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Treatment with a sodium glucose cotransporter 2 (SGLT2) inhibitor in patients

with chronic kidney disease reduces the renal risk independent of changes in

blood glucose concentrations and blood pressure. However, the precise mechanism

responsible for this SGLT2 inhibitor-induced renoprotective effect is unclear.

We have previously shown that SGLT2 inhibitors induce antihypertensive effects

with decreased sympathetic nerve activity, which is associated with transient

natriuresis. Furthermore, treatment with an SGLT2 inhibitor improves renal ischemia

by producing vascular endothelial growth factor-a in the renal tubules. Other

studies have suggested that ketone body production, changes in glomerular

hemodynamics, and intrarenal metabolic changes and a reduction in oxidative

stress due to decreased tubulointerstitial glucose levels may also be involved in

the renoprotective effects of SGLT2 inhibitors. In this review, we summarize the

mechanism responsible for the SGLT2 inhibitor-induced renoprotective effects,

including our recent hypothesis regarding an “aestivation-like response,” which is

a biological defense response to starvation.
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1. Introduction

Sodium glucose cotransporter 2 (SGLT2) is primary expressed in the S1 and S2 segments
of the proximal tubules. Therefore, SGLT2 inhibitors suppress glucose reabsorption at the
proximal tubules and induce glucosuria. As a result, a reduction in blood sugar concentrations
is accompanied by caloric loss (1, 2). However, recent large-scale, clinical trials have shown that
treatment with SGLT2 inhibitors have improved renal outcome not only in patients with diabetic
kidney disease (DKD), but also in patients with chronic kidney disease (CKD) without diabetes
(3–5). Although complex factors may be involved in the SGLT2 inhibitor-induced renoprotective
effects, the precise mechanism involved is unclear.

SGLT2 is a glucose transporter that reabsorbs glucose and sodium ions together in a 1:1 ratio
in the S1 and S2 segments of the proximal tubule (1). Therefore, SGLT2 inhibitors should block
the reabsorption of glucose and sodium ions and increase their concentration in the tubular
lumen at this site. However, other glucose transporters and sodium channels are located at distal
sites, which may buffer the effects of an SGLT2 inhibitor to some extent. Approximately 90%
of the glucose filtered by the glomerulus is thought to be reabsorbed by SGLT2 expressed at
the S1 and S2 segments of the proximal tubule, whereas the remaining 10% is reabsorbed by
SGLT1 expressed at the distal S3 segment of the proximal tubule (1). Therefore, even when
SGLT2 is completely inhibited by SGLT2 inhibitors, a certain amount of increased glucose in
the tubular lumen due to inhibited reabsorption is reabsorbed by SGLT1 expressed in the more
distal segment. SGLT1 has a high reserve capacity for glucose reabsorption and can reabsorb
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one glucose and two sodium ions together (1). Therefore, SGLT1
is assumed to reabsorb large amounts of sodium because of its
high glucose reabsorption reserve capacity. Consequently, although
an SGLT2 inhibitor is a simple agent that inhibits SGLT2 in the
proximal tubular S1 and S2 segments, it may considerably alter the
environment within the kidney. In this review article, we briefly
discuss our hypotheses regarding the possible mechanism of SGLT2
inhibitor-induced renoprotective effects.

2. SGLT2 inhibitor-induced systemic
changes and their renoprotective
effects

2.1. Hypoglycemic effect

SGLT2 inhibitors were developed as hypoglycemic agents to
control blood glucose concentrations in patients with diabetes. In
patients with DKD, lowering blood glucose concentrations elicits
a beneficial effect on renal injury. Several studies have shown that
high glucose concentrations cause oxidative stress in the kidney,
which induces renal tissue injury (6). Obesity also causes metabolic
abnormalities in the kidney, which may be ameliorated by caloric
loss with an SGLT2 inhibitor. Tanaka et al. (7) showed that
the administration of an SGLT2 inhibitor or dietary restriction
improves kidney tissue metabolism and oxidative stress in obese type
2 diabetic mice.

Ketone bodies are produced in the body as energy when
blood glucose concentrations are lowered owing to caloric loss (8).
Tomita et al. (9) showed that ketone bodies produced by SGLT2
inhibitor administration led to a protective effect on glomerular
and tubular injury in obese diabetic mice. However, caloric loss
promotes gluconeogenesis in the kidney. To the best of our
knowledge, a specific effect of gluconeogenesis on renal injury has
not yet been clarified.

2.2. Blood pressure reduction

In hypertensive patients with CKD, adequate blood pressure
control is important to attenuate the progression of renal dysfunction
(10). SGLT2 inhibitors have been clinically shown to have an

TABLE 1 Similarities and differences between aestivation and
aestivation-like response for water conservation.

Aestivation Aestivation-like
response

Fasting Yes No

Water deprivation Yes No

Dormancy Yes No

Metabolic change for water
conservation (ex: osmolyte
production)

Yes Yes

Water conservation in
biological barriers (ex: skin,
kidney)

Yes Yes

Osmolyte accumulation Yes Yes

antihypertensive effect (11). We have also reported that, in the
Otsuka Long Evans Tokushima Fatty rat (animal model of obesity)
and in the SHR/NDmcr-cp animal model of metabolic syndrome,
treatment of an SGLT2 inhibitor normalized the dipping pattern
of blood pressure in addition to its antihypertensive effects (12,
13). The pharmacological mechanism for the antihypertensive
effect of SGLT2 inhibitors may be through weight loss and
hypoglycemia. However, most of the antihypertensive effects of
SGLT2 inhibitors do not correlate with changes in body weight or
blood glucose concentrations (11). Another possible mechanism is
the improvement of insulin resistance by SGLT2 inhibitors. Clinical
studies have reported that hyperinsulinemia may contribute to high
blood pressure by sodium increasing sodium reabsorption in the
kidney (14). However, in the above-mentioned animal studies with
Otsuka Long Evans Tokushima Fatty rats and the SHR/NDmcr-
cp model, an improvement in diurnal blood pressure variability by
SGLT2 inhibitors was accompanied by increased urinary sodium
excretion (12, 13, 15). These data suggest that the natriuretic effect of
SGLT2 inhibitors is also involved in lowering blood pressure. In fact,
our clearance studies in rats showed that acute administration of an
SGLT2 inhibitor induced a transient increase in urinary sodium ion
excretion, which was accompanied by an increase in urinary glucose
concentrations (16).

2.3. Aestivation-like response

SGLT2 inhibitors suppress the reabsorption of glucose and
sodium at the proximal tubule, and urinary glucose becomes an
osmolyte in the urine and induces osmotic diuresis (1). These
effects of SGLT2 inhibitors should be associated with glucose
loss and fluid loss. With regard to glucose loss due to SGLT2
inhibitors, the hypoglycemic effect is likely to continue because
of the sustained increase in urinary glucose concentrations during
treatment. However, in response to such caloric loss, hunger is
experienced, and energy is achieved through internal ketone body
production and glucogenesis (8). Therefore, many clinical reports
have shown that weight loss does not continue for a long period
of time and is limited to a loss of 2–3 kg in a few months (3–5).
However, a reduction in body fluid induced by an SGLT2 inhibitor
is accompanied by osmotic diuresis, which lasts only a few days
(17). Immediately after SGLT2 inhibitor administration, diuresis
(i.e., fluid loss) with increased urine volume and urinary sodium
excretion occurs for several days, but this diuretic effect usually
diminishes soon thereafter owing to the adaptive activation of the
renin–angiotensin and vasopressin systems (18). Therefore, although
SGLT2 inhibitors cause caloric and fluid loss, various compensatory
mechanisms in the body are triggered to counteract these losses.
As a result, the organism is maintained in a constant state, which
is thought to minimize the appearance of serious side effects of an
SGLT2 inhibitor.

Among the various compensatory mechanisms that occur
in vivo upon SGLT2 inhibitor administration, we have proposed the
possibility of an “aestivation-like response” as an adaptive response
(19, 20). Aestivation is observed in lungfish and amphibians, and it
retains body fluids by producing osmotic substances such as urea
(21). We recently found that part of this process is also maintained
in humans, which we named the “aestivation-like response” (21).
Interestingly, metabolomic analysis of metabolic changes in patients
with type 2 diabetes has shown that treatment with an SGLT2

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2023.1115413
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-10-1115413 March 4, 2023 Time: 14:41 # 3

Nishiyama and Kitada 10.3389/fmed.2023.1115413

inhibitor promotes a catabolic state, which is involved in the
urea cycle and branched differentiated amino acids (22). Our data
have also shown that, during an aestivation-like response, energy
shifts to the urea cycle and other processes occur, and sympathetic
nerves are inhibited accordingly (23). Similarly, several studies have
shown that SGLT2 inhibitor administration suppresses sympathetic
nerve activity (24, 25). These findings suggest that caloric and
body fluid losses due to SGLT2 inhibitor administration may
induce metabolic energy and water conservation. This conservation
is associated with an aestivation-like response, such as protein
catabolism and the suppression of sympathetic nerve activity (19,
20, 23). We speculate that the body’s latent biological defense
capacity is activated by an SGLT2 inhibitor, which may be partly
responsible for organ protection. Obviously, our hypothesis is still
speculative and requires further validation. The differences between
“aestivation” and “aestivation-like response” are briefly summarized
in Table 1.

3. SGLT2 inhibitor-induced changes
in renal hemodynamics and their
renoprotective effects

3.1. Changes in glomerular hemodynamics

Large clinical trials have indicated that an improvement in renal
outcome with SGLT2 inhibitors is accompanied by a reduction
in the glomerular filtration rate (GFR) and albuminuria (3–5).
These data suggest that a reduction in intraglomerular pressure
plays an important role in the renoprotective effect of SGLT2
inhibitors. Several investigators have suggested that a reduction
in intraglomerular pressure by SGLT2 inhibitors is induced by
the activation of a tubuloglomerular glomerular feedback (TGF)
mechanism (2, 26). When SGLT2 inhibitors are administered, a
large amount of solutes, such as glucose and sodium ions, reach
the macula densa at the distal tubules where TGF mechanism is
activated (27). Macula densa cells sense an increase in solutes in
the tubular lumen and release ATP and adenosine extracellularly.
This release causes the nearby glomerular afferent arterioles to
constrict, leading to a reduction in intraglomerular pressure (28).
Therefore, SGLT2 inhibitors may reduce intraglomerular pressure
(simultaneously lowering GFR), thereby improving glomerular
hyperfiltration and protecting the kidney. However, no reports
have shown a positive relationship between the incidence of
renal events and a reduction in the GFR or albuminuria. In
addition, animal studies in both mice and rats have shown
inconsistent data on the effects of SGLT2 inhibitors on the
GFR and albuminuria (15, 16). Another study reported that
SGLT2 inhibitors affect mesangial cellular contraction, which is
possibly involved in the regulation of the GFR by the TGF
mechanism (29).

Recently, Hare et al. (30) showed that, in a rat model of
type 1 diabetes, SGLT2 inhibitor treatment decreased tissue oxygen
saturation in the deep renal cortex and outer medulla. This
decrease was associated with a decreased GFR and increased blood
erythropoietin expression and erythrocyte reticulocyte count. In
contrast, no such changes were observed in other studies (31, 32).
Therefore, these data suggest that the effects of SGLT2 inhibitors in
promoting erythropoietin production in the kidney differ depending
on the pathogenesis of CKD.

3.2. Other hemodynamic changes

SGLT2 inhibitors increase urinary excretion of glucose and cause
osmotic diuresis because glucose is an osmolyte. Water is thought to
move from the renal interstitium into the urine, which is associated
with a reduction in the amount of renal interstitial water. These
effects of SGLT2 inhibitors have been suggested to improve renal
congestion (33, 34). Preliminary studies by Hirose et al. (34) showed
that treatment with SGLT2 inhibitors improved renal congestion in
a model of renal venous coarctation. We also showed that, in a
mouse model of renal fibrosis after ischemia–reperfusion, an SGLT2
inhibitor markedly improved renal congestion via increased tubular
vascular endothelial growth factor-a expression (35). Therefore,
SGLT2 inhibitors may improve hemodynamics in perivascular vessels
and in the glomeruli. More detailed studies on this possibility are
expected in the future.

4. SGLT2 inhibitor-induced reduction
in renal tubulointerstitial glucose
concentrations and its renoprotective
effects

As mentioned above, SGLT2 is expressed primarily in the S1
and S2 segments of the proximal tubules, which reabsorb glucose
and sodium in a 1:1 ratio. Therefore, SGLT2 inhibitors may reduce
glucose concentrations in the tubular cells and interstitial space
in this area. However, a detailed study showed that, in normal
mice, even when glucose reabsorption was inhibited by an SGLT2
inhibitor, glucose concentrations in the S1 segment proximal tubular
cells remained relatively constant because glucose flowed in from
the interstitial side via glucose transporter type 2 (GLUT2) (35,
36). Interestingly, this compensatory response does not work well
in damaged kidneys because GLUT2 expression and function are
impaired. As a result, glucose concentrations in proximal tubular cells
at the S1 and S2 segments are considerably reduced by treatment
with an SGLT2 inhibitor (35). Therefore, in the pathogenesis of CKD,
an SGLT2 inhibitor may reduce glucose concentrations in proximal
tubular cells and the interstitial space, at least near the S1 and S2
segments, which elicit various effects on tubulointerstitial function.
A growing body of experimental evidence has shown that, in the
proximal tubular S1 and S2 segments, SGLT2 inhibitors suppress
glucose-induced tubular cell epithelial-mesenchymal transition (37),
oxidative stress (6, 7), and aging (38). On the other hand, in the
distal proximal tubular S3 segment, where SGLT2 is not expressed
but SGLT1 is abundant instead (1), SGLT2 inhibitors may increase
intracellular glucose concentrations. However, these effects of SGLT2
inhibitors have not been studied in detail.

The effects of an SGLT2 inhibitor have been studied in animal
models of polycystic kidney disease (PKD) in which lesions occur
further downstream in the collecting ducts (39, 40). In PKD Han:
SPRD rats, the administration of an SGLT2 inhibitor did not
change cyst size, while the GFR was increased and albuminuria
was attenuated (40). However, in PKD PCK rats, treatment with
an SGLT2 inhibitor worsened albuminuria and the cyst size (39).
These experimental data suggest that SGLT2 inhibitor administration
is not recommended in patients with PKD. Thus, SGLT2 inhibitor
administration may greatly alter the intrarenal environment not only
at the proximal tubular S1 and S2 segments, but also at the distal
nephron, and careful observation is required in the future.
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5. Discussion

SGLT2 inhibitors have attracted attention as agents that improve
the prognosis of CKD. This review outlines the currently proposed
mechanisms by which SGLT2 inhibitors elicit renoprotective effects.
Further determination of the mechanism responsible for SGLT2
inhibitor-induced renoprotective effects will likely lead to the
development of new drugs for patients with CKD. Several SGLT2
inhibitors are currently available, but only a limited number of
them have proven renoprotective effects. However, based on their
respective drug profiles, it is possible that all SGLT2 inhibitors to have
similar renoprotective effects.
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