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Background and purpose: Colorectal cancer is a common fatal malignancy, the

fourth most common cancer in men, and the third most common cancer in women

worldwide. Timely detection of cancer in its early stages is essential for treating the

disease. Currently, there is a lack of datasets for histopathological image segmentation

of colorectal cancer, which often hampers the assessment accuracy when computer

technology is used to aid in diagnosis.

Methods: This present study provided a new publicly available Enteroscope Biopsy

Histopathological Hematoxylin and Eosin Image Dataset for Image Segmentation

Tasks (EBHI-Seg). To demonstrate the validity and extensiveness of EBHI-Seg, the

experimental results for EBHI-Seg are evaluated using classical machine learning

methods and deep learning methods.

Results: The experimental results showed that deep learning methods had a better

image segmentation performance when utilizing EBHI-Seg. The maximum accuracy

of the Dice evaluationmetric for the classical machine learningmethod is 0.948, while

the Dice evaluation metric for the deep learning method is 0.965.

Conclusion: This publicly available dataset contained 4,456 images of six types of

tumor di�erentiation stages and the corresponding ground truth images. The dataset

can provide researchers with new segmentation algorithms for medical diagnosis

of colorectal cancer, which can be used in the clinical setting to help doctors and

patients. EBHI-Seg is publicly available at: https://figshare.com/articles/dataset/EBHI-

SEG/21540159/1.

KEYWORDS

colorectal histopathology, enteroscope biopsy, image dataset, image segmentation,

EBHI-Seg

1. Introduction

Colon cancer is a common deadlymalignant tumor, the fourthmost common cancer inmen,
and the third most common cancer in women worldwide. Colon cancer is responsible for 10%
of all cancer cases (1). According to prior research, colon and rectal tumors share many of the
same or similar characteristics. Hence, they are often classified collectively (2). The present study

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2023.1114673
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2023.1114673&domain=pdf&date_stamp=2023-01-24
mailto:lixiaoyan@cancerhosp-ln-cmu.com
mailto:lichen@bmie.neu.edu.cn
https://doi.org/10.3389/fmed.2023.1114673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2023.1114673/full
https://figshare.com/articles/dataset/EBHI-SEG/21540159/1
https://figshare.com/articles/dataset/EBHI-SEG/21540159/1
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2023.1114673

categorized rectal and colon cancers into one colorectal cancer
category (3). Histopathological examination of the intestinal tract is
both the gold standard for the diagnosis of colorectal cancer and a
prerequisite for disease treatment (4).

The advantage of using the intestinal biopsy method to remove
a part of the intestinal tissue for histopathological analysis, which
is used to determine the true status of the patient, is that
it considerably reduces damage to the body and rapid wound
healing (5). The histopathology sample is then sectioned and
processed with Hematoxylin and Eosin (H&E). Treatment with H&E
is a common approach when staining tissue sections to show the
inclusions between the nucleus and cytoplasm and highlight the fine
structures between tissues (6, 7). When a pathologist performs an
examination of the colon, they first examine the histopathological
sections for eligibility and find the location of the lesion. The
pathology sections are then examined and diagnosed using a low
magnification microscope. If finer structures need to be observed, the
microscope is adjusted to use high magnification for further analysis.
However, the following problems usually exist in the diagnostic
process: the diagnostic results become more subjective and varied
due to different doctors reasons; doctors can easily overlook some
information in the presence of a large amount of test data; it is difficult
to analyze large amounts of previously collected data (8). Therefore,
it is a necessary to address these issues effectively.

With the development and popularization of computer-aided
diagnosis (CAD), the pathological sections of each case can be
accurately and efficiently examined with the help of computers (9).
Now, CAD is widely used in many biomedical image analysis
tasks, such as microorganism image analysis (10–18), COVID-
19 image analysis (19), histopatholgical image analysis (20–
27), cytopathological image analysis (28–31) and sperm video
analysis (32, 33). Therefore, the application of computer vision
technology for colorectal cancer CAD provides a new direction in this
research field (34).

One of the fundamental tasks of CAD is the aspect of
image segmentation, the results of which can be used as key
evidence in the pathologists’ diagnostic processes. Along with the
rapid development of medical image segmentation methodology,
there is a wide demand for its application to identify benign
and malignant tumors, tumor differentiation stages, and other
related fields (35). Therefore, a multi-class image segmentation
method is needed to obtain high segmentation accuracy and good
robustness (36).

The present study presents a novel Enteroscope Biopsy

Histopathological H&E Image Dataset for Image Segmentation

Tasks (EBHI-Seg), which contains 4456 electron microscopic images
of histopathological colorectal cancer sections that encompass six
tumor differentiation stages: normal, polyp, low-grade intraepithelial
neoplasia, high-grade intraepithelial neoplasia, serrated adenoma,
and adenocarcinoma. The segmentation coefficients and evaluation
metrics are obtained by segmenting the images of this dataset
using different classical machine learning methods and novel deep
learning methods.

2. Related work

The present study analyzed and compared the existing colorectal
cancer biopsy dataset and provided an in-depth exploration of the

currently known research findings. The limitations of the presently
available colorectal cancer dataset were also pointed out.

The following conclusions were obtained in the course of the
study. For existing datasets, the data types can be grouped into
two major categories: Multi and Dual Categorization datasets. Multi
Categorization datasets contain tissue types at all stages from Normal
to Neoplastic. In Trivizakis et al. (37), a dataset called “Collection
of textures in colorectal cancer histology” is described. It includes
5,000 patches of size 74 × 74 µm and contains seven categories.
However, because there were only 10 images, it is too small for
a data sample and lacked generalization capability. In Chen et al.
(23), a dataset called “NCT-CRC-HE-100K” is proposed. This is a
set of 100,000 non-overlapping image patches of histological human
colorectal cancer (CRC) and normal tissue samples stained with
(H&E) that was presented by the National Center for Tumor Diseases
(NCT). These image patches are from nine different tissues with
an image size of 224 × 224 pixels. The nine tissue categories are
adipose, background, debris, lymphocytes, mucus, smooth muscle,
normal colon mucosa, cancer-associated stroma, and colorectal
adenocarcinoma epithelium. This dataset is publicly available and
commonly used. However, because the image sizes are all 224 ×

224 pixels, the dataset underperformed in some global details that
need to be observed in individual categories. Two datasets are
utilized in Oliveira et al. (38): one containing colonic H&E-stained
biopsy sections (CRC dataset) and the other consisting of prostate
cancer H&E-stained biopsy sections (PCa dataset). The CRC dataset
contains 1,133 colorectal biopsy and polypectomy slides grouped into
three categories and labeled as non-neoplastic, low-grade and high-
grade lesions. In Kausar et al. (39), a dataset named “MICCAI 2016
gland segmentation challenge dataset (GlaS)” is used. This dataset
contained 165 microscopic images of H&E-stained colon glandular
tissue samples, including 85 training and 80 test datasets. Each dataset
is grouped into two parts: benign and malignant tumors. The image
size is 775 × 522 pixels. Since this dataset has only two types of data
and the number of data is too little, so that it performs poorly on some
multi-type training.

Dual Categorization datasets usually contain only two types of
tissue types: Normal and Neoplastic. In Wei et al. (40), a dataset
named “FFPE” is proposed. This dataset obtained its images by
extracting 328 Formalin-fixed Paraffin-embedded (FFPE) whole-
slide images of colorectal polyps classified into two categories of :
hyperplastic polyps (HPs) and sessile serrated adenomas (SSAs).
This dataset contained 3,125 images with an image size of 224 ×

224 pixels and is small in type and number. In Bilal et al. (41),
two datasets named “UHCW” and “TCGA” are proposed. The first
dataset is a colorectal cancer biopsy sequence developed at the
University Hospital of Coventry and Warwickshire (UHCW) for
internal validation of the rectal biopsy trial. The second dataset is
the Cancer Genome Atlas (TCGA) for external validation of the
trial. This dataset is commonly used as a publicly available cancer
dataset and stores genomic data for more than 20 types of cancers.
The two dataset types are grouped into two categories: Normal and
Neoplastic. The first dataset contains 4,292 slices, and the second
dataset contained 731 slices with an image size of 224× 224 pixels.

All of the information for the existing datasets is summarized
in Table 1. The issues associated with the dataset mentioned above
included fewer data types, small amount of data, inaccurate dataset
ground truth, etc. The current study required an open-source multi-
type colonoscopy biopsy image dataset.
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TABLE 1 A dataset for the pathological classification of colorectal cancer.

Dataset name Categorization Amount Size Year

Collection of textures in colorectal
cancer histology

Lymphoid follicles, mucosal glands, debris,
adipose, tumor epithelium simple stroma,
complex stroma, background patches with no
tissue

5,000 74× 74 µm
(0.495 micrometer per
pixel)

2016

Multi categorization

HE-NCT-CRC-100K MUS, NORM, STR, TUM ADI, BACK, DEB,
LYM, MUC

100,000 224×224 pixels 2016

MICCAI’16 gland seg-mentation
challenge dataset

Benign tumors, malignant tumors 85 775×522 pixels 2017

CRC dataset Non-neoplastic, low-grade, high-grade lesions 1,133 512×512 pixels 2021

Dual categorization

FFPE HPs, SSAs 3,152 224×224 pixels 2021

The Cancer Genome Atlas dataset Normal, Neoplastic 731 224×224 pixels 2021

University Hospitals Coventry and
Warwick-shire dataset

Normal, Neoplastic 4,292 224×224 pixels 2021

3. Basic information for EBHI-Seg

3.1. Dataset overview

The dataset in the present study contained 4,456 histopathology
images, including 2,228 histopathology section images and 2,228
ground truth images. These include normal (76 images and 76 ground
truth images), polyp (474 images and 474 ground truth images), low-
grade intraepithelial neoplasia (639 images and 639 ground truth
images), high-grade intraepithelial neoplasia (186 images and 186
ground truth images), serrated adenoma (58 images and 58 ground
truth images), and adenocarcinoma (795 images and 795 ground
truth images). The basic information for the dataset is described in
detail below. EBHI-Seg is publicly available at: https://figshare.com/
articles/dataset/EBHI-SEG/21540159/1.

In the present paper, H&E-treated histopathological sections of
colon tissues are used as data for evaluating image segmentation.
The dataset is obtained from two histopathologists at the Cancer
Hospital of China Medical University [proved by “Research Project
Ethics Certification” (No. 202229)]. It is prepared by 12 biomedical
researchers according to the following rules: Firstly, if there is only
one differentiation stage in the image and the rest of the image
is intact, then the differentiation stage became the image label;
Secondly, if there is more than one differentiation stage in the image,
then the most obvious differentiation is selected as the image label; In
general, the most severe and prominent differentiation in the image
was used as the image label.

Intestinal biopsy was used as the sampling method in this
dataset. The magnification of the data slices is 400×, with an
eyepiece magnification of 10× and an objective magnification of
40×. A Nissan Olympusmicroscope andNewUsbCamera acquisition
software are used. The image input size is 224 × 224 pixels, and the
format is *.png. The data are grouped into five types described in
detail in Section 2.2.

3.2. Data type description

3.2.1. Normal
Colorectal tissue sections of the standard category are made-up

of consistently ordered tubular structures and that does not appear

infected when viewed under a light microscope (42). Section images
with the corresponding ground truth images are shown in Figure 1A.

3.2.2. Polyp
Colorectal polyps are similar in shape to the structures in

the normal category, but have a completely different histological
structure. A polyp is a redundant mass that grows on the surface
of the body’s cells. Modern medicine usually refers to polyps as
unwanted growths on the mucosal surface of the body (43). The
pathological section of the polyp category also has an intact luminal
structure with essentially no nuclear division of the cells. Only the
atomic mass is slightly higher than that in the normal category. The
polyp category and corresponding ground truth images are shown in
Figure 1B.

3.2.3. Intraepithelial neoplasia
Intraepithelial neoplasia (IN) is the most critical precancerous

lesion. Compared to the normal category, its histological images show
increased branching of adenoid structures, dense arrangement, and
different luminal sizes and shapes. In terms of cellular morphology,
the nuclei are enlarged and vary in size, while nuclear division
increases (44). The standard Padova classification currently classifies
intraepithelial neoplasia into low-grade and high-grade INs. High-
grade IN demonstrate more pronounced structural changes in the
lumen and nuclear enlargement compared to low-grade IN. The
images and ground truth diagrams of high-grade and low-grade INs
are shown in Figures 1C, D.

3.2.4. Adenocarcinoma
Adenocarcinoma is a malignant digestive tract tumor with a

very irregular distribution of luminal structures. It is difficult to
identify its border structures during observation, and the nuclei are
significantly enlarged at this stage (45). An adenocarcinoma with its
corresponding ground truth diagram is shown in Figure 1E.

3.2.5. Serrated adenoma
Serrated adenomas are uncommon lesions, accounting for 1% of

all colonic polyps (46). The endoscopic surface appearance of serrated
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FIGURE 1

An example of histopathological images database. (A) Normal and ground truth, (B) Polyp and ground truth, (C) High-grade Intraepithelial Neoplasia and

ground truth, (D) Low-grade Intraepithelial Neoplasia and ground truth, (E) Adenocarcinoma and ground truth, and (F) Serrated adenoma and ground

truth.

adenomas is not well characterized but is thought to be similar to that
of colonic adenomas with tubular or cerebral crypt openings (47).
The image of a serrated adenoma with a corresponding ground truth
diagram is shown in Figure 1F.

4. Evaluation of EBHI-Seg

4.1. Image segmentation evaluation metric

Six evaluation metrics are commonly used for image
segmentation tasks. The Dice ratio metric is a standard metric used
in medical images that is often utilized to evaluate the performance
of image segmentation algorithms. It is a validation method based
on spatial overlap statistics that measures the similarities between
the algorithm segmentation output and ground truth (48). The Dice
ratio is defined in Equation (1).

DiceRatio =
2 |X ∩ Y|

|X| + |Y|
. (1)

In Equation (1), for a segmentation task, X and Y denote the
ground truth and segmentation mask prediction, respectively. The
range of the calculated results is [0,1], and the larger the result
the better.

The Jaccard index is a classical set similarity measure with many
practical applications in image segmentation. The Jaccard index
measures the similarity of a finite set of samples: the ratio between
the intersection and concatenation of the segmentation results and
ground truth (49). The Jaccard index is defined in Equation (2).

JaccardIndex =
|X ∩ Y|

|X ∪ Y|
. (2)

The range of the calculated results is [0,1], and the larger the result
the better.

TABLE 2 Confusion matrix.

Ground truth
Predict mask

Positive Negative

Positive TP TN

Negative FP FN

Recall and precision are the recall and precision rates,
respectively. The range of the calculated results is [0,1]. A higher
output indicates a better segmentation result. Recall and precision are
defined in Equations (3), (4),

Precison =
TP

TP+ FP
, (3)

Recall =
TP

TP+ FN
, (4)

where TP, FP, TN, and FN are defined in Table 2.
The conformity coefficient (Confm Index) is a consistency

coefficient, which is calculated by putting the binary classification
result of each pixel from [−∞,1] into continuous interval [−∞,1]
to calculate the ratio of the number of incorrectly segmented pixels to
the number of correctly segmented pixels to measure the consistency
between the segmentation result and ground truth. The conformity
coefficient is defined in Equations (5), (6),

ConfmIndex = (1−
θAE

θTP
), θTP > 0, (5)

ConfmIndex = Failure, θTP = 0, (6)
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Where θAE= θFP+θFN represents all errors of the fuzzy
segmentation results. θTP is the number of correctly classified pixels.
Mathematically, ConfmIndex can be negative infinity if θTP=0. Such
a segmentation result is definitely inadequate and treated as failure
without the need of any further analysis.

4.2. Classical machine learning methods

Image segmentation is one of the most commonly used methods
for classifying image pixels in decision-oriented applications (50). It
groups an image into regions high in pixel similarity within each area
and has a significant contrast between different regions (51). Machine
learning methods for segmentation distinguish the image classes
using image features. (1) k-means algorithm is a classical division-
based clustering algorithm, where image segmentation means
segmenting the image into many disjointed regions. The essence is

the clustering process of pixels, and the k-means method is one of the
simplest clustering methods (52). Image segmentation of the present
study dataset is performed using the classical machine learning
method described above. (2) Markov random field (MRF) is a
powerful stochastic tool that models the joint probability distribution
of an image based on its local spatial action (53). It can extract the
texture features of the image and model the image segmentation
problem. (3) OTSU algorithm is a global adaptive binarized threshold
segmentation algorithm that uses the maximum inter-class variance
between the image background and the target image as the selection
criterion (54). The image is grouped into foreground and background
parts based on its grayscale characteristics independent of the
brightness and contrast. (4) Watershed algorithm is a region-based
segmentation method, that takes the similarity between neighboring
pixels as a reference and connects those pixels with similar spatial
locations and grayscale values into a closed contour to achieve the
segmentation effect (55). (5) Sobel algorithm has two operators,

FIGURE 2

Five types of data segmentation results obtained by di�erent classical machine learning methods.
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TABLE 3 Evaluation metrics for five di�erent segmentation methods based on classical machine learning.

Dice ratio JaccardIndex Conformity
coe�cient

Precision Recall

k-means 0.648 0.488 –0.184 0.646 0.663

MRF 0.636 0.473 –0.230 0.637 0.658

Normal OTSU 0.410 0.265 –2.871 0.515 0.351

Watershed 0.461 0.300 –1.375 0.668 0.356

Sobel 0.652 0.487 –0.102 0.763 0.579

k-means 0.592 0.430 –0.528 0.546 0.663

MRF 0.511 0.362 –2.133 0.540 0.502

Polyp OTSU 0.400 0.259 –3.108 0.413 0.399

Watershed 0.433 0.277 –1.675 0.551 0.362

Sobel 0.583 0.416 –0.499 0.626 0.562

k-means 0.626 0.478 –0.467 0.650 0.620

MRF 0.550 0.441 –30.85 0.614 0.526

High-grade IN OTSU 0.249 0.150 –12.06 0.373 0.191

Watershed 0.472 0.309 –1.258 0.738 0.350

Sobel 0.634 0.469 –0.200 0.728 0.577

k-means 0.650 0.492 –0.172 0.651 0.663

MRF 0.554 0.404 –1.808 0.643 0.504

Low-grade IN OTSU 0.886 0.811 0.6998 0.832 0.979

Watershed 0.464 0.303 –1.345 0.676 0.357

Sobel 0.656 0.492 –0.079 0.771 0.582

k-means 0.633 0.481 –0.414 0.655 0.645

MRF 0.554 0.404 –1.808 0.643 0.504

Adenocarcinoma OTSU 0.336 0.215 –5.211 0.454 0.282

Watershed 0.458 0.298 –1.437 0.700 0.349

Sobel 0.553 0.388 –0.733 0.692 0.484

k-means 0.636 0.473 –0.230 0.637 0.658

MRF 0.571 0.419 –0.898 0.656 0.547

Serrated adenoma OTSU 0.393 0.248 –2.444 0.565 0.315

Watershed 0.449 0.290 –1.494 0.656 0.345

Sobel 0.698 0.541 0.7484 0.662 0.572

where one detects horizontal edges and the other detects vertical
flat edges. An image is the final result of its operation. Sobel edge
detection operator is a set of directional operators that can be
used to perform edge detection from different directions (56). The
segmentation results are shown in Figure 2.

The performance of EBHI-Seg for different machine learning
methods is observed by comparing the images segmented using
classical machine learning methods with the corresponding ground
truth. The segmentation evaluation metrics results are shown in
Table 3. The Dice ratio algorithm is a similarity measure, usually
used to compare the similarity of two samples. The value of one
for this metric is c onsidered to indicate the best effect, while
the value of the worst impact is zero. The Table 3 shows that k-
means has a good Dice ratio algorithm value of up to 0.650 in each
category. The MRF and Sobel segmentation results also achieved

a good Dice ratio algorithm value of around 0.6. In terms of
image precision and recall segmentation coefficients, k-means is
maintained at approximately 0.650 in each category. In the classical
machine learning methods, k-means has the best segmentation
results, followed by MRF and Sobel. OTSU has a general effect,
while the watershed algorithm has various coefficients that are
much lower than those in the above methods. Moreover, there are
apparent differences in the segmentation results when using the
above methods.

In summary, EBHI-Seg has significantly different results
when using different classical machine learning segmentation
methods. Different classical machine learning methods have an
obvious differentiation according to the image segmentation
evaluation metrics. Therefore, EBHI-Seg can effectively evaluate the
segmentation performance of different segmentation methods.
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FIGURE 3

Three types of data segmentation results obtained by di�erent deep learning methods.

4.3. Deep learning methods

Besides the classical macine learning metheds tested above, some
popular deep learning methods are also tested. (1) Seg-Net is an open
source project for image segmentation (57). The network is identical
to the convolutional layer of VGG-16, with the removal of the
fully-connected hierarchy and the addition of max-pooling indices
resulting in improved boundary delineation. Seg-Net performs better
in large datasets. (2) U-Net network structure was first proposed
in 2015 (58) for medical imaging. U-Net is lightweight, and its
simultaneous detection of local and global information is helpful
for both information extraction and diagnostic results from clinical
medical images. (3) MedT is a network published in 2021, which is
a transformer structure that applies an attention mechanism based

on medical image segmentation (59). The segmentation results are
shown in Figure 3.

The segmentation effect is test on the present dataset using three
deep learningmodels. In the experiments, eachmodel is trained using
the ratio of the training set, validation set, and test set of 4 : 4 : 2. All
of the information for the existing datasets is summarized in Table 4.
The model learning rate is set to 3e − 6, epochs are set to 100, and
batch-size is set to 1. The optimizer is Adam, the loss function is
crossentropyloss and the activation function is ReLU. The dataset
segmentation results of using three different models are shown
in Figure 3. The experimental segmentation evaluation metrics are
shown in Table 5. Overall, deep learning performs much better than
classical machine learning methods. Among them, the evaluation
indexes of the training results using the U-Net and Seg-Net models
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can reach 0.90 on average. The evaluation results of the MedT model
are slightly worse at a level, between 0.70 and 0.80. The training time
is longer for MedT and similar for U-Net and Seg-Net.

Based on the above results, EBHI-Seg achieved a clear
differentiation using deep learning image segmentation methods.
Image segmentation metrics for different deep learning methods
are significantly different so that EBHI-Seg can evaluate their
segmentation performance.

4.4. Experimental environment

This section presents the hardware configuration data required
for this experiment as well as the software version.

Processor: Intel Core i7-8700 @ 3.20GHz Six Core
Graphics (GPU): NVIDIA GeForce RTX 2080

TABLE 4 Deep learning of the number of di�erent types of training images.

Train Test Predict

Normal 30 30 16

Polyp 190 190 94

Low-grade IN 256 256 127

High-grade IN 74 74 38

Serrated adenoma 23 23 12

Adenocarcinoma 318 318 159

Graphics (CPU): Intel UHD Graphics 630
Hard Drive: SM961 NVMe SAMSUNG 512GB (Solid State Drive)
Motherboard: Dell 0NNNCT (C246 chipset)
Mainframe: Dell Precision 3630 Tower Desktop Mainframe
Software Versions: CUDA 11.2, torch 1.7.0, torchvision 0.8.0,

python 3.8.

5. Discussion

5.1. Discussion of image segmentation
results using classical machine learning
methods

Six types of tumor differentiation stage data in EBHI-Seg
were analyzed using classical machine learning methods to obtain
the results in Table 3. Base on the Dice ratio metrics, k-means,
MRF and Sobel show no significant differences among the three
methods around 0.55. In contrast, Watershed metrics are ∼0.45
on average, which is lower than the above three metrics. OTSU
index is around ∼0.40 because the foreground-background is
blurred in some experimental samples and OTSU had a difficulty
extracting a suitable segmentation threshold, which resulted in
undifferentiated test results. Precision and Recall evaluation indexes
for k-means, MRF, and Sobel are also around 0.60, which is
higher than those for OTSU and Watershed methods by about
0.20. In these three methods, k-means and MRF are higher than
Sobel in the visual performance of the images. Although Sobel
is the same as these two methods in terms of metrics, it is
difficult to distinguish foreground and background images in real

TABLE 5 Evaluation metrics for three di�erent segmentation methods based on deep learning.

Dice ratio JaccardIndex Conformity
coe�cient

Precision Recall

U-Net 0.411 0.263 –2.199 0.586 0.328

Normal Seg-Net 0.777 0.684 –0.607 0.895 0.758

MedT 0.676 0.562 –0.615 0.874 0.610

U-Net 0.965 0.308 –1.514 0.496 0.470

Polyp Seg-Net 0.937 0.886 0.858 0.916 0.965

MedT 0.771 0.643 0.336 0.687 0.920

U-Net 0.895 0.816 0.747 0.847 0.961

High-grade IN Seg-Net 0.894 0.812 0.757 0.881 0.913

MedT 0.824 0.707 0.556 0.740 0.958

U-Net 0.911 0.849 0.773 0.879 0.953

Low-grade IN Seg-Net 0.924 0.864 0.826 0.883 0.977

MedT 0.889 0.808 0.730 0.876 0.916

U-Net 0.887 0.808 0.718 0.850 0.950

Adenocarcinoma Seg-Net 0.865 0.775 0.646 0.792 0.977

MedT 0.735 0.595 0.197 0.662 0.864

U-Net 0.938 0.886 0.865 0.899 0.983

Serrated adenoma Seg-Net 0.907 0.832 0.794 0.859 0.963

MedT 0.670 0.509 –0.043 0.896 0.544
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images.The segmentation results for MRF are obvious but the
running time for MRF is too long in comparison with other
classical learning methods. Since classical machine learning methods
have a rigorous theoretical foundation and simple ideas, they have
been shown to perform well when used for specific problems.
However, the performance of different methods varied in the
present study.

5.2. Discussion of image segmentation
results using deep learning methods

In general, deep learning models are considerably superior to
classical machine learning methods, and even the lowest MedT
performance is still higher than the highest accuracy of classical
machine learning methods. In EBHI-Seg, the Dice ratio evaluation
index of MedT reaches ∼0.75. However, the MedT model size
was larger and as a result the training time was too long. U-Net
and Seg-Net have higher evaluation indexes than MedT, both of
about 0.88. Among them, Seg-Net has the least training time and
the lowest training model size. Because the normal category has
fewer sample images than other categories, the evaluation metrics
of the three deep learning methods in this category are significantly
lower than those in other categories. The evaluation metrics of
the three segmentation methods are significantly higher in the
other categories, with Seg-Net averaging above 0.90 and MedT
exceeding 0.80.

6. Conclusion and future work

The present stduy introduced a publicly available colorectal
pathology image dataset containing 4456 magnified 400× pathology
images of six types of tumor differentiation stages. EBHI-Seg has
high segmentation accuracy as well as good robustness. In the
classical machine learning approach, segmentation experiments were
performed using different methods and evaluation metrics analysis
was carried out utilizing segmentation results. The highest and lowest
Dice ratios are 0.65 and 0.30, respectively. The highest Precision
and Recall values are 0.70 and 0.90, respectively, while the lowest
values are 0.50 and 0.35, respectively. All three models performed
well when using the deep learning method, with the highest Dice
ratio reaching above 0.95 and both Precision and Recall values
reaching above 0.90. The segmentation experiments using EBHI-
Seg show that this dataset effectively perform the segmentation
task in each of the segmentation methods. Furthermore, there are
significant differences among the segmentation evaluation metrics.
Therefore, EBHI-Seg is practical and effective in performing image
segmentation tasks.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: EBHI-Seg is publicly available at:
https://figshare.com/articles/dataset/EBHISEG/21540159/1.

Author contributions

LS: data preparation, experiment, result analysis, and paper
writing. XL: data collection and medical knowledge. WH:
data collection, data preparation, and paper writing. HC: data
preparation and paper writing. JC, ZF, MGa, YJ, GL, DM, ZM,
QM, and DT: data preparation. HS: medical knowledge. MGr
and YT: result analysis. SQ: method. CL: data collection, method,
experiment, result analysis, paper writing, and proofreading.
All authors contributed to the article and approved the
submitted version.

Funding

This work was supported by the National Natural Science
Foundation of China (No. 82220108007) and the Beijing Xisike
Clinical Oncology Research Foundation (No. Y-tongshu2021/1n-
0379).

Acknowledgments

We thankMiss. Zixian Li andMr. Guoxian Li for their important
discussion in this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the reviewers.
Any product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by the
publisher.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

2. Lee YC, Lee YL, Chuang JP, Lee JC. Differences in survival between colon and rectal
cancer from SEER data. PLoS ONE. (2013) 8:e78709. doi: 10.1371/journal.pone.0078709

3. Pamudurthy V, Lodhia N, Konda VJ. Advances in endoscopy for colorectal polyp
detection and classification. In: Baylor University Medical Center Proceedings. Vol. 33.
Taylor & Francis (2020). p. 28–35. doi: 10.1080/08998280.2019.1686327

4. Thijs J, Van Zwet A, Thijs W, Oey H, Karrenbeld A, Stellaard F, et al.
Diagnostic tests for Helicobacter pylori: a prospective evaluation of their accuracy,

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2023.1114673
https://figshare.com/articles/dataset/EBHISEG/21540159/1
https://doi.org/10.3322/caac.21660
https://doi.org/10.1371/journal.pone.0078709
https://doi.org/10.1080/08998280.2019.1686327
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2023.1114673

without selecting a single test as the gold standard. Am J Gastroenterol. (1996) 91:10.
doi: 10.1016/0016-5085(95)23623-6

5. Labianca R, Nordlinger B, Beretta G,Mosconi S, MandalàM, Cervantes A, et al. Early
colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.
Ann Oncol. (2013) 24:vi64–vi72. doi: 10.1093/annonc/mdt354

6. Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining
of tissue and cell sections. Cold Spring Harbor Protocols. (2008) 2008:pdb-prot4986.
doi: 10.1101/pdb.prot4986

7. Chan JK. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical
pathology. Int J Surg Pathol. (2014) 22:12–32. doi: 10.1177/1066896913517939

8. Gupta V, Vasudev M, Doegar A, Sambyal N. Breast cancer detection from
histopathology images using modified residual neural networks. Biocybernetics Biomed
Eng. (2021) 41:1272–87. doi: 10.1016/j.bbe.2021.08.011

9. Mathew T, Kini JR, Rajan J. Computational methods for automated mitosis
detection in histopathology images: a review. Biocybern Biomed Eng. (2021) 41:64–82.
doi: 10.1016/j.bbe.2020.11.005

10. Li C, Wang K, Xu N. A survey for the applications of content-based microscopic
image analysis in microorganism classification domains. Artif Intell Rev. (2019)
51:577–646. doi: 10.1007/s10462-017-9572-4

11. Zhang J, Li C, Yin Y, Zhang J, Grzegorzek M. Applications of artificial neural
networks in microorganism image analysis: a comprehensive review from conventional
multilayer perceptron to popular convolutional neural network and potential visual
transformer. Artif Intell Rev. (2022) 2022:1–58. doi: 10.1007/s10462-022-10192-7

12. Zhang J, Li C, Kosov S, Grzegorzek M, Shirahama K, Jiang T, et al. LCU-Net: a novel
low-cost U-Net for environmental microorganism image segmentation. Pattern Recogn.
(2021) 115:107885. doi: 10.1016/j.patcog.2021.107885

13. Zhao P, Li C, RahamanMM,XuH, YangH, SunH, et al. A comparative study of deep
learning classification methods on a small environmental microorganism image dataset
(EMDS-6): from convolutional neural networks to visual transformers. Front Microbiol.
(2022) 13:792166. doi: 10.3389/fmicb.2022.792166

14. Kulwa F, Li C, Zhang J, Shirahama K, Kosov S, Zhao X, et al. A new pairwise deep
learning feature for environmental microorganism image analysis. Environ Sci Pollut Res.
(2022) 2022:1–18. doi: 10.1007/s11356-022-18849-0

15. Ma P, Li C, Rahaman MM, Yao Y, Zhang J, Zou S, et al. A state-of-the-
art survey of object detection techniques in microorganism image analysis: from
classical methods to deep learning approaches. Artif Intell Rev. (2022) 2022:1–72.
doi: 10.1007/s10462-022-10209-1

16. Kulwa F, Li C, Grzegorzek M, Rahaman MM, Shirahama K, Kosov S.
Segmentation of weakly visible environmental microorganism images using pair-
wise deep learning features. Biomed Signal Process Control. (2023) 79:104168.
doi: 10.1016/j.bspc.2022.104168

17. Zhang J, Li C, Rahaman MM, Yao Y, Ma P, Zhang J, et al. A comprehensive
survey with quantitative comparison of image analysis methods for microorganism
Biovolume measurements. Arch Comput Methods Eng. (2022) 30, 639–73.
doi: 10.1007/s11831-022-09811-x

18. Zhang J, Li C, Rahaman MM, Yao Y, Ma P, Zhang J, et al. A comprehensive
review of image analysis methods for microorganism counting: from classical
image processing to deep learning approaches. Artif Intell Rev. (2021) 2021:1–70.
doi: 10.1007/s10462-021-10082-4

19. Rahaman MM, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, et al.
Identification of COVID-19 samples from chest X-ray images using deep learning: a
comparison of transfer learning approaches. J X-ray Sci Technol. (2020) 28:821–39.
doi: 10.3233/XST-200715

20. Chen H, Li C, Wang G, Li X, Rahaman MM, Sun H, et al. GasHis-Transformer:
a multi-scale visual transformer approach for gastric histopathological image detection.
Pattern Recogn. (2022) 130:108827. doi: 10.1016/j.patcog.2022.108827

21. Li Y,Wu X, Li C, Li X, ChenH, Sun C, et al. A hierarchical conditional random field-
based attention mechanism approach for gastric histopathology image classification. Appl
Intell. (2022) 2022:1–22. doi: 10.1007/s10489-021-02886-2

22. Hu W, Li C, Li X, Rahaman MM, Ma J, Zhang Y, et al. GasHisSDB: a new gastric
histopathology image dataset for computer aided diagnosis of gastric cancer. Comput Biol
Med. (2022) 2022:105207. doi: 10.1016/j.compbiomed.2021.105207

23. Chen H, Li C, Li X, Rahaman MM, Hu W, Li Y, et al. IL-MCAM: an interactive
learning and multi-channel attention mechanism-based weakly supervised colorectal
histopathology image classification approach. Comput Biol Med. (2022) 143:105265.
doi: 10.1016/j.compbiomed.2022.105265

24. Hu W, Chen H, Liu W, Li X, Sun H, Huang X, et al. A comparative study of gastric
histopathology sub-size image classification: from linear regression to visual transformer.
Front Med. (2022) 9:1072109. doi: 10.3389/fmed.2022.1072109

25. Li Y, Li C, Li X, Wang K, Rahaman MM, Sun C, et al. A comprehensive review
of Markov random field and conditional random field approaches in pathology image
analysis. Arch Comput Methods Eng. (2022) 29:609–39. doi: 10.1007/s11831-021-09591-w

26. Sun C, Li C, Zhang J, Rahaman MM, Ai S, Chen H, et al. Gastric histopathology
image segmentation using a hierarchical conditional random field. Biocybern Biomed Eng.
(2020) 40:1535–55. doi: 10.1016/j.bbe.2020.09.008

27. Li X, Li C, Rahaman MM, Sun H, Li X, Wu J, et al. A comprehensive review
of computer-aided whole-slide image analysis: from datasets to feature extraction,
segmentation, classification and detection approaches. Artif Intell Rev. (2022)2022:1–70.
doi: 10.1007/s10462-021-10121-0

28. Rahaman MM, Li C, Wu X, Yao Y, Hu Z, Jiang T, et al. A survey for cervical
cytopathology image analysis using deep learning. IEEE Access. (2020) 8:61687–710.
doi: 10.1109/ACCESS.2020.2983186

29. Mamunur Rahaman M, Li C, Yao Y, Kulwa F, Wu X, Li X, et al.
DeepCervix: a deep learning-based framework for the classification of cervical cells
using hybrid deep feature fusion techniques. Comput Biol Med. (2021) 136:104649.
doi: 10.1016/j.compbiomed.2021.104649

30. Liu W, Li C, Rahaman MM, Jiang T, Sun H, Wu X, et al. Is the aspect
ratio of cells important in deep learning? A robust comparison of deep learning
methods for multi-scale cytopathology cell image classification: from convolutional
neural networks to visual transformers. Comput Biol Med. (2021) 2021:105026.
doi: 10.1016/j.compbiomed.2021.105026

31. Liu W, Li C, Xu N, Jiang T, Rahaman MM, Sun H, et al. CVM-
Cervix: a hybrid cervical pap-smear image classification framework using CNN,
visual transformer and multilayer perceptron. Pattern Recogn. (2022) 2022:108829.
doi: 10.1016/j.patcog.2022.108829

32. Chen A, Li C, Zou S, Rahaman MM, Yao Y, Chen H, et al. SVIA dataset: a new
dataset of microscopic videos and images for computer-aided sperm analysis. Biocybern
Biomed Eng. (2022) 2022:10. doi: 10.1016/j.bbe.2021.12.010

33. Zou S, Li C, Sun H, Xu P, Zhang J, Ma P, et al. TOD-CNN: an effective convolutional
neural network for tiny object detection in sperm videos. Comput Biol Med. (2022)
146:105543. doi: 10.1016/j.compbiomed.2022.105543

34. Pacal I, Karaboga D, Basturk A, Akay B, Nalbantoglu U. A comprehensive
review of deep learning in colon cancer. Comput Biol Med. (2020) 126:104003.
doi: 10.1016/j.compbiomed.2020.104003

35. Miranda E, Aryuni M, Irwansyah E. A survey of medical image classification
techniques. In: 2016 International Conference on Information Management and
Technology (ICIMTech). Bandung: IEEE (2016). p. 56–61.

36. Kotadiya H, Patel D. Review of medical image classification techniques. In:
Third International Congress on Information and Communication Technology. Singapore:
Springer (2019). p. 361–9. doi: 10.1007/978-981-13-1165-9_33

37. Trivizakis E, Ioannidis GS, Souglakos I, Karantanas AH, Tzardi M, Marias
K. A neural pathomics framework for classifying colorectal cancer histopathology
images based on wavelet multi-scale texture analysis. Sci Rep. (2021) 11:1–10.
doi: 10.1038/s41598-021-94781-6

38. Oliveira SP, Neto PC, Fraga J, Montezuma D, Monteiro A, Monteiro J, et al. CAD
systems for colorectal cancer fromWSI are still not ready for clinical acceptance. Sci Rep.
(2021) 11:1–15. doi: 10.1038/s41598-021-93746-z

39. Kausar T, Kausar A, Ashraf MA, Siddique MF, Wang M, Sajid M, et al. SA-GAN:
stain acclimation generative adversarial network for histopathology image analysis. Appl
Sci. (2021) 12:288. doi: 10.3390/app12010288

40. Wei J, Suriawinata A, Ren B, Liu X, Lisovsky M, Vaickus L, et al. Learn like
a pathologist: curriculum learning by annotator agreement for histopathology image
classification. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. Waikoloa, HI: IEEE (2021). p. 2473–83.

41. Bilal M, Tsang YW, Ali M, Graham S, Hero E, Wahab N, et al. AI based pre-
screening of large bowel cancer via weakly supervised learning of colorectal biopsy
histology images.medRxiv. (2022) doi: 10.1101/2022.02.28.22271565

42. De Leon MP, Di Gregorio C. Pathology of colorectal cancer. Digest Liver Dis. (2001)
33:372–88. doi: 10.1016/S1590-8658(01)80095-5

43. Cooper HS, Deppisch LM, Kahn EI, Lev R, Manley PN, Pascal RR,
et al. Pathology of the malignant colorectal polyp. Hum Pathol. (1998) 29:15–26.
doi: 10.1016/S0046-8177(98)90385-9

44. RenW, Yu J, Zhang ZM, Song YK, Li YH, Wang L. Missed diagnosis of early gastric
cancer or high-grade intraepithelial neoplasia. World J Gastroenterol. (2013) 19:2092.
doi: 10.3748/wjg.v19.i13.2092

45. Jass JR, Sobin LH. Histological Typing of Intestinal Tumours. Berlin; Heidelberg:
Springer Science & Business Media (2012). doi: 10.1007/978-3-642-83693-0_2

46. Spring KJ, Zhao ZZ, Karamatic R, Walsh MD, Whitehall VL, Pike T, et al.
High prevalence of sessile serrated adenomas with BRAF mutations: a prospective
study of patients undergoing colonoscopy. Gastroenterology. (2006) 131:1400–7.
doi: 10.1053/j.gastro.2006.08.038

47. Li SC, Burgart L. Histopathology of serrated adenoma, its variants, and
differentiation from conventional adenomatous and hyperplastic polyps. Arch Pathol Lab
Med. (2007) 131:440–5. doi: 10.5858/2007-131-440-HOSAIV

48. Zou KH, Warfield SK, Bharatha A, Tempany CM, Kaus MR, Haker SJ,
et al. Statistical validation of image segmentation quality based on a spatial overlap
index1: scientific reports. Acad Radiol. (2004) 11:178–89. doi: 10.1016/S1076-6332(03)
00671-8

49. Jaccard P. Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bull Soc Vaudoise Sci Nat. (1901) 37:547–79.

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2023.1114673
https://doi.org/10.1016/0016-5085(95)23623-6
https://doi.org/10.1093/annonc/mdt354
https://doi.org/10.1101/pdb.prot4986
https://doi.org/10.1177/1066896913517939
https://doi.org/10.1016/j.bbe.2021.08.011
https://doi.org/10.1016/j.bbe.2020.11.005
https://doi.org/10.1007/s10462-017-9572-4
https://doi.org/10.1007/s10462-022-10192-7
https://doi.org/10.1016/j.patcog.2021.107885
https://doi.org/10.3389/fmicb.2022.792166
https://doi.org/10.1007/s11356-022-18849-0
https://doi.org/10.1007/s10462-022-10209-1
https://doi.org/10.1016/j.bspc.2022.104168
https://doi.org/10.1007/s11831-022-09811-x
https://doi.org/10.1007/s10462-021-10082-4
https://doi.org/10.3233/XST-200715
https://doi.org/10.1016/j.patcog.2022.108827
https://doi.org/10.1007/s10489-021-02886-2
https://doi.org/10.1016/j.compbiomed.2021.105207
https://doi.org/10.1016/j.compbiomed.2022.105265
https://doi.org/10.3389/fmed.2022.1072109
https://doi.org/10.1007/s11831-021-09591-w
https://doi.org/10.1016/j.bbe.2020.09.008
https://doi.org/10.1007/s10462-021-10121-0
https://doi.org/10.1109/ACCESS.2020.2983186
https://doi.org/10.1016/j.compbiomed.2021.104649
https://doi.org/10.1016/j.compbiomed.2021.105026
https://doi.org/10.1016/j.patcog.2022.108829
https://doi.org/10.1016/j.bbe.2021.12.010
https://doi.org/10.1016/j.compbiomed.2022.105543
https://doi.org/10.1016/j.compbiomed.2020.104003
https://doi.org/10.1007/978-981-13-1165-9_33
https://doi.org/10.1038/s41598-021-94781-6
https://doi.org/10.1038/s41598-021-93746-z
https://doi.org/10.3390/app12010288
https://doi.org/10.1101/2022.02.28.22271565
https://doi.org/10.1016/S1590-8658(01)80095-5
https://doi.org/10.1016/S0046-8177(98)90385-9
https://doi.org/10.3748/wjg.v19.i13.2092
https://doi.org/10.1007/978-3-642-83693-0_2
https://doi.org/10.1053/j.gastro.2006.08.038
https://doi.org/10.5858/2007-131-440-HOSAIV
https://doi.org/10.1016/S1076-6332(03)00671-8
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Shi et al. 10.3389/fmed.2023.1114673

50. Naz S, Majeed H, Irshad H. Image segmentation using fuzzy clustering: a survey.
In: 2010 6th International Conference on Emerging Technologies (ICET). Islamabad: IEEE
(2010). p. 181–6.

51. Zaitoun NM, Aqel MJ. Survey on image segmentation techniques.
Procedia Comput Sci. (2015) 65:797–806. doi: 10.1016/j.procs.2015.
09.027

52. Dhanachandra N, Manglem K, Chanu YJ. Image segmentation
using K-means clustering algorithm and subtractive clustering algorithm.
Procedia Comput Sci. (2015) 54:764–71. doi: 10.1016/j.procs.2015.
06.090

53. Deng H, Clausi DA. Unsupervised image segmentation using a simple MRF
model with a new implementation scheme. Pattern Recogn. (2004) 37:2323–35.
doi: 10.1016/S0031-3203(04)00195-5

54. Huang C, Li X, Wen Y. AN OTSU image segmentation based on fruitfly
optimization algorithm. Alexandria Eng J. (2021) 60:183–8. doi: 10.1016/j.aej.2020.
06.054

55. Khiyal MSH, Khan A, Bibi A. Modified watershed algorithm for segmentation of
2D images. Issues Informing Sci Inf Technol. (2009) 6:1077. doi: 10.28945/1077

56. Zhang H, Zhu Q, Guan Xf. Probe into image segmentation based on Sobel operator
and maximum entropy algorithm. In: 2012 International Conference on Computer Science
and Service System. Nanjing: IEEE(2012). p. 238–41.

57. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-
decoder architecture for image segmentation. IEEE Trans Pattern AnalMach Intell. (2017)
39:2481–95. doi: 10.1109/TPAMI.2016.2644615

58. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical
image segmentation. In: International CONFERENCE on Medical Image Computing
and Computer-Assisted Intervention. Berlin; Heidelberg: Springer (2015). p. 234–41.
doi: 10.1007/978-3-662-54345-0_3

59. Valanarasu JMJ, Oza P, Hacihaliloglu I, Patel VM. Medical transformer: gated
axial-attention for medical image segmentation. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Cham: Springer (2021). p. 36–46.
doi: 10.1007/978-3-030-87193-2_4

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2023.1114673
https://doi.org/10.1016/j.procs.2015.09.027
https://doi.org/10.1016/j.procs.2015.06.090
https://doi.org/10.1016/S0031-3203(04)00195-5
https://doi.org/10.1016/j.aej.2020.06.054
https://doi.org/10.28945/1077
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/978-3-662-54345-0_3
https://doi.org/10.1007/978-3-030-87193-2_4
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	EBHI-Seg: A novel enteroscope biopsy histopathological hematoxylin and eosin image dataset for image segmentation tasks
	1. Introduction
	2. Related work
	3. Basic information for EBHI-Seg
	3.1. Dataset overview
	3.2. Data type description
	3.2.1. Normal
	3.2.2. Polyp
	3.2.3. Intraepithelial neoplasia
	3.2.4. Adenocarcinoma
	3.2.5. Serrated adenoma


	4. Evaluation of EBHI-Seg
	4.1. Image segmentation evaluation metric
	4.2. Classical machine learning methods
	4.3. Deep learning methods
	4.4. Experimental environment

	5. Discussion
	5.1. Discussion of image segmentation results using classical machine learning methods
	5.2. Discussion of image segmentation results using deep learning methods

	6. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


