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Introduction: Malignant skin lesions pose a great threat to the health of patients.

Due to the limitations of existing diagnostic techniques, such as poor accuracy and

invasive operations, malignant skin lesions are highly similar to other skin lesions,

with low diagnostic e�ciency and high misdiagnosis rates. Automatic medical

image classification using computer algorithms can e�ectively improve clinical

diagnostic e�ciency. However, existing clinical datasets are sparse and clinical

images have complex backgrounds, problems with noise interference such as

light changes and shadows, hair occlusions, etc. In addition, existing classification

models lack the ability to focus on lesion regions in complex backgrounds.

Methods: In this paper, we propose a DBN (double branch network) based on a

two-branch network model that uses a backbone with the same structure as the

original network branches and the fused network branches. The feature maps of

each layer of the original network branch are extracted by our proposed CFEBlock

(Common Feature Extraction Block), the common features of the feature maps

between adjacent layers are extracted, and then these features are combined with

the feature maps of the corresponding layers of the fusion network branch by

FusionBlock, and finally the total prediction results are obtained by weighting the

prediction results of both branches. In addition, we constructed a new dataset

CSLI (Clinical Skin Lesion Images) by combining the publicly available dataset

PAD-UFES-20 with our collected dataset, the CSLI dataset contains 3361 clinical

dermatology images for six disease categories: actinic keratosis (730), cutaneous

basal cell carcinoma (1136), malignant melanoma (170) cutaneous melanocytic

nevus (391), squamous cell carcinoma (298) and seborrheic keratosis (636).

Results: We divided the CSLI dataset into a training set, a validation set and a test

set, and performed accuracy, precision, sensitivity, specificity, f1score, balanced

accuracy, AUC summary, visualisation of di�erent model training, ROC curves

and confusion matrix for various diseases, ultimately showing that the network

performed well overall on the test data.

Discussion: The DBN contains two identical feature extraction network branches,

a structure that allows shallow feature maps for image classification to be

used with deeper feature maps for information transfer between them in both

directions, providing greater flexibility and accuracy and enhancing the network’s

ability to focus on lesion regions. In addition, the dual branch structure of DBN

provides more possibilities for model structure modification and feature transfer,

and has great potential for development.

KEYWORDS

clinical images, skin classification, medical image classification, deep learning,

dermatology

1. Introduction

Skin lesions are a common proliferative disease of the skin with many types, clinically

classified as benign and malignant lesions (1). Benign skin lesions grow more slowly and do

not metastasize or spread to local structures or distant parts of the body and usually do not

require treatment (2). Malignant skin lesions have the risk of invading surrounding tissues
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and organs and metastasis, and early diagnosis and timely

treatment can improve the cure rate and survival rate. Therefore, it

is important to find a efficient and accurate diagnostic method for

early skin malignancies. With the rise of artificial intelligence (AI),

computer diagnosis of skin diseases has become possible (3, 4). AI

has great potential to improve the diagnosis of dermatologists and

to promote the construction and development of the discipline.

Artificial intelligence systems can support dermatologists in

their daily clinical practice, physicians can also provide clinical

information to system to improve the correct diagnosis rate of

the AI.

So far, there are still many scholars studying about skin

classification to obtain higher accuracy, while Khouloud et al. (5)

proposed a deep learning model for detecting melanoma, which

consists of two parts, a segmentation network called W-Net, and a

classification network Inception ResNet, and experiments showed

that the W-Net has excellent performance in segmentation and

classification with higher accuracy. Benyahia et al. (6) investigated

the efficiency of using 17 common pre-trained convolutional neural

network architectures as feature extractors and 24machine learning

classifiers and found that DenseNet201 (7) combined with Fine

KNN or Cubic SVM achieved the best accuracy on the ISIC2019

dataset and PH2 dataset. Popescu et al. (8) proposed a skin

lesion classification system based on deep learning techniques

and collective intelligence, analyzing the performance of nine

classification networks to obtain a weight matrix to make final

and more accurate decisions related to prediction based on

the associated weights of each network output. Hasan et al.

(9) proposed an optimized color feature (OCF) for skin lesion

segmentation and a deep convolutional neural network (DCNN)

based classification of skin lesions. A hybrid technique was

also proposed to eliminate artifacts and improve lesion contrast.

Features are extracted using the DCNN-9 model and fused with

OCFs by a parallel fusion method. Finally, a high-ranking feature

selection technique based on normal distribution is used to select

the most robust features for classification.

Dermatoscopy, also known as skin surface transillumination

microscopy, is gradually being promoted and applied by

dermatologists everywhere as a new adjunct to clinical examination

and diagnosis in dermatology, due to its ease of use, non-

invasiveness, and improved diagnostic accuracy. Similarly, most

current classification models use dermatoscopic images as the

main training set, as dermatoscopic images contain less noise

and have better training results. Less research has been done on

clinical images taken by digital cameras in the traditional way.

So we construct a clinical dataset and designs a double-branch

network structure for clinical images, which contains the original

network branch and the fusion network branch, and it supports

the fusion of feature maps between different levels for passing, thus

improve the feature extraction capability of the network. The main

contributions are summarized as follows.

(1) We constructed a new dataset, CSLI (Clinical Skin Lesion

Images), which contains more than 3,000 clear clinical skin

medical images of six common skin disease categories.

(2) We proposed a double-branch network structure DBN, which

can be used on different Backbone, and its main purpose is

to achieve the transfer and fusion between shallow and deep

feature maps.

(3) We proposed CFEBlock and FusionBlock, where CFEBlock

achieves the extraction of common features from the feature

maps of adjacent layers by the operation of convolutional dot

product addition, and FusionBlock is responsible for efficiently

combining the common feature maps obtained from the

common feature extraction part with the feature maps of the

fusion network branches.

(4) We tested the proposed DBN on the CSLI and HAM10000

dataset and compared it with other networks, and finally

concluded that the DBN performed better overall.

The remainder of the paper is structured as follows: in Section

2 we summarize related work, and in Section 3 we describe the

preparation of the dataset in question and the setup of the DBN.

In Section 4, we conduct experiments on the CSLI dataset and

compare the effectiveness of the DBN with baseline. In Section 5,

we discuss the implications of the results of this work, summarize

and indicate directions for future work.

2. Related work

In recent years, convolutional neural networks (CNN) based

approaches have made impressive advances and developments

in computer vision. At the core of artificial intelligence-aided

diagnosis of skin lesions is the automatic computer classification

of skin lesions images, and the task of image classification is a very

general problem: any problem that requires distinguishing between

different associated images can fall into this category. Today,

an increasing number of scholars are using deep learning-based

methods for skin lesions classification.

Han et al. (10) used CNN to classify up to 134 diseases

and showed that CNN was more effective than dermatologists

in analyzing blurred, indistinguishable images. Hasan et al.

(9) proposed an automated dermoscopic SLC framework called

Dermoscopic Expert (DermoExpert) and performed experiments

on ISIC datasets. The method combines preprocessing and

hybrid Convolutional Neural Network (hybrid-CNN). In the

proposed preprocessing, lesion segmentation, enhancement (based

on geometry and intensity) and category rebalancing (penalizing

the loss of most categories and merging additional images into few

categories) are applied. While ResNet (11), one of the dominant

classificationmodels in convolutional neural networks, remains the

preferred backbone network for a large number of researchers, Han

et al. (12) used the ResNet-152 model to classify clinical images

of 12 dermatological diseases. Toğaçar et al. (13) proposed an

attention mechanism based on ResNet50 adding to the network

structure SE-ResNet50 and SE-ResNeXt50, the algorithm of this

study showed better results in f1score metrics, surpassing non-

dermatologists, with accuracy comparable to that of dermatologists.

Lightweight network models for skin disease classification

is also one of the important research directions, which can

be embedded in mobile devices, allowing patients to get more

accurate test results before the doctor diagnoses them and the

doctor can refer to the results afterwards. Toğaçar et al. (13)

proposed a model based on autoencoder, impulse neural network

and convolutional neural network, which uses the classification

network of MobilenetV2 (14), which can greatly save the number

of parameters and make it applicable to smartphones, while the
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autoencoder and impulse neural network compensate for the low

accuracy of MobilenetV2. Srinivasu et al. (15) added an LSTM (16)

mechanism to MobileNetV2, which on the HAM10000 dataset to

achieve 85% accuracy and applied the model to mobile phones.

Iqbal et al. (17) designed a lightweight skin classification network,

CSLNet, which has high efficiency and performance, the algorithm

proposed in this study outperformed the state-of-the-art algorithm

on the ISIC dataset.

In addition to using methods, many researchers have

combined current hot technologies and others to classify

images of skin diseases. Reinforcement learning is a class

of frameworks for learning, prediction, and decision making

that interacts with the environment and is an algorithm

for sequential problems. Compared to supervised learning,

reinforcement learning considers long-term payoffs, and this long-

term perspective is crucial to find the optimal solution. For

example, Akrout et al. (18) introduced reinforcement learning

techniques and combined them with CNN to propose a Question

Answering (QA) model, which improved the classification

confidence and accuracy of a visual symptom checker, while

reducing the average number of questions asked. Federated

learning can carry out efficient machine learning frameworks

amongmultiple participants or computational nodes while meeting

the requirements of user privacy protection, data security, and

government regulations. Bdair et al. (19) proposed a semi-

supervised federation learning approach and proposed Peer

Anonymization (PA) technique to improve privacy and reduce

communication cost while improving performance. Knowledge

distillation is a method of compressed models, consisting of

a teacher network and a student network, which enables the

student network to effectively learn the generalization ability of

the teacher network by learning the output of the complex and

highly generalized teacher network through the streamlined and

small parametric student network. Van Molle et al. (20) used

knowledge distillation techniques to train deep learning networks

and applied them to skin disease classification with good result.

Transformer is a model that uses attention mechanism to improve

the training speed, which is widely used in natural language

processing, and a recent study confirmed its great potential in

computer vision field as well, Shamshad et al. (21) provided a

detailed summary of the application of Transformer in medical

field. Wu et al. (22) cited natural language Transformer technique

in analysis combined with classification networks on full-field

digital slices, and experimental results indicated that the method

outperformed other full-field digital slicing methods. In addition

to model and technical innovations, combining medical knowledge

to analyze disease categories is also a new direction, for example,

Kinyanjui et al. (23) proposed a method to estimate skin color in

a benchmark dataset of dermatological diseases and investigated

whether model performance depends on this metric. Pacheco and

Krohling (24) used metadata (e.g., patient’s age, gender, etc.) to

aid in classification. They used five different networks and added

their proposed metadata processing block, which led to improved

classification results of the network.

Clinical images are more challenging to classify than

dermoscopic images due to their off-center location of lesions, high

noise, and susceptibility to light, which leads to a more challenging

classification of clinical images. In clinical skin classification, good

classification results have been achieved using a combination of

segmentation and classification networks, but the difficulty in

labeling the lesion regions have become major problems for the

two-stage model. Whereas, the approach using only classification

networks does not require additional training of segmentation

models, most of the existing skin classification networks are one-

way down the process, which leads to the following problems. (1)

Feature maps can only be transferred from shallow to deep layers,

while deep features cannot be transferred upward. Usually deep

learning networks contain richer contour and texture information

in the shallow feature maps due to the perceptual field limitation,

while the deeper features contain more semantic and location

information. The inability of the deep layer to propagate upward

leads to possible bias in the location of the image of interest at

the shallow layer thus leading to a decrease in accuracy. (2) The

one-way network structure is less flexible and cannot be easily

modified or modified to add the complete ImageNet pre-training

weights to the backbone, which affects the training effect. In

summary, this paper proposes a double-branch network model for

automatic classification of skin diseases.

3. Methods

3.1. Dataset construction

The CSLI dataset contains two parts, the data collected

from January 2018 to June 2022 from dermatology outpatients

at Department of Dermatology of the Second Hospital of Jilin

University and the open clinical dataset PAD-UFES-20 from the

Federal University of Espirito Santo (25).

The collection was mainly done by a number of experienced

dermatologists at the Second Hospital of Jilin University, and

the dataset used the pathological diagnosis of the lesion as the

real label for the collected images. The dataset contained 1,063

patients and 1,063 images of five diseases: basal cell carcinoma of

skin (BCC), squamous cell carcinoma (SCC), seborrheic keratosis

(SEK), malignant melanoma (MEL), and melanocytic nevus of skin

(NEV). The equipment used for the capture is a professional HD

digital camera. We focus on the key areas of the lesion as the center

of the shot, adjusting the shooting distance to the exact size of the

lesion and taking multiple images from different angles against a

solid color background.

Data cleaning and labeling was done by several dermatologists.

The labeling of each image we acquired was confirmed by biopsy to

ensure the accuracy of the labels. In terms of validity, we performed

rigorous data cleaning of the acquired image data, eliminating

blurred, duplicate, low-quality images. For multiple images of

lesions taken from each patient, we kept only one image of the best

quality as a sample of the dataset, after which we further cropped

these images to crop out the lesion areas to obtain the precise skin

lesion areas that would constitute the dataset used for training.

We perform center cropping on the collected images mainly for

the following two reasons: (1) The lesions in the PAD-UFES-

20 images are basically located in the positive center, and using

center cropping can make the sample distribution more uniform.

(2) Since there are images with small lesions and large sizes in

the clinically taken images, scaling such images before performing

network training will cause the lesions with a small percentage of

the original area to almost disappear, which is a bad learning sample
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for the model is a bad learning sample, thus affecting the model’s

ability to discriminate the disease.

The PAD-UFES-20 dataset has 1,373 patients, 1,641 skin

lesions, and 2,298 images. The dataset contains a total of six

categories of images, adding one more category of actinic keratosis

(ACK) to the five diseases mentioned above. Since the images in

this dataset are collected using different smartphone devices they

present different resolutions, sizes, and lighting conditions, and all

images were stored in PNG file format.

The CSLI dataset is available from the corresponding author

upon reasonable request. Table 1 shows the detailed number of

disease samples for each category in the two-part dataset. Figure 1

shows a partial sample of the CSLI dataset.

3.2. Network structure

3.2.1. Network structure
For the above CSLI dataset, we propose a two-branch

classification network framework which can support the use of all

feature extraction networks. Taking MobileNetV2 as an example,

Figure 2 shows the overall structure of the network, which consists

of two branches, the left side is called the “original network

branch” and the right side is called the “fusion network branch.”

The original network branch is responsible for the initial feature

extraction of the input image, which is used to generate shallow

features rich in texture and background information, as well

as generative features rich in semantic information. The fusion

network branch on the right uses FusionBlock to fuse the common

features from the left side with the features output from the upper

layer and pass them to the next layer, Bottleneck. The final results

from the two branches are weighted and summed to calculate the

final classification result. In addition, in order to ensure that the

inability to generate more accurate feature maps on the left side at

the early stage of training does not affect the training of the right

side branch, we set a threshold E-threshold on epoch to ensure the

quality of feature transfer, and when epoch < E-threshold, only

the original network branch is trained, which is consistent with the

original MobileNet. When epoch < E-threshold, only the original

network branch is trained, at which time the network is consistent

with the original MobileNet, and then the whole network is trained

after the feature extraction ability of the original network on the

dataset images reaches a certain level, which can ensure that the

TABLE 1 Number of disease samples in each category of the data set.

Disease category PAD-
UFES-20

Our
collection

CSLI

Actinic keratosis (ACK) 730 – 730

Basal cell carcinoma of skin (BCC) 845 291 1,136

Malignant melanoma (MEL) 52 118 170

Melanocytic nevus of skin (NEV) 244 147 391

Squamous cell carcinoma (SCC) 192 106 298

Seborrheic keratosis (SEK) 235 401 636

Total 2,298 1,063 3,361

right fusion network branch can receive high-quality feature maps

to improve the classification effect.

The results of the two branches in the above diagram are

assigned different weights by the two learnable parameters γ1 and

γ2. In addition, for the problem of inconsistent sizes of deep and

shallow feature maps, we pre-scale the smaller feature maps in the

CFEBlock and pass them on later. The structure of the CFEBlock

and FusionBlock is described in detail in the following sections.

3.2.2. Part of common features extraction
Our proposed common feature extraction part uses CFEBlock

as the base part to perform common feature extraction for the

feature maps of adjacent layers, and then the feature maps of each

layer of the original network branch are averaged with the common

feature maps obtained after CFEBlock processing to obtain the

final fused feature maps and passed to the corresponding layers

of the fused network branch, and the detailed structure is shown

in Figure 3.

We propose CFEBlock, inspired by the CFM module in (26).

Compared with the CFM module, CFEBlock solves the problem

of non-uniform input feature map channels and non-uniform

output feature map sizes. For two feature maps with different input

channels and sizes, CFEBlock uses convolution and upsampling

operations to set the number of channels and size of the input

feature map to the largest channel or size of the two feature

maps, respectively. In the output, the number of channels and

size of the two feature maps are restored using convolution and

downsampling, and Equation (1) shows the specific operation flow

of CFEBlock.

CFEB(fl, fh) =

{

fmaph
l
= Fl(Rl(fl))+Ml(Gl(Rl(fl)) · Gh(Rh(fh)))

fmapl
h
= Fh(Rh(fh))+Mh(Gl(Rl(fl)) · Gh(Rh(fh)))

(1)

For ease of expression, we define the output of the CFEBlock

as fmapBA, which takes the features of layer A of the original

network branch as a reference and returns the branch of the same

sizes and channels in layer A after common feature extraction

with the feature map of layer B. Where R(·),M(·),G(·), F(·) are

ConvBNReLU with convolution kernel of 3 × 3 and subscripts l

and h denote the corresponding processing inputs fl and fh. We

use CFEB(·, ·) to denote the operation of CFEBlock, assuming that

the input is fl ∈ RC1×W1×H1 and fh ∈ RC2×W2×H2 , if the size of

fh is different from that of fl, then fh is first upsampled to make it

the same as fl has the same width and height, the operation of R(·)

will then fl and fh will channel number unified C = Max(C1,C2),

and finally Fl(·) and Fh(·) will restore the channel number of the

two layers to the size C1 and C2 at the input, respectively, and

at the final output, if the initial size is different, the fmapl
h
will be

downsampled to make the two branches the same as at the input,

i.e., fmaph
l
∈ RC1×W1×H1 and fmapl

h
∈ RC2×W2×H2 .

We use CFEBlock as the base module of the feature fusion

part, and input the feature map feature generated by each layer of

the original network branch and the adjacent feature maps of the

upper and lower layers to CFEBlock respectively to extract common

features and obtain two common feature map fmap, and finally

add the feature of the original network branch and fmap to find

the average value to obtain the final common features, which is
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FIGURE 1

The CSLI dataset.

represented as shown in Equation (2).

commoni = Mean(fi, fmapi−1
i , fmapi+1

i ) (2)

In Equation (2), commoni denotes the result of the fusion of the

i-th layer feature map, andMean(·) denotes the average function.

3.2.3. Part of feature fusion
In the common feature extraction section, the extracted

common features from the original network branches and the

adjacent layers need to be combined with the feature maps of the

corresponding layers of the fusion branch network and passed to

the next bottleneck layer. Figure 4 shows the detailed structure

of the feature fusion part, because the matrix multiplication in

the proposed method has certain requirements for computer

arithmetic power, so for computers with different arithmetic power,

we provide here two fusion processes, respectively, the solid line

part and the colored line part of the figure, this part we control by

the F-threshold, when the input feature size is greater than the F-

threshold the module only go colored line part, when the feature

size is less than or equal to the F-threshold, the module only go the

solid line part.

After the feature fusion part from the original network branch

extracts the common features between adjacent layers, the feature

maps of the corresponding layers of the remaining fusion branch

networks need to be combined and passed to the next layer

bottleneck. For the output xi of each layer of the fusion network

branch and the common feature extraction part of each layer

passing commoni, we first perform the dot product operation on

xi and commoni to get fusioni, as shown in Equation (3).

fusioni = xi · commoni (3)

Where xi, commoni, fusioni ∈ RC×W×H . We then perform the

reshape operation to merge the width and height of xi, fusioni,

commoni, respectively, and use 1 × 1 convolutional encoding to

obtain x
′

i , fusion
′

i, commoni ∈ RC×N(N = W × H), after which

the results of x
′

i and common
′

i encoding are subjected to matrix

product operation to obtain the correlation map CPi, as shown in

Equation (4).

CPi = (common
′

i)
T
× x

′

i (4)

Where CPi ∈ RC×C, we obtain the fusion map FP after

softmaxing the CPi and matrix multiplying with fusion
′

i as shown

in Equation (5).

FPi = (fusion
′

i)
T
× Softmax(CPi) (5)

By reshaping the obtained FPi ∈ RC×N , we obtain the FP
′

i ∈

RC×W×H . Finally, we train a learnable parameter γ as coefficients

of FP
′

i to be summed with the input xi as the output f
′

i of this part,

as shown in Equation (6).

f
′

i = xi + γ · FP
′

i (6)

FusionBlock can calculate the correlation between commoni
and xi to obtain the hybrid graph FP

′

i . xi can be summed with FP
′

i to

absorb common points from deep and shallow layers of the original

network branches and highlight them in xi as places to focus on

when learning from the network. Since matrix multiplication after

reshape requires arithmetic power greatly, we set the input features

f
′

i to be calculated as shown in Equation (7) when the image size is

larger than F-threshold.

f
′

i = xi + γ · fusioni (7)
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FIGURE 2

DBN structure diagram.

In the above way, it is possible to fuse commoni and xi while

minimizing the computational power consumption.

4. Experimental setup and analysis of
results

4.1. Dataset

We divided the CSLI dataset into a training set, a validation

set, and a test set according to 8:1:1. During training, the model

is trained on the training set and its performance is observed on the

validation set. The model is finally tested in the test set. The split

result is shown in Table 2.

4.2. Evaluation indicators

The main metrics for the evaluation of automatic skin

lesion image classification models are accuracy, precision, recall,

specificity, f1score, receiver operating characteristic curve (ROC),

area under curve (AUC), which are calculated from true positive
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FIGURE 3

Network structure of CFEBlock.

(TP), true negative (TN), false positive (FP), false negative (FN),

false positive rate (FPR), Balanced Accuracy (BA), and true positive

rate (TPR):

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

Specificity =
TN

TN + FP
(11)

F1Score =
2× Precision× Recall

Precision+ Recall
(12)

FPR =
FP

TN + FP
(13)

TPR =
TP

TP + FN
(14)

BA =
TPR+ TNR

2
=

Recall+ Specificity

2
(15)

AUC =

∫ 1

0
TPR(FPR)d(FPR) (16)

4.3. Analysis of experimental results

To address the problem of overfitting, in addition to modifying

the network, we used L2 regularization to prevent excessive

local weights when training the network using the loss function

supervision and performed random vertical and horizontal flips

on the image data. The output of the model is only a six-category

confidence score. For the convenience of experimental description,

we defined the DBN as “Small” when the F-threshold was chosen

to be 0 and “Large” when the F-threshold was chosen to be 50, and

added the E-threshold to the name, e.g., E-threshold = 25 and the

DBN with F-threshold = 0 we call “DBN Small25.” The training

set is only used for the training of the model, all quantitative

analysis data are the results in the test set. Our experiments were

all performed in a Python 3.7 environment, with the model using
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FIGURE 4

Network structure of FusionBlock.

Pytorch as the architecture and single card training on 1 Tesla V100

GPU. The hyperparameters for the training are shown in Table 3.

To verify the effectiveness of the DBN module, the following

benchmark models are set to train the network according to the

same training strategy, respectively: (1) the original MobileNetV2;

(2) the common feature extraction part is removed, the feature

fusion part is retained, and the feature maps of the corresponding

layers of the original branch network and the fused branch

network are directly fused using FusionBlock; (3) DBN Small25

(E-threshold = 25, F-threshold = 0); (4) DBN Small50 (E-

threshold = 50, F-threshold = 0); (5) DBN Large25 (E-threshold

= 25, F-threshold = 50); (6) DBN Large50 (E-threshold = 50,

F-threshold = 50), and the results on the test set of CSLI

are shown in Table 4, where the highest indicators are marked

in bold.

Compared with MobileNetV2, the accuracy of model

prediction has been significantly improved after using the double-

branch network; for DBN Fusion with CFEBlock removed, it

can be seen from the table that precision has been significantly

improved, but sensitivity has decreased to a certain extent,

indicating that FusionBlock is helpful to improve precision.

Although it is impossible to observe the effect of CFEBlock alone

by removing FusionBlock alone (because the features cannot

be added or multiplied directly to achieve a good fusion effect,

resulting in a decrease in the composite index), DBN Large25

can reflect the improvement of sensitivity after adding CFEBlock

on top of DBN Fusion and the improvement of DBN Small25

on features. However, DBN Large25 can reflect the improvement

of sensitivity after adding CFEBlock on top of DBN Fusion

and DBN Small25 can reflect CFEBlock can help to improve

Frontiers inMedicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2023.1114362
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2023.1114362

TABLE 2 Number of diseases by category in the data set.

Disease category Train Val Test Total

Actinic keratosis (ACK) 584 73 73 730

Basal cell carcinoma of skin (BCC) 908 114 114 1,136

Malignant melanoma (MEL) 136 17 17 170

Melanocytic nevus of skin (NEV) 313 39 39 391

Squamous cell carcinoma (SCC) 238 30 30 298

Seborrheic keratosis (SEK) 508 64 64 636

Total 2,687 337 337 3,361

TABLE 3 Training strategies.

Parameters Parameter setting

Training set images 2,298

Validation set images 337

Test set images 337

Learning rate 0.0001

Batch 16

Epoch 100

Input size [Batch size, 3, 384, 384 ]

Output size [Batch size, 6]

Loss function CrossEntropyLoss+L2 regularization

Optimizer Adam

E-threshold 25, 50

F-threshold 0, 50

sensitivity to a certain extent. Comparing MobileNetV2 with DBN

Fusion and DBN Small25 with DBN Large25, it shows that the

process of FusionBlock solid line affects sensitivity to some extent.

Comparing the changes in accuracy, precision, and sensitivity

in DBN Small25 and DBN Small50 and DBN Large25 and DBN

Large50 suggests that the E-threshold should not be too large in its

selection, and that too large a gap between the two branches may

also be detrimental to the learning of the network. From the overall

table, DBN Small25 has a better overall index for our proposed

CSLI dataset, but this may also be caused by the small sample of

the dataset.

The comparison of our proposed DBN Small25 with other

classical classification models on the CSLI test set is shown in

Table 5, and it can be seen that our proposed DBN network has

better performance on the clinical dataset CSLI.

We tested these models again on the publicly available dataset

HAM10000, and the results in Table 6 shows that our proposed

model outperforms in terms of sensitivity, balanced accuracy,

f1score, and AUC.

Table 7 shows the comparison between the proposed DBN

model and other models on the HAM10000, and the results show

that the DBN is better at classification.

Table 8 shows the classification of all disease categories in the

CSLI test set by DBN Small25. Of all six disease categories, DBN

was a poor indicator for MEL and SCC, which may be due to the

small sample size of the MEL and SCC datasets resulting in the

model not being able to fully learn the features of MEL and SCC,

and the fact thatMEL and SCC have a high visual similarity to other

diseases, and therefore when classifying the two disease categories

of MEL and SCC, the network tended to predict the results as being

more similar to them more similar and to the disease with a larger

sample size. However, by analyzing the AUC values, it was found

that the AUC values for MEL were not low, indicating that the cut-

off values selected by the model in the table for MEL prediction

were not the best cut-off values, but in fact the AUC combined

the predictive performance of all the cut-off values, and for the low

MELmetric and high AUC indicated that this was due to a high bias

in the sample (i.e., the similar NEV category with a high sample size

influenced the model’s judgement of MEL), rather than a poorer

ability of the model to predict MEL. For SCC diseases, the lower

metrics and AUCs suggest that the model has a greater problem in

predicting this category of disease. By looking at the dataset, it was

found that SCC had a high similarity to the three disease categories

ACK and BCC, but the training sample sizes for ACK and BCC

were more than twice or three times larger than SCC, respectively.

The difference in data size and the high similarity of the disease

images led to the model’s ability to show relatively poor results. In

contrast, for other types of diseases, the model predicted better than

the composite index.

The ROC curves for DBN and the confusion matrix for the six

categories in the CSLI test set are shown in Figure 5. the closer to the

top left of the ROC curve indicates better model performance, and

the information reflected in Figure 5 is similar to that in Table 8.

the DBN performs poorly on SCC, but the AUC for MEL disease is

not low, and the combination of the confusion matrix shows that

the main reason for the low accuracy of MEL is that the data set

The sample was too small and there were many disease categories.

The prediction results of a single sample have a greater impact

on the overall index of the disease category. From the confusion

matrix, the error in SCC is essentially caused by the confusion of

the prediction results with BCC. From the images of the dataset

sample, SCC and BCC are similar, and the BCC category accounts

for nearly 1/3 of the total dataset, which is why the model tends to

predict SCC as BCC when it encounters similar looking diseases.

We extracted images collected from the CSLI as a dataset and

compared the DBN model’s predictions for the original hospital

images and the cropped images after data processing for the metrics

that were calculated on the test set, and the results are shown in

Table 9.

The results showed essentially the same results using

uncropped images, which is because DBN incorporates

information from deeper feature maps that contain richer

semantic information, such as the location or size of the lesion,

when recognizing images, so that the model still has some

recognition ability even if the lesion is not in the center. However,

a centrally cropped dataset is more useful for training the model

because lesions in the PAD-UFES-20 dataset are basically in the

center, and a centrally cropped dataset ensures a more uniform

distribution of the CSLI data samples. Secondly, some disease

lesions are too small and scaled up when fed into the network,

which may lose too much information and cause the classifier to

learn the wrong information. Therefore, centering before scaling

still helps the training of the classifier, and as shown in the table,
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TABLE 4 Ablation experiments.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) BA (%) F1 score (%) AUC

MobileNetV2 (14) 74.41 72.06 71.83 94.60 83.22 71.66 0.936

DBN fusion 76.24 77.67 71.18 94.27 82.72 74.28 0.931

DBN Small25 79.52 77.83 75.58 95.63 85.61 76.18 0.934

DBN Small50 77.94 77.11 76.04 95.27 85.66 76.23 0.937

DBN Large25 78.24 76.17 71.57 95.27 83.42 72.55 0.928

DBN Large50 77.06 73.15 73.88 95.16 84.52 73.37 0.925

The bold values identify the best indicators.

TABLE 5 Comparison of DBN and di�erent classification network models on the CSLI test set.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) BA (%) F1score (%) AUC

DenseNet121 (7) 76.76 73.78 73.35 95.00 84.17 73.37 0.935

ResNet50 (11) 77.35 74.97 72.45 95.12 83.79 73.26 0.933

MobileNetV2 (14) 74.41 72.06 71.83 94.60 83.22 71.66 0.936

EfficientNetb0 (27) 76.18 73.59 72.03 94.84 83.44 72.46 0.929

EfficientNetb4 (27) 76.76 75.20 71.47 94.98 83.22 72.53 0.927

EfficientNetb7 (27) 79.18 77.88 75.18 95.51 85.35 75.68 0.934

DBN Small25 79.52 77.83 75.58 95.63 86.22 76.18 0.934

The bold values identify the best indicators.

TABLE 6 Comparison of DBN and di�erent classification network models on HAM10000.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) BA (%) F1score (%) AUC

DenseNet121 (7) 91.86 86.64 83.62 97.61 90.62 84.90 0.985

ResNet50 (11) 90.51 86.35 81.82 97.32 89.57 83.49 0.980

MobileNetV2 (14) 91.06 87.09 80.21 97.44 89.57 83.20 0.983

EfficientNetb0 (27) 91.31 87.31 82.24 97.58 89.91 84.43 0.984

EfficientNetb4 (27) 90.61 83.88 82.30 97.28 89.79 82.44 0.982

EfficientNetb7 (27) 91.65 86.10 83.85 97.50 90.68 84.81 0.983

DBN Small25 91.58 85.89 84.20 97.58 90.89 85.03 0.985

The bold values identify the best indicators.

the metrics of the model trained using the centered cropped dataset

are still slightly higher than those of the uncropped dataset.

5. Conclusion

In this paper, we propose a new dataset CSLI and a

double-branch network structure DBN for this dataset, which

contains two identical branches of the feature extraction network,

and this structure makes the feature map of the shallow

layer of image classification can be bi-directional with the

deep layer feature map for information transfer between them,

with higher flexibility and accuracy. It is not limited to

using two identical structures of MobileNetV2 as two branches

in this paper, but it is also feasible to use other different

feature extraction networks as one of the branches, or to use

multiple branches at the same time like random forests, and

to perform common feature extraction and fusion of feature

TABLE 7 Comparison of DBN with other algorithms.

References Method Accuracy (%)

Khan et al. (28) Mask R-CNN and 24-layered

CNN

86.5

Pacheco and Krohling

(24)

CNN fusion segmentation

network and 30-layered CNN

87.02

Srinivasu et al. (15) MobileNetV2, LSTM 90.21

Afza et al. (29) Three-step superpixel

segmentation and ResNet50,

Naïve Bayes classifier

85.50

Wang et al. (30) G-DMN 87.07

Ours DBN 91.58

maps on this basis, which is like several skin disease specialists

analyzing the disease and coming to their own conclusions,
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and then he treating doctor takes into account the results of

all and combines them with the views they give to make a

combined judgement to reach a conclusion with higher accuracy

and stability.

Our proposed DBN consists of two important components,

namely the common feature extraction part and the feature fusion

part, which are demonstrated to be effective on the CSLI dataset

in the experiments in Section 4.3. The CFEBlock module of the

common feature extraction part can combine the shallow and

deep information and mention the common features between

the two feature maps, while the metrics reflect the Sensitivity

improvement. In the feature fusion part, we give two different

fusion routes, in the experiments, the fusion scheme which

consumes less arithmetic power has a greater improvement on

Sensitivity, but may affect Precision, while the other strategy

contains matrix multiplication fusion scheme by calculating the

correlation coefficient between feature maps, which can have a

more accurate localization of diseases, and basically does not affect

By comparing with other models and analyzing the ROC curve

and confusion matrix, DBN is better than other classical skin

classification models in classifying the comprehensive performance

of skin diseases, although there are some difficulties in classifying

SCC and MEL.

Although DBN has achieved some results in the experiments,

it still has some limitations. Firstly, the unbalanced nature of

the dataset categories causes DBN to present a higher AUC and

lower accuracy in predicting several categories of MEL. When

predicting BCC and SCC images with high similarity, DBN

will preferentially predict the results to the BCC category with

higher sample size. For the problem of DBN’s low prediction on

cancerous lesions, the reason is caused by the uneven sample

distribution of the dataset. This is because the sample size of

the images of cancer patients itself is too small and therefore

the model cannot give a high confidence level when judging

these images, whether it is a DBN model or any other model

on this dataset. This problem can be solved by setting a Top-

Accuracy and confidence threshold, i.e., the model prioritizes

the results as cancer when the chance of the disease category

being predicted as cancer is greater than a set threshold.

The final prediction can also be obtained by setting different

importance factors for each category of disease, and multiplying

the probability of each category of disease by the importance

factor after the results are obtained. Both of these approaches

can solve the problem of low sensitivity of cancer-like diseases.

We will also focus on improving the collection of samples

related to cancer diseases in our subsequent studies and data

set collection to reduce the impact of data imbalance on the

classification model.

In addition, DBN uses multiple feature extraction networks

and matrix multiplication operations in FusionBlock, which has

high requirements on computer arithmetic power, so in the

subsequent study, we will try to reduce the DBN parameter

size and arithmetic power requirements. For example, through

experiments, we will filter and retain some of the CFEBlocks

that have a greater impact on the classification results, more

lightweight branches and feature fusion strategies that consume less

arithmetic power, so as to ensure that the DBN can significantly

reduce the model size while retaining the accuracy of clinical skin
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FIGURE 5

ROC curve and confusion matrix of DBN.

TABLE 9 Training DBN results with uncropped and centrally cropped images.

Model Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) BA (%) F1score (%) AUC

Uncropped 81.01 85.10 75.83 94.47 85.16 78.14 0.930

Centercropped 82.27 85.48 75.69 94.86 85.28 78.34 0.933

The bold values identify the best indicators.

images, and thus can be embedded into mobile devices to facilitate

disease prediction.

As a black box, deep neural networks lack interpretability

and robustness, making them vulnerable to adversarial attacks.

When training data is disturbed, their behavior and performance

may encounter problems (31). The classification results of

a dual branch network are determined jointly by the two

branches and have a certain degree of robustness. In subsequent

research work, experiments such as noise immunity will be

added to optimize the stability and robustness of the model,

such as adding anti-interference branches to the model, or

randomly adding noise or dropout some weights of layers

to the training dataset, in order to improve the stability of

the network.

In addition to the problems with the model described above,

the following problems remain in the dataset: in studies of

clinical images, the images taken do not have a stable color

interval, i.e., color constancy, like dermoscopic images, due to

differences in the environment, and clinical skin images taken

in different locations and at different times are highly variable,

as Salvi et al. (32) and Ng et al. (33). As for the CSLI

dataset, we will continue to collect data from hospitals to further

expand this dataset, and in subsequent studies we will try not

to artificially crop the focal areas, but to modify the network

structure so that the network can give higher attention to the

focal areas.
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