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Purpose: The aim of this study was to prospectively quantify the level of 
agreement among the deep learning system, non-physician graders, and general 
ophthalmologists with different levels of clinical experience in detecting referable 
diabetic retinopathy, age-related macular degeneration, and glaucomatous optic 
neuropathy.

Methods: Deep learning systems for diabetic retinopathy, age-related macular 
degeneration, and glaucomatous optic neuropathy classification, with accuracy 
proven through internal and external validation, were established using 210,473 
fundus photographs. Five trained non-physician graders and 47 general 
ophthalmologists from China were chosen randomly and included in the 
analysis. A test set of 300 fundus photographs were randomly identified from 
an independent dataset of 42,388 gradable images. The grading outcomes of 
five retinal and five glaucoma specialists were used as the reference standard 
that was considered achieved when ≥50% of gradings were consistent among 
the included specialists. The area under receiver operator characteristic curve 
of different groups in relation to the reference standard was used to compare 
agreement for referable diabetic retinopathy, age-related macular degeneration, 
and glaucomatous optic neuropathy.

Results: The test set included 45 images (15.0%) with referable diabetic retinopathy, 
46 (15.3%) with age-related macular degeneration, 46 (15.3%) with glaucomatous 
optic neuropathy, and 163 (55.4%) without these diseases. The area under receiver 
operator characteristic curve for non-physician graders, ophthalmologists 
with 3–5 years of clinical practice, ophthalmologists with 5–10 years of clinical 
practice, ophthalmologists with >10 years of clinical practice, and the deep 
learning system for referable diabetic retinopathy were 0.984, 0.964, 0.965, 
0.954, and 0.990 (p = 0.415), respectively. The results for referable age-related 
macular degeneration were 0.912, 0.933, 0.946, 0.958, and 0.945, respectively, 
(p = 0.145), and 0.675, 0.862, 0.894, 0.976, and 0.994 for referable glaucomatous 
optic neuropathy, respectively (p < 0.001).

Conclusion: The findings of this study suggest that the accuracy of this deep 
learning system is comparable to that of trained non-physician graders and 
general ophthalmologists for referable diabetic retinopathy and age-related 
macular degeneration, but the deep learning system performance is better than 
that of trained non-physician graders for the detection of referable glaucomatous 
optic neuropathy.
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Introduction

Diabetic retinopathy (DR), glaucomatous optic neuropathy 
(GON), and age-related macular degeneration (AMD) are responsible 
for more than 18% of visual impairment and blindness cases globally 
(1–6). While it is estimated that 80% of vision loss is avoidable 
through early detection and intervention (7–9), approximately 50% 
of cases remain undiagnosed (10, 11). High rates of undiagnosed 
disease can be attributed to these conditions being asymptomatic in 
their early stages, coupled with a disproportionately low availability 
of eye care services, particularly within developing countries and 
under-served populations (12).

Previous research has demonstrated that color fundus 
photography is an effective tool for the diagnosis of AMD, GON, 
and DR (13–15). Despite this, accurate interpretation of the optic 
nerve and retina is highly dependent on clinical experts, limiting 
the utility in low recourse settings. Deep learning represents an 
advancement of artificial neural networks that permits improved 
predictions from raw image data (16). Recently, several studies 
have investigated the application of deep learning algorithms for 
the automated classification of common ophthalmic disorders 
(17–21), with promising results for disease classification 
(sensitivity and specificity range = 80–95%). Thereby, these 
systems offer great promise to improve the accessibility and cost-
effectiveness of ocular disease screening in developing countries.

Despite this, most previous systems could only detect a single 
ocular disorder, thus would omit severe blinding eye diseases. In 
addition, previous studies have evaluated on retrospective 
datasets, and there is a paucity of data directly comparing the 
performance of deep learning system (DLS) capable to detect 
common blindness diseases to that of general ophthalmologists or 
non-physician graders. Given the fact that in real world screening 
programs, human graders or general ophthalmologists may also 
make mistakes, a robust study to directly compare DLS and 
general ophthalmologists or non-physician graders is of 
paramount importance for healthcare decision makers and 
patients to make informed decisions relating to the deployment of 
these systems.

Therefore, in the present study, we investigated the diagnostic 
agreement between ophthalmologists with varying levels of 
experience, non-physician graders, and validated deep learning 

models (22) for DR, GON, and AMD on an independent dataset 
in China.

Methods

This study was approved by the Institutional Review Board of the 
Zhongshan Ophthalmic Center, China (2017KYPJ049) and 
conducted in accordance with the Declaration of Helsinki. All 
graders and ophthalmologists have been informed that their data will 
be compared with the DLS. Informed consent for the use of fundus 
photographs was not required as images were acquired retrospectively 
and were fully anonymized.

Test set development, reference standard, 
and definitions

A total of 300 fundus photographs were randomly selected from 
a subset of 42,388 independent gradable images from the online 
LabelMe dataset (http://www.labelme.org, Guangzhou, China) (22, 
23). The LabelMe dataset includes images from 36 hospital 
ophthalmology departments, optometry clinics, and screening 
settings in China that include various kinds of eye diseases, such as 
DR, glaucoma, and AMD. The data will be available upon request. 
Retinal photographs were captured using a variety of common 
conventional desktop retinal cameras, including Topcon, Canon, 
Heidelberg, and Digital Retinography System. The LabelMe dataset 
was graded for DR, GON, and AMD by 21 ophthalmologists who 
previously achieved an unweighted kappa of ≥0.70 (substantial) on a 
test set of images. Images were randomly assigned to a single 
ophthalmologist for grading and were returned to the pooled dataset 
until three consistent grading outcomes were achieved. Once an 
image was given a reference standard label it was removed from the 
grading dataset. This process has been described in detail elsewhere 
(22, 23).

Stratified random sampling was used to select 50 images of each 
disease category and an additional 150 images classified as normal or 
a disease other than DR, AMD, and GON. Poor quality images 
(defined as ≥50% of the fundus photograph area obscured) were 
excluded. Images that were included in the training and internal 
validation datasets of the deep learning models were not eligible for 
inclusion. Following the selection of images, experienced retinal 
(n = 5) specialists independently labeled all 300 images to establish a 
reference standard for DR and AMD. Similarly, glaucoma specialists 
(n = 5) independently graded all images to determine the GON 
reference standard. Specialists were blinded to any previous medical 
history or retinal diagnosis for the included images. Once all images 
were graded, they were converted to a two-level classification for each 
disease: non-referable and referable. Each image was only assigned a 

Abbreviations: DLS, Deep learning systems; DR, Diabetic retinopathy; AMD, Age 

related macular degeneration; GON, Glaucomatous optic neuropathy; AUC, Area 

under receiver operator characteristic curve; GONE, Glaucomatous optic 

neuropathy evaluation; VCDR, Vertical cup to disc ratio; RNFL, Retinal nerve fiber 

layer; NHS, English national health screening; DESP, Diabetic eye screening 

program; DME, Diabetic macular edema.
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conclusive label if more than 50% of the specialists reported a 
consistent grading outcome.

A website1 was developed to allow human graders to log in and 
interpret images. Diabetic retinopathy severity was classified as none, 
mild non-proliferative DR (NPDR), moderate NPDR, severe NPDR, 
and proliferative DR using the International Clinical Diabetic 
Retinopathy scale (24). Diabetic macular edema (DME) was defined 
as any hard exudates within one-disk diameter of the fovea or an area 
of hard exudates in the macular area at least 50% of the disk area (25). 
Referable DR was defined as moderate NPDR or worse with or 
without the presence of DME. The severity of AMD was graded 
according to the clinical classification of AMD, which has been 
described elsewhere (26). For the purpose of this study, referable 
AMD was defined as late wet AMD as it was the only subtype of AMD 
that could be managed with effective therapy currently. Glaucomatous 
optic neuropathy was classified as absent or referable GON according 
to definitions utilized by previous population-based studies (27–29). 
The definition of referable GON included the presence of any of the 
following: vertical cup to disk ratio (VCDR) ≥0.7; rim width ≤0.1 disk 
diameter; localized notches; and presence of retinal nerve fiber layer 
(RNFL) defect and/or disk hemorrhage.

Development of the deep learning system

The development and validation of the DR, GON, and AMD 
models have been described in detail elsewhere (22, 30–32). In brief, 
referable GON, DR, and AMD deep learning algorithms were 
developed using a total of 210,473 fundus photographs (referable DR, 
106,244; referable GON, 48,116; referable AMD 56,113). Several 
pre-processing steps were performed for normalization to control for 
variations in image size and resolution. This included augmentation 
to enlarge heterogeneity, applying local space average color for color 
constancy and downsizing image resolution to 299 × 299 pixels (33). 
Finally, eight convolutional neural networks were contained within 
the DLS (Version 20,171,024), all adopting Inception-v3 architecture 
(34). The development of the networks was described in our previous 
studies (22, 23, 32). Briefly, the networks were downsized to 299 × 299, 
and local space average color and data augmentation were adopted. 
These networks were trained from scratch and included (1) 
classification for referable DR, (2) classification of DME, (3) 
classification of AMD, (4) classification of GON, and (5) assessment 
of the availability of the macular region and rejection of 
non-retinal photographs.

Graders and ophthalmologists 
identification and recruitment

Five trained non-physician graders, who also previously received 
training for DR, AMD, and GON classification, usually graded images 
from 50 to 100 participants for common blindness diseases every 
workday and underwent tests per quarter, from Zhongshan 
Ophthalmic Center Image Grading Center with National Health 

1 http://v.labelme.org

Screening (NHS) DR grader certification were recruited to grade all 
these images.

We also invited general ophthalmologists from four provincial 
hospitals and five county hospitals in seven provinces in China 
(Guangdong, Guangxi, Fujian, Jiang Su, Yunnan, Xinjiang, and Inner 
Mongolia province). General ophthalmologists who had at least 
3 years clinical practice including residency were eligible to participate.

Selected ophthalmologists were sent an invitation to participate 
via email or mobile phone text message. Those who did not respond 
were followed up with a telephone call. The clinical practice 
characteristics of invited ophthalmologists were obtained from 
publicly available resources or personally via telephone.

Of the 330 ophthalmologists who were eligible to participate, 66 
(20%) were randomly selected and subsequently invited to participate 
in the study. Nineteen ophthalmologists (28.8%) declined or did not 
respond and 47 ophthalmologists (71.2%) agreed to participate. A 
flow chart outlining the recruitment of ophthalmologists is shown in 
Figure 1.

Test set implementation

Participants independently reviewed all 300 images in a random 
order. They were blinded to the reference standard and the grades 
assigned by other participants. Due to the variability in existing 
classification criteria for GON, a standardized grading criteria was 
provided to all participants. Participants were not provided with 
details of the comprehensive grading criterion utilized for the grading 
of DR and AMD, as it was assumed that the participants’ experience 
would be sufficient to enable them to classify these disorders into the 
specific categories (DR: mild, moderate, severe NPDR and proliferative 
DR; AMD: early or moderate AMD, late dry AMD, and late wet 
AMD). There was no time limit for the interpretation of each image. 
All grading results were converted to a two-level classification for each 
disease (referable and non-referable disorders) and then compared 
against the reference standard. The eight deep learning models were 
also tested using the same images.

In order to characterize the features of misclassified images by DLS 
and human graders, an experienced ophthalmologist (Z.X.L.) reviewed 
misclassified fundus photographs and classified them into categories 
arbitrarily developed by a consensus meeting by investigators.

Statistical analysis

The area under the receiver operating characteristic curve (AUC), 
rate of agreement and unweighted kappa were calculated. Agreement 
was defined as the proportion of images that were correctly classified 
by participants or the DLS models using the gold standard label as a 
reference standard. Firstly, data from all participants were used and in 
this situation, the CIs accounting for within and between subject 
variability by estimating the variance using the form; {var.
(parameterp) + [avg(parameterp) × (1−avg(parameterp))]/nc}/np, where 
avg.(parameterp) denotes the average corresponding parameter (AUC, 
agreement rate or kappa) among participants, var.(parameterp) 
denotes the sample variance of parameter among participants, nc 
denotes the number of images interpreted by each participant, and np 
denotes the number of participants.
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Then, a representative grading result for graders and 
ophthalmologists was made when more than 50% of group members 
achieved consistent grading outcomes. As the DLS can generate a 
continuous probability between 0 and 1 for referable disorders, AUC 
for DLS was calculated using these continuous probabilities to 
compared with reference standard, whereas the agreement rate and 
unweighted kappa were dichotomized by assigning a certain 
probability when reaching the highest accuracy. The AUCs of graders, 
ophthalmologists, and DLS were calculated by comparing with 
reference standard for two-level classification (referable and 
non-referable).

We investigated the extent to which the clinical experience of 
ophthalmologists was associated with agreement. Logistic regression 
models of ophthalmologist agreement that simultaneously 
incorporated several ophthalmologist characteristics (hospital level, 
academic affiliation, clinical practice years, and clinical expertise) 
were modeled. Non-physician graders were not included in this 
analysis due to the relatively small sample size (n = 5).

Sensitivity analyses was used to explore whether the grading 
results would change by using an alternate reference standard 
instead of the specialist-derived standard. Firstly, cases where the 
reference standard was different from the most frequent (≥80.0%) 
grading result of the participants were identified (8 of 300 images). 
Then, the results were reanalyzed by substituting the most frequent 
grading outcome of participants as the reference standard for the 
eight images, or just excluding the eight images. A p value of less 
than 0.05 was regarded as statistically significant. Stata statistical 

software (version 14; College Station, Texas, United  States) 
was used.

Results

Reference dataset

Of the 300 images included in the dataset, the total number of 
images labeled as referable DR, AMD, and GON according to the final 
specialist grading were 45 (15.0%), 46 (15.3%), and 46 (15.3%), 
respectively. The remaining 163 (54.4%) images were classified as 
normal or a disease other than DR, AMD, and GON.

Graders and ophthalmologists 
characteristics

The five trained non-physician graders were all females with a 
mean age of 30.4 ± 2.2 years (range, 27–34 years) and an average of 
3.6 ± 0.6 years (range, 2–5 years) of grading experience in DR screening 
support and research image grading. There were 6, 23, 12, and 6 
general ophthalmologists aged <30, 30–40, 40–50, and ≥50 years, 
respectively. Among these ophthalmologists, there were 22 males and 
25 females. Twenty-seven were from affiliated hospitals and the other 
were from nonaffiliated hospitals. Their lengths of clinical practice 
were 5 years (n = 13), 5–10 years (n = 16), and ≥10 years (n = 18).

FIGURE 1

Recruitment, workflow, and grading of ophthalmologists and non-physician graders.
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Diagnostic agreement among deep 
learning models, trained non-physician 
graders, and ophthalmologists

Table 1 displays the agreement distribution by individual grading 
outcomes of specialists performing initial reference standard grading 
compared to the final reference standard. The overall agreement rate 
of the initial independent specialist diagnoses was 96.5% for referable 
DR, 98.1% for referable AMD, and 92.8% for referable GON.

Table  2 provides a comparison between the DLS and general 
ophthalmologists. The sensitivity and specificity of the DLS for 
referable DR were 97.8% (44/45) and 92.5% (236/255), respectively. 
The results for general ophthalmologists for referable DR were 91.1% 
(41/45) and 99.6% (254/255), respectively.

Table 3 compares the grading agreement of trained non-physician 
graders, ophthalmologists, and the DLS versus the reference standard. 
There were no significant differences in the AUC of non-physician 
graders, general ophthalmologists with different levels of clinical 
experience, and the DLS for the interpretation of referable DR 
(p = 0.415, compared with expert consensus reference diagnosis) and 
referable AMD (p = 0.145, compared with expert consensus reference 
diagnosis). For the classification of GON, the DLS achieved a superior 
AUC result compared to non-physician graders (p < 0.001).

Ophthalmologist characteristics related 
with image interpretation agreement

The agreement between general ophthalmologists’ image grading 
and the reference standard is shown in Table 4. Table 4 shows that the 
overall agreement was higher for referable DR in ophthalmologists 
with greater clinical experience (p = 0.009) and those who were 
specialists (p = 0.040). Agreement was significantly higher for referable 
AMD in ophthalmologists from provincial level hospitals (p = 0.017), 
adjunct academic affiliations (p = 0.002), ophthalmologists with more 
years of clinical practice (p = 0.009), and those who were glaucoma or 
retinal specialist ophthalmologists (p = 0.006). Similarly, the level of 
agreement for referable GON was greater among ophthalmologists 
from provincial level hospitals (p < 0.001), those from adjunct 
academic affiliations (p < 0.001), those with more years of clinical 
experience (p < 0.001) and those who were glaucoma or retinal 
specialist ophthalmologists (p < 0.001).

Image disagreement characteristics

The interpretations of non-physician graders, ophthalmologists, 
and the DLS compared with the reference standard for each of the 
300 fundus photographs for diabetic retinopathy are shown in 
Figure 2. This figure also demonstrates that several images caused 
mistakes common to nonphysician graders, ophthalmologists, and 
the DLS; for example, images #1 and #87 triggered consistent false 
positives. In the same way, images #71, #97, #140, #181, #232, and 
#239 displayed consistent false negatives. These images are shown 
in Figure 3. The general features of images that were misclassified 
by human participants (trained non-physician graders and 
ophthalmologists) are summarized in Table 5.The primary reason 

TABLE 1 Comparison of the five specialist ophthalmologist’s independent 
gradings vs. final expert consensus reference standard for 300 fundus 
photographs.a

Specialist ophthalmologists independent 
gradings

Final 
reference 
standard

Absent Present Missing Total

Referable DRb

  Absent 1,269 6 0 1,275

  Present 45 178 2 225

  Total 1,314 184 2 1,500

Late wet AMDc

  Absent 1,258 12 0 1,270

  Present 16 214 0 230

  Total 1,274 226 0 1,500

Referable GONd

  Absent 1,176 94 0 1,270

  Present 14 216 0 230

  Total 1,190 310 0 1,500

aThe overall all agreement rate for referable DR, late wet AMD, and GON were 96.5, 98.1, 
and 92.8%, respectively. 
b,cThe members to make reference standard were consisted of five retina specialists, and each 
disorder was graded for multiple categories and then converted to two levels for analysis.
dThe members were consisted of five glaucoma specialists. 
DR, diabetic retinopathy; AMD, age-related macular degeneration; GON, glaucomatous 
optic neuropathy.

TABLE 2 Comparison of deep learning system and general ophthalmologists to the expert consensus reference standard.

Reference 
standard

Deep learning system Ophthalmologists

Agreement 
(%)

Misclassification 
(%)

Total Agreement 
(%)

Misclassification 
(%)

Total

Diabetic Referable 44 (97.8) 1 (2.2) 45 41 (91.1) 4 (8.9) 45

Retinopathy Non-referable 236 (92.5) 19 (7.5) 255 254 (99.6) 1 (0.4) 255

Age related 

macular 

degeneration

Referable 39 (83.0) 8 (7.0) 47 43 (91.5) 4 (8.5) 47

Non-referable 245 (96.8) 8 (3.2) 253 248 (98.0) 5 (2.0) 253

Glaucomatous 

optic neuropathy

Referable 45 (97.8) 1 (2.2) 46 42 (91.3) 4 (8.7) 46

Non-referable 252 (99.2) 2 (0.8) 254 249 (98.0) 5 (2.0) 254

A representative grading result for graders and ophthalmologists were made when more than 50% of group members achieved a consistent grading.
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for false negative of referable DR was the presence of DME (n = 10, 
58.9%), while two cases (100.0%) with microaneurysm/s and 
artifacts resulted in false positive by human participants. For 
referable AMD, false negative cases were mostly related to the 
presence of subtle subretinal hemorrhage (n = 6, 50.0%). False 
positives resulted from misclassification of earlier forms of AMD 
(n = 9, 75.1%). Among human participants, the most common 
reason for false negative of referable GON were those images with 
borderline VCDR (n = 8, 27.7%), while false positives occurred in 
those images which displayed physiological cupping (n = 14, 93.3%).

One fundus image demonstrated coexisting intraretinal 
microvascular abnormality and DME that were not identified by the 
DLS. The most common reason for false positives by the DLS was the 
presence of microaneurysm/s only (n = 10, 55.5%; Table  6). For 
referable AMD, the presence of subretinal hemorrhage (n = 5, 71.4%) 
was the primary reason for false negative and other diseases (n = 7, 
87.5%) including DR or GON. For referable GON, the DLS under-
interpreted one image with VCDR less than 0.7, while two images 
with physiological large cupping (n = 2, 40%) and three images with 
other diseases (n = 3, 60%) were incorrectly classified as positive.

Discussion

In this study, we prospectively compared the diagnostic agreement 
of trained non-physician graders and ophthalmologists using three 
validated deep learning models for the detection of referable DR, late wet 

AMD, and GON from color fundus photographs. Our results suggest 
that the performance of the deep learning models for referable DR and 
AMD are comparable to non-physician graders and ophthalmologists. 
As for referable GON, the DLS outperformed non-physician graders.

There was no difference among the non-physician graders, 
ophthalmologists with different years of clinical practice, and the DLS 
for the diagnostic accuracy of referable DR. The non-physician 
graders included in this study all had grader certification from the 
NHS DR screening program, underwent regular assessments every 
month, and routinely interpreted fundus photographs of diabetic 
patients from nationwide screening programs, which may explain 
their relatively high agreement compared to the gold standard. While 
the DLS also exhibited comparably good performance when 
compared with non-physician graders and general ophthalmologists.

Comparison of the DLS with general ophthalmologists found that 
the DLS had higher sensitivity (97.8 vs. 91.1%) and lower specificity 
(92.5 vs. 99.6%) for the classification of referable DR. However, nearly 
half of the false positive cases identified by the DLS included (n = 8, 
44.5%) other disorders, for example, late wet AMD and retinal 
degeneration. The remaining false positive images (n = 10, 55.5%) had 
mild NPDR. Those images identified as false positive by the DLS 
would receive a referral and be  identified during confirmatory 
examination conducted by a specialist.

Previous studies have shown that the majority of referral cases for 
DR (73%) are as a result of DME (35). There are 100 million patients 
with DR worldwide which corresponds to 7.6 million DME patients 
(36). However, our results showed that images that were characterized 

TABLE 3 Agreement of image interpretation by trained non-physician graders, general ophthalmologists, and deep learning system versus the expert 
consensus reference standard.a

Trained non-
physician 

graders (95% 
CI)

Ophthalmologists (95% CI) Deep learning 
systema (95% 

CI)

p 
value

Clinical 
experience 
3–5 years

Clinical 
experience 
5–10 years

Clinical 
experience 
>10 years

Total

Referable DR

Model 1

AUC 0.984 (0.960–1.000) 0.964 (0.926–1.000) 0.965 (0.927–1.000) 0.954 (0.911–0.996) 0.954 (0.911–0.995) 0.990 (0.982–0.999) 0.415

Kappa 0.959 (0.845–1.000) 0.946 (0.832–1.000) 0.947 (0.834–1.000) 0.933 (0.820–1.000) 0.933 (0.820–1.000) 0.775 (0.665–0.886)

Agreement rate 0.989 (0.971–0.998) 0.983 (0.961–0.996) 0.987 (0.966–0.996) 0.983 (0.961–0.995) 0.983 (0.962–0.995) 0.933 (0.899–0.959)

Referable AMD

Model 1

AUC 0.912 (0.859–0.964) 0.933 (0.887–0.979) 0.946 (0.904–0.987) 0.958 (0.922–0.995) 0.948 (0.906–0.989) 0.945 (0.903–0.986) 0.145

Kappa 0.823 (0.710–0.936) 0.851 (0.738–0.964) 0.876 (0.762–0.989) 0.901 (0.788–1.000) 0.887 (0.774–1.000) 0.798 (0.685–0.911)

Agreement rate 0.953 (0.923–0.974) 0.960 (0.931–0.979) 0.967 (0.940–0.983) 0.973 (0.948–0.988) 0.970 (0.944–0.986) 0.947 (0.915–0.969)

Referable GON

Model 1

AUC 0.675 (0.604–0.746) 0.862 (0.797–0.926) 0.894 (0.836–0.953) 0.976 (0.946–1.000) 0.953 (0.911–0.994) 0.994 (0.988–0.999) <0.001

Kappa 0.445 (0.341–0.549) 0.779 (0.666–0.891) 0.825 (0.712–0.938) 0.961 (0.848–1.000) 0.922 (0.809–1.00) 0.926 (0.813–1.00)

Agreement rate 0.887 (0.845–0.920) 0.947 (0.914–0.969) 0.957 (0.927–0.977) 0.990 (0.971–0.998) 0.980 (0.957–0.993) 0.980 (0.956–0.993)

DR, diabetic retinopathy; AMD, age-related macular degeneration; GON, glaucomatous optic neuropathy; AUC, area under receiver operator characteristic curve; CI, confidence interval. 
aThe AUC, kappa, and agreement rate of graders and ophthalmologists were calculated using a representative grading result for each group when there was at least 50% of group members 
reached consistent grading.
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TABLE 4 Ophthalmologist characteristics for image interpretation versus expert consensus reference standard.

Characteristics Referable diabetic retinopathy Referable age-related macular degeneration Referable glaucomatous optic neuropathy

n AUC 
(95% CI)

Agreement rate 
(95% CI)

p n AUC (95% 
CI)

Agreement rate 
(95% CI)

p n AUC 
(95% CI)

Agreement rate 
(95% CI)

p

Hospital

County level (n = 20) 5,794 0.929  

(0.929–0.930)

0.955  

(0.955–0.956)

5,878 0.871  

(0.871–0.872)

0.929  

(0.929 0.930)

5,868 0.818  

(0.818–0.820)

0.903  

(0.902–0.903)

Provincial level (n = 27) 7,894 0.932  

(0.931–0.932)

0.956  

(0.956–0.957)

7,971 0.872  

(0.871–0.872)

0.929  

(0.929–0.930)

8,030 0.875  

(0.875–0.876)

0.933  

(0.932–0.933)

0.808a 0.017a <0.001a

Academic affiliation

None (n = 18) 5,196 0.926  

(0.925–0.926)

0.954  

(0.954–0.955)

5,281 0.867  

(0.867–0.868)

0.926  

(0.926–0.927)

5,269 0.810  

(0.810–0.811)

0.897  

(0.897–0.898)

Adjunct affiliation (n = 29) 8,492 0.934  

(0.934–0.935)

0.957  

(0.957–0.958)

8,568 0.891  

(0.891–0.892)

0.941  

(0.941–0.942)

8,629 0.877  

(0.876–0.878)

0.934  

(0.934–0.935)

0.343b 0.002b <0.001b

Clinical practice (yrs)

≤5 (n = 13) 3,718 0.925  

(0.924–0.925)

0.951  

(0.950–0.951)

3,780 0.875  

(0.875–0.876)

0.928  

(0.927–0.928)

3,782 0.806  

(0.805–0.807)

0.569  

(0.892–0.893)

5–10 (n = 16) 4,637 0.929  

(0.928–0.929)

0.953  

(0.953–0.954)

4,703 0.876  

(0.876–0.877)

0.934  

(0.934–0.935)

4,743 0.848  

(0.847–0.849)

0.919  

(0.919–0.920)

>10 (n = 18) 5,333 0.937  

(0.937–0.938)

0.839  

(0.838–0.840)

5,366 0.892  

(0.891–0.892)

0.942  

(0.942–0.943)

5,373 0.887  

(0.886–0.888)

0.941  

(0.940–0.041)

0.009c 0.009c <0.001c

Expertise in ophthalmology

Nonexpert (n = 27) 7,797 0.929  

(0.929–0.930)

0.953  

(0.953–0.954)

7,919 0.873  

(0.873–0.874)

0.930  

(0.930–0.931)

7,934 0.817  

(0.816–0.817)

0.902  

(0.901–0.902)

Expert (n = 20) 5,891 0.933  

(0.933–0.934)

0.960  

(0.960–0.961)

5,930 0.894  

(0.894–0.895)

0.942  

(0.942–0.943)

5,964 0.898  

(0.898–0.899)

0.944  

(0.944–0.945)

0.040d 0.006d <0.001d

aA test for trend based on logistic regression model which diagnostic agreement for corresponding disorder was considered as the outcome variable and a two-category variable for hospital level was regarded as independent variable.
bA test for trend based on logistic regression model which diagnostic agreement for corresponding disorder was considered as the outcome variable and a two-category variable for whether to be an adjunct affiliation was regarded as independent variable.
cA test for trend based on logistic regression model which diagnostic agreement for corresponding disorder was considered as the outcome variable and a three-category variable for clinical practice years was regarded as independent variable.
dA test for trend based on logistic regression model which diagnostic agreement for corresponding disorder was considered as the outcome variable and a two-category variable for expertise in ophthalmology was regarded as independent variable.
CI, confidence interval.

https://doi.org/10.3389/fmed.2023.1115032
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2023.1115032

Frontiers in Medicine 08 frontiersin.org

as DME (n = 10, 58.9%) were under interpreted by human graders 
more often than other DR lesions. DR changes related to DME 
displayed considerable variation among graders and ophthalmologists, 
with an overall agreement rate of 71% when compared with the 
reference standard. Therefore, the importance of not overlooking the 
diagnosis of DME among graders and ophthalmologists should 
be emphasized.

The DLS outperformed non-physician graders in the classification 
of referable GON in this study. The variability in inter-assessor 
agreement among non-physician graders and ophthalmologists for the 
classification of ocular disorders is well known, especially glaucoma 

(37, 38). The Glaucomatous optic neuropathy evaluation (GONE) 
project previously reported that ophthalmology trainees 
underestimated glaucoma likelihood in 22.1% of optic disks and 
overestimated 13.0% of included optic disks. This has been similar in 
our study where general ophthalmologists underestimated 23.8% and 
underestimated 8.9% of included optic disks (37). Furthermore, 
Breusegem et al. (38) reported that non-expert ophthalmologists had 
significantly lower accuracy compared with experts in the diagnosis of 
glaucoma. Our results are in agreement with previous studies and 
showed that ophthalmologists with more clinical experience and 
specialist training in ophthalmology achieve higher inter-assessor 
agreement. The experience and knowledge obtained through years of 
clinical practice is likely to play a significant role in interpretation and 
performance accuracy. In contrast, the DLS is easily able to adopt labels 
from experienced ophthalmologists to learn the most representative 
characteristics of GON. Fundus photography is an important method 
to evaluate GON, however, the diagnosis of glaucoma requires the 
results of visual field analysis, optical coherence tomography, and intra 
ocular pressure measurements to make an accurate diagnosis. Thus, 
further studies to compare DLS with ophthalmologists using multi-
modality clinical data is warranted.

The main strength of our study was to prospectively compare the 
performance of a DLS for the detection of three common blinding eye 
diseases to non-physician graders and ophthalmologists of varying 
levels of experience and with different specialties. Our study is also 
distinctly different from previous reports (19, 39–42). First, we evaluated 
three ocular diseases at the same time. Second, no prospective 
comparison of ophthalmologists with varying levels of clinical 
experience and trained non-physician graders with a DLS for common 
ocular disorders has been reported. Previous authors have compared 
the performance of the DLS with that of graders or specialists; this is 
often considered the gold standard for the development of the DLS (39, 

FIGURE 2

The interpretations of graders, ophthalmologists, and artificial intelligence compared with the reference standards for each of the 300 fundus 
photographs for diabetic retinopathy.

A B

C D

FIGURE 3

Sample images consistently misclassified by human participants. 
(A,B) Images with only microaneurysm misclassified as referable 
diabetic retinopathy. (C) Images of diabetic macular edema 
misclassified as non-referable diabetic retinopathy. 
(D) Microaneurysm and dot hemorrhage misclassified as non-
referable diabetic retinopathy.
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41, 43). Non-physician graders and ophthalmologists are susceptible to 
making diagnostic mistakes. Our study included independent graders 
and ophthalmologists to evaluate the performance of the DLS. Therefore, 
the current study will provide information on the accuracy of the DLS, 
as well as a more comprehensive understanding and acceptance of how 
AI systems might work or contribute.

There are several limitations of this study which warrant further 
consideration. On one hand, human participants included in this study 

TABLE 5 Characteristics of the disagreement images by human 
participants.a

Reason No. Proportion (%)

Referable DR

  False negative

   MA, hemorrhage, DME 10 58.9

   Dot hemorrhage, MA 4 23.5

   MA, hemorrhage, HEs, CWS 3 17.6

  Subtotal 17 100.0

  False positive

   Microaneurysm/s, Artifacts 1 100.0

  Subtotal 1 100.0

Referable AMD

  False negative

   Subretinal Hemorrhage 6 50.0

    Sub-retinal/Sub-RPE 

fibrovascular proliferation

3 25.0

    Serous detachment of the sensory 

retina or RPE

3 25.0

  Sub-total 12 100.0

  False positive

   Other macular degeneration 9 75.1

   Myopic maculopathy 1 8.3

   Choroidal osteoma 1 8.3

    Other diseases (Pre-macular 

hemorrhage)

1 8.3

  Sub-total 12 100.0

Referable GON

  False negative

   Borderline VCDR 8 27.7

   Borderline VCDR with RNFL 

defect

6 20.7

   Optic disk with tilt or rotation 5 17.2

   With other diseases 3 10.3

   Rim < 0.1 3 10.3

   Notch 2 6.9

    Linear hemorrhage around optic 

disk

2 6.9

  Sub-total 29 100.0

  False positive

    Physiological large cupping 

(0.5 ≤ VCDR < 0.7)

14 93.3

    Juxtapapillary capillary 

hemangioma

1 7.7

  Sub-total 15 100.0

aThe cases included in this analysis were those with more than 20% of the individual human 
participants (graders and ophthalmologists) inconsistent with the reference standard.  
DR, diabetic retinopathy; MA, microaneurysm; HEs, hard exudates; CWS, cotton-wool spot; 
DME, diabetic macular edema; AMD, age-related macular degeneration; RPE, retina 
pigment epithelium; and GON, glaucomatous optic neuropathy; VCDR, vertical cup to disc 
ratio; RNFL, retinal nerve fiber layer.

TABLE 6 Characteristics of the disagreement images by deep learning 
system.

Reason No. Proportion (%)

Referable DR

  False negative

   MA, IRMA, DME 1 100.0

  Sub-total 1 100.0

  False positive

   MA only 10 55.5

  Other diseases

   Late wet AMD 4 22.2

   Retinal degeneration 3 16.7

   RVO 1 5.6

  Subtotal 18 100.0

Referable AMD

  False negative

   Subretinal hemorrhage 5 71.4

    Serous detachment of the 

sensory retina or RPE

2 28.6

  Subtotal 7 100.0

  False positive

Other diseases

  DR 7 87.5

  GON 1 12.5

  Subtotal 8 100.0

Referable GON

  False negative

   VCDR < 0.7 with notch 1 100.0

  Sub-total 1 100.0

  False positive

    Physiologic large cupping 

(0.5 ≤ VCDR < 0.7)

2 40.0

  Other diseases

   AMD 2 40.0

    Juxtapapillary capillary 

hemangioma

1 20.0

  Subtotal 5 100.0

DR, diabetic retinopathy; MA, microaneurysm; IRMA, intra-retinal microvascular 
abnormality; DME, diabetic macular edema; AMD, age-related macular degeneration; VRO, 
retinal vein occlusion; RPE, retina pigment epithelium; and GON, glaucomatous optic 
neuropathy.
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were recruited from China. This has the potential to affect the 
generalizability of these results to other human graders, especially 
those in developed countries. In the future, similar studies should 
be attempted in other countries with different physician or specialist 
training system. On the other hand, the use of single-field, 
non-stereoscopic fundus photographs without the inclusion of optical 
coherence tomography may lead to a reduced sensitivity for DR and 
particularly DME detection for human participants and the DLS.

In conclusion, our DLS demonstrated sufficient agreement with 
non-physician graders and general ophthalmologists when compared to 
the reference standard diagnosis agreement for referable DR and 
AMD. The DLS performance was better than non-physician graders and 
ophthalmologists with ≤10 years of clinical experience for referable 
GON. Further investigation is required to validate the performance in 
real-world, clinical settings which display the full spectrum and 
distribution of lesions and manifestations encountered in clinical practice.
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