kept track of immune cell 
infiltration using the CIBERSORT algorithm. The findings 
demonstrated that plasma cells, CD4 memory resting T cells, and 
activated NK cells remained substantially different between the two 
clusters (Figures 8A,B). A GSVA analysis was then performed on 
both clusters. Functional enrichment results showed enhanced 
protein lysine 6 oxidase activity and negative regulation of 
extracellular matrix disassembly in cluster 1, while positive regulation 
of microtubule nucleation and carboxylic ester hydrolase activity 
were enhanced in cluster 2 (Figure  8C). In addition, pathway 
enrichment results showed that Glycosphingolipid biosynthesis, 
Glycosaminoglycan biosynthesis – chondroitin sulfate / dermatan 
sulfate and complement and coagulation cascades were enhanced in 
cluster 1, while Biosynthesis of unsaturated fatty acids, Pentose 
phosphate pathway and Arginine and proline metabolism were 
enhanced in cluster 2 (Figure 8D).

Analysis of WGCNA for cluster 1 and 
cluster 2

To locate key UC-associated gene modules, we built co-expression 
networks and modules for clusters 1 and 2 using the WGCNA 
algorithm. Co-expressed gene modules were discovered when the 
scale-free R2 was equal to 0.9 and the soft threshold was set at 16 
(Figure 9A). The dynamic cutting method produced eight different 
colored co-expression modules, and a heat map of the topological 
overlap matrix is also displayed (Figures 9B–D). These eight color 
modules’ genes were then sequentially used to examine the similarity 
and proximity of the co-expression of the module’s clinical 
characteristics (cluster 1 and cluster 2). The turquoise module, which 
contains 283 genes, exhibited the highest correlation with cluster 2 
(Figure  9E). Furthermore, significant relationships between the 
turquoise module genes and the chosen module genes were shown by 
correlation analysis (Figure 9F).

Machine learning predictive models

We identified a total of 65 intersecting genes for DEGs of UC and 
Cluster 2 (Figure 10A). To further identify these intersecting genes 
as having high diagnostic value, based on the 65 cluster-specific 
DEGs’ expression characteristics in the UC training cohort, 
we developed four well-established machine learning models: XGB, 
SVM, RF, and GLM. The “DALEX” package (version 2.4.0) was used 
to examine the four models and to show the residual distributions for 
each model in the test set. The machine learning models for XGB and 

FIGURE 3

Identification of DEGs in UC. (A) Volcano map of DEGs. (B) The top 30 up-regulated and down-regulated genes of UC. (C) Analysis of GO and KEGG.
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RF showed very little residuals (Figures 10B,C). Following that, based 
on root mean square error, the top 15 significant feature variables for 
each model were ranked (Figure 10D). In addition, on the basis of 
5-fold cross-validation, by developing ROC curves, in the test set, 
we evaluated the four machine learning algorithms’ discriminative 
performance. The AUC of XGB was 0.981, the AUC of RF was 0.967, 
the AUC of SVM was 0.965, and the AUC of GLM was 0.921 
(Figure 10E). In summary, the XGB model had the highest accuracy. 
The top  5 of these genes were PLXDC1, WAS, CTSK, PLCE1, 
and LIMD2.

Nomogram model construction and 
independent validation analysis

We constructed a column line plot to evaluate the predictive 
accuracy of the XGB model (Figure 11A), and the scores for each 
gene were summed to obtain a total score, which corresponded to the 
disease risk value. To assess the precision of the column plots, 
calibration curves and DCA curves were created, which showed high 
accuracy (Figures 11B,C). The AUC of the five independent validation 
datasets were GSE11223 (AUC = 0.987), GSE38713 (AUC = 0.815), 

GSE53306 (AUC = 0.946), GSE94648 (AUC = 0.809), and GSE87466 
(AUC = 0.981), suggesting high accuracy (Figures 11D–H).

Discussion

UC is characterized by recurrent episodes of chronic 
inflammation of the colon and places a great physical and financial 
burden on patients (37). The mechanisms of disease development are 
not yet clear (38). The main drugs used for treatment are mesalamine 
and steroids. A new type of cell death known as cuproptosis has 
recently been described. It is characterized by an excessive amount of 
intracellular copper accumulation, which causes an accumulation of 
mitochondrial lipid acylated proteins and the destabilization of Fe-S 
cluster proteins, which ultimately causes cell death (9, 39). However, 
its particular processes and its regulatory function in different 
disorders have not been fully analyzed. We thus made an effort to 
clarify the precise function of CRGs in UC samples and their 
immunological milieu in order to offer some theoretical support for 
relevant investigations to come. In addition, CRGs can be used to 
further predict the subtypes of UC, thus providing more accurate and 
individualized treatment.

FIGURE 4

Identification of dysregulated CRGs in UC. (A) Boxplots showed the expression of 19 CRGs between UC and controls. (B) Correlation analysis of 13 
differentially expressed CRGs. Blue and Red colors represent positive and negative correlations, respectively. (C) The correlation coefficients were 
marked with the area of the pie chart. (D) The location of 13 differentially expressed CRGs on chromosomes. ***p  <  0.001, **p  <  0.01, *p  <  0.05.

https://doi.org/10.3389/fmed.2023.1115500
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2023.1115500

Frontiers in Medicine 08 frontiersin.org

In this study, we have for the first time comprehensively analyzed 
the expression profiles of CRGs in normal and UC samples. The 
expression of CRGs varied dramatically between the two groups, 
pointing to a crucial role for CRGs in the development of UC. ATP7B 
encodes a copper-transporting ATPase, which maintains copper 
balance in the body (11). FDX1 participates in intracellular electron 
transfer processes, playing a vital role in various metabolic pathways, 
including iron–sulfur cluster biosynthesis and heme synthesis (40). 
Additionally, DLD and DLAT encode proteins involved in the 
pyruvate dehydrogenase complex (PDH), crucial for converting 
pyruvate to acetyl-CoA. These genes work in conjunction with 
PDHA1 and PDHB, which encode subunits of the PDH complex. 
Deficiencies in the PDH complex can result from mutations in these 
genes (41–43). Furthermore, DBT is responsible for encoding a 
protein component of the branched-chain alpha-keto acid 
dehydrogenase complex, while DLST encodes a protein involved in 
the alpha-ketoglutarate dehydrogenase complex, contributing to the 
tricarboxylic acid (TCA) cycle and energy metabolism (41). GCSH 
is associated with the glycine cleavage system (44). LIAS, on the 

other hand, encodes lipoic acid synthetase, a necessary cofactor for 
several enzyme complexes involved in energy metabolism (45). 
Additionally, NFE2L2 plays a crucial role in cellular defense against 
oxidative stress, while NLRP3 primarily functions in innate 
immunity and inflammatory responses. Activation of the NLRP3 
inflammasome can trigger the release of pro-inflammatory cytokines 
(46, 47). Finally, CDKN2A acts as a tumor suppressor gene, 
regulating cell cycle progression and participating in cellular 
senescence and apoptosis (48). Additionally, these studies have 
revealed that the identified CRGs play significant roles in diverse 
biological pathways beyond their association with cuproptosis. The 
examination of immune cells that infiltrated UC and the relationship 
between these cells and CRGs were then carried out. The findings 
demonstrated a substantial difference in immune cell abundance 
between normal and UC samples, with UC samples exhibiting 
considerably greater immune infiltration levels of memory B cells, T 
cells with CD4 memory activation, and activated mast cells than the 
normal group. In addition, we used WGCNA analysis to identify two 
subtype clusters based on the differential expression of CRGs in 75 

FIGURE 5

Immune cell infiltration analysis of UC and controls. (A) The relative abundances of 22 infiltrated immune cells between UC and controls. (B) Boxplots 
showed the differences in immune infiltrating between UC and controls. (C) Correlation analysis between 13 differentially expressed CRGs and 
infiltrated immune cells. ***p  <  0.001, **p  <  0.01, *p  <  0.05.
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UC samples. With enhanced immune fractions and relatively high 
levels of immune infiltration, the pathway of cluster 2 was mostly 

enriched in the intestinal immune network for the generation of 
immunoglobulin A.

FIGURE 6

Identification of cuproptosis-related molecular clusters in UC. (A) Consensus clustering matrix when k  =  2. (B) Representative cumulative distribution 
function (CDF) curves. (C) CDF delta area curves. (D) The score of consensus clustering. (E) PCA of two clusters.

FIGURE 7

Identification differentially expressed CRGs of two clusters. (A) Boxplots showed the expression of 13 CRGs between two clusters. (B) Expression 
patterns of 13 CRGs between two clusters were presented in the heatmap. ***p  <  0.001, **p  <  0.01, *p  <  0.05.
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A number of machine learning algorithms have been widely 
used in recent years to forecast the incidence of UC (49), and these 
researches have shown that multifactorial analysis is more accurate 
than univariate analysis, with lower error rates. In this research, 
four machine learning models (XGB, SVM, RF, and GLM) were 
created, and their prediction capabilities were examined in order to 
develop the best prediction model based on XGB, which presented 
the highest prediction accuracy (AUC = 0.981) among the four 
models, indicating that the XGB-based machine learning model has 
a satisfying outcome. Subsequently, we  selected the first five 
important variables (differentially expressed genes), namely 
PLXDC1, WAS, CTSK, PLCE1, and LIMD2, to construct an 
UC-XGB model based on these five genes. Currently, various 
studies have reported that XGB models are widely used and perform 
well in several disease areas, such as predicting bone metastases in 
patients with prostate cancer and lymph node metastases in patients 
with melanoma and osteosarcoma (50–52). The UC-XGB model 
constructed in this study can minimize error, maximize the 
performance of the model, and effectively prevent overfitting. 
Compared with the traditional linear model, the UC-XGB model, 
although increasing the computational effort, can get rid of the 
constraints imposed by the traditional linear model due to the fixed 
coefficients of each variable and can utilize the semantic information 
more flexibly and exploit the underlying patterns more fully. 
Therefore, the UC-XGB model constructed based on PLXDC1, 
WAS, CTSK, PLCE1, and LIMD2  in this study has excellent 
performance. The protein PLXDC1 (Plexin Domain Containing 1) 

was first discovered to be significantly expressed in the endothelium 
of human tumor vessels (53). PLXDC1 is significantly expressed in 
tumor endothelial cells and has been demonstrated to be involved 
in tumor angiogenesis (54, 55). Abnormalities in PLXDC1 have 
been reported to be  closely associated with tumor disease, and 
PLXDC1 has been demonstrated to be a biomarker for immune 
evasion and a poor prognosis in gastric cancer (56). The WAS gene 
product is a cytoplasmic protein that is characteristically expressed 
only in hematopoietic cells (57). Wiskott-Aldrich syndrome, a 
condition marked by immunological dysregulation, can be brought 
on by mutations in the WAS gene (58). Cathepsin K is a lysosomal 
cysteine protease that is involved in bone remodeling and resorption 
(59). It is a protein-coding gene. This gene is closely linked to the 
emergence of a number of disorders in addition to being engaged 
in the regulation of the body’s normal physiological processes. 
CTSK has been found to be expressed in a variety of cells, such as 
heart, colon, small intestine and other tissues and osteoblasts, 
among others (60, 61). Phospholipase C Epsilon 1, also known as 
PLCE1, catalyzes the hydrolysis of the second messenger 
phosphatidylinositol 4,5-bisphosphate (PIP2) to produce two 
crucial second messengers that control the intracellular interactive 
signaling network (62, 63). In addition, PLCE1 regulates complex 
signaling pathways and affects the development of a variety of 
tumors (64). The protein-kinase ILK is activated by LIMD2 (LIM 
Domain Containing 2), which controls cell motility (65). LIM 
structural domains have been shown to be key molecules in various 
human cancers, and it has recently been established that LIMD2, a 

FIGURE 8

Immune cell infiltration analysis and GSVA analysis after clustering. (A) The relative abundances of 22 infiltrated immune cells between two clusters. 
(B) Boxplots showed the differences in immune infiltrating between two clusters. (C) Differences in biological functions between cluster 1 and cluster 2 
samples ranked by t-value of GSVA method. (D) Differences in hallmark pathway activities between cluster 1 and cluster 2 samples ranked by t-value of 
GSVA method. ***p  <  0.001, **p  <  0.01, *p  <  0.05.
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member of the LIMD family, is linked to the emergence and spread 
of human malignancies (66, 67). Furthermore, by focusing on 
miR-34a, LIMD2 promotes the growth and invasive migration of 
non-small cell lung cancer (68). At last, a reliable predictor for 
determining UC subtypes and pathological outcomes in UC 
patients is the five-gene-based XGB model.

There are also several limitations to the present study. First of all, 
there was no clinical or experimental evaluation to evaluate the 
expression levels of CRGs; instead, our current work was conducted 
based on a thorough bioinformatics analysis. Secondly, in order to 
clarify the reliability of CRGs and further investigate the potential 
relationship between CRGs and immunological responses, 
additional UC samples are required. Finally, the five genes 
mentioned above are relatively few in the relevant studies of UC, and 
their functions and values need further validation. Therefore, we will 
conduct comprehensive functional trials in the future to elucidate 

the complex mechanisms of action of the five CRGs and will recruit 
a wide range of clinical patients to further validate the clinical value 
of our CRGs.

Conclusion

In conclusion, we first identified CRGs and immune correlates 
with differential expression in normal and UC patient samples. Based 
on the expression of CRGs, UC patient samples were divided into two 
clusters and important immune-related differences between UC 
patients with different CRGs clusters were elucidated. Subsequently, 
the WGCNA algorithm was used to identify DEGs with enriched 
biological functions and pathways in both clusters. Finally, 
we constructed an XGB machine learning model based on five CRGs 
(PLXDC1, WAS, CTSK, PLCE1, and LIMD2). Nomograms, 

FIGURE 9

Co-expression network of differentially expressed genes between the two clusters. (A) The selection of soft threshold power. (B) Cluster tree 
dendrogram of co-expression modules. Different colors represent distinct co-expression modules. (C) Representative of clustering of module 
eigengenes. (D) Representative heatmap of the correlations among 11 modules. (E) Correlation analysis between module eigengenes and clinical 
status. Each row represents a module; each column represents a clinical status. (F) Scatter plot between module membership in turquoise module and 
the gene significance for cluster 2.
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calibration curves, DCA, and independent external datasets all 
validated the accuracy of the model. Our study reveals the function 
of CRGs in UC for the first time, and we  hope that the CRGs 
elucidated in this study can provide important inspiration for 
subsequent studies on the functional mechanisms of UC and guide 
clinicians to make more individualized and precise clinical 
treatment plans.
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FIGURE 10

Construction and evaluation of XGB, SVM, RF and GLM machine models. (A) Common differentially expressed genes. (B) Cumulative residual 
distribution of each machine learning model. (C) Boxplots showed the residuals of each machine learning model. Red dot represented the root mean 
square of residuals. (D) The important features in XGB, SVM, RF and GLM machine models. (E) ROC analysis of four machine learning models based on 
5-fold cross-validation in the testing cohort.
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FIGURE 11

Validation of the 5-gene-based XGB model. (A) Construction of a nomogram. (B,C) Construction of calibration curve (B) and DCA (C) for assessing the 
predictive efficiency of the nomogram model. (D–H) ROC analysis of the 5-gene-based XGB model based on 5-fold cross-validation in GSE11223 (D), 
GSE38713 (E), GSE53306 (F), GSE94648 (G), and GSE87466 (H).
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