
Frontiers in Medicine 01 frontiersin.org

The association between retinal 
microvasculature derived from 
optical coherence tomography 
angiography and systemic factors 
in type 2 diabetics
Yi Li 1,2†, Kunfang Wu 1†, Zilin Chen 1, Guihua Xu 1, Dingding Wang 1, 
Juanjuan Wang 1, Gabriella Bulloch 3,4, Grace Borchert 3,4 and 
Huiya Fan 1*
1 Department of Ophthalmology, Huizhou Central People’s Hospital, Huizhou, China, 2 Shantou 
University Medical College, Shantou, China, 3 Centre for Eye Research Australia, Melbourne, VIC, 
Australia, 4 The University of Melbourne, Melbourne, VIC, Australia

Aims: To investigate the correlation between the retinal microvasculature using 
optical coherence tomography angiography (OCTA) and systemic factors in  
type 2 diabetes mellitus (T2DM) patients.

Methods: This cross-sectional study obtained OCTA data from patients with 
T2DM administered at hospital and referred to ophthalmic services. Patient data 
about demographics, comorbid conditions, and blood biomarkers were extracted 
from electronic medical records. Data from OCTA scans obtained by CIRRUS HD-
OCT Model 5,000 were obtained. Vessel density (VD) and perfusion density (PD) 
within the superficial capillary plexus, and foveal avascular zone (FAZ) area were 
automatically segmented. These parameters were tested for their correlations 
with systemic factors by univariate and multivariable linear regression analyses.

Results: A total of 144 T2DM patients (236 eyes) were available for analysis, with 
mean age of 53.6 (SD = 10.34) and 56.9% were male. Chronic kidney disease, 
cardiovascular disease, increased serum creatinine (Scr), red blood cell count 
(RBC), platelets (PLT), apolipoprotein B (APOB), and decreased urine albumin to 
creatinine ratio (UACR) were significantly associated with lower VD and PD (all 
p < 0.013). UACR and triglyceride (TRIG) were significantly correlated with FAZ area 
(all p < 0.017). In multivariate analyses, PLT, eGFR, and APOB were independent risk 
factors for retinal rarefaction, and UACR was a significant predictor of FAZ area.

Conclusion: We found several systemic risk factors, such as PLT, renal function 
and lipid profiles were associated with PD, VD, and FAZ area among Chinese 
T2DM patients.
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Introduction

Type 2 diabetes mellitus (T2DM) is a worldwide epidemic that 
carries considerable morbidity, mortality, and financial burden from 
its deleterious complications and associations with other comorbid 
conditions. According to the latest International Diabetes Federation 
(IDF) diabetes atlas (1), an estimated 537 million people had diabetes 
in 2021, with this figure projected to reach 643 million by 2030.

Type 2 diabetes mellitus accounts for over 90% of all diabetes 
worldwide (1, 2) and is characterized by chronic hyperglycemia and 
insulin resistance resulting from lifestyle and genetic factors. If 
uncontrolled, T2DM leads to vascular damage of the eyes, kidneys, 
and heart. (3) Increased vascular permeability, vascular cell apoptosis, 
and altered blood flow contribute to macrovascular (peripheral 
vascular disease and coronary heart disease) and microvascular 
(diabetic retinopathy and diabetic nephropathy) complications (4) 
which result in morbidity and eventually mortality if unmanaged. 
Therefore, early identification and risk stratification of T2DM patients 
who are at risk of vascular complications is an area of growing research 
for the control and prevention of poor outcomes.

The retina is a structure at the back of the eye that contains a rich 
network of microvasculature. Growing evidence suggests retinal 
imaging can detect microstructural changes to vascular networks, (5) 
and fundoscopy studies (6–8) report concordance between the retinal 
microvasculature and systemic risk factors such as hypertension, 
diabetes, and smoking. A recent study also discovered significant 
retinal microvascular alterations in diabetic patients with subclinical 
atherosclerosis. (9) These findings have led to the idea that the retina 
is the window to the cardiovascular system and its suggestion as a 
screening tool.

Optical coherence tomography angiography (OCTA) is a 
non-invasive imaging technique that allows for three-dimensional 
visualization of retinal microvasculature networks with contrast for 
high-resolution imaging. Unlike fundoscopy, it can detect subtle 
microvascular abnormalities on retinal layers and choriocapillaris, 
which has led to its establishment for the early detection of diabetic 
retinopathy (DR). (10, 11) Additionally, OCTA can quantify the 
number of perfused vessels in the vascular bed (functional rarefaction) 
and perfused vessels in the tissue (structural rarefaction) (12), making 
it a useful tool for evaluating microvascular changes longitudinally in 
people with T2DM, dyslipidemia, and chronic kidney disease. (13–15)

Despite the widespread use of OCTA for eye diseases, little is 
known about the impact of systemic risk factors on OCTA parameters 
in diabetic eyes. Therefore, this study investigated the association 
between OCTA-derived retinal microvasculature parameters and 
systemic factors to understand its impact on vascular function in a 
Chinese diabetic population.

Materials and methods

Study population

This cross-sectional study included T2DM patients who had 
admitted to and received ophthalmic consultation in Huizhou Central 
People’s Hospital from January 2021 to June 2022. This study was 
approved by the Institutional Review Board of Huizhou Central 
People’s Hospital (IRB approval number: kyl20210115) and followed 

the tenets of the Declaration of Helsinki. Written informed consent 
was obtained from all participants.

This study included patients with T2DM (2) aged >18 years old. 
Participants were excluded if they had: (1) severe media opacity (e.g., 
corneal disease, dense cataract, vitreous hemorrhage); (2) any ocular 
illness that may affect ocular circulation (e.g., glaucoma, retinal 
vascular occlusion, retinal detachment, exudative aged macular 
degeneration, pathologic myopia); (3) signal strength of OCTA scans 
<5/10, or OCTA scans with artifacts or segmentation errors; (4) a 
history of surgical treatments for eye diseases (except cataract) or laser 
treatment; (5) uncontrollable high blood pressure (HBP) 
(≥180/110 mmHg); (6) any severe systemic diseases (e.g., tumor, heart 
failure, and cerebral infarction);

Obtaining data on systemic factors and 
blood biomarkers

Systemic factors were retrieved from patient electronic medical 
records (EMR) and included gender, age, time from diagnosis of 
T2DM, body mass index (BMI), blood pressure readings, smoking 
history, cardiovascular disease history, chronic kidney disease history, 
obesity, and blood biomarkers. These included systolic blood pressure 
(SBP), diastolic blood pressure (DBP), glucose, hemoglobin A1c 
(HbA1c), red blood cell count (RBC), hemoglobin (HGB), blood 
platelet (PLT), serum creatinine (Scr), estimated glomerular filtration 
rate (eGFR), urine albumin to creatinine ratio (UACR), total cholesterol 
(CHOL), triglyceride (TRIG), high-density lipoprotein cholesterol 
(HDL), low-density lipoprotein cholesterol (LDL), lipoprotein a (Lpa), 
apolipoprotein A (ApoA), apolipoprotein B (ApoB). All patients had 
their blood drawn at 8 AM after an overnight fast and before taking 
morning medications. Overnight first-void urine samples were also 
obtained. The eGFR was calculated based on the Chronic Kidney 
Disease Epidemiology Collaboration (CKD-EPI) equation (16). 
Chronic kidney disease was defined as eGFR<60 ml/min/1.73m2. Body 
mass index was calculated as weight in kilograms divided by the square 
of height in meters. Obesity was defined as BMI ≥ 28 kg/m2.

Ocular examinations and imaging

All patients underwent an ophthalmic examination, which 
included best-corrected visual acuity, intraocular pressure, silt lamp 
examination, fundus photographs, fluorescein fundus angiography 
(FFA), optical coherence tomography (OCT), and OCTA by a single 
trained technician. The presence of DR was confirmed based on FFA, 
and was categorized as NDR, mild non-proliferative DR (mild 
NPDR), moderate non-proliferative DR (moderate NPDR), severe 
non-proliferative DR (severe NPDR), and proliferative DR (PDR) 
according to the International Clinical Diabetic Retinopathy Severity 
Scales. (17) Patients underwent OCTA scanning using CIRRUS 
HD-OCT Model 5,000 (Carl Zeiss, Germany), which uses a super 
luminescent diode (SLD) with a central wavelength of 840 nm, and a 
scanning speed of 68,000 A-scans/s. The macular region was scanned 
using a 6 mm × 6 mm scan pattern, each consisting of 245 A-scan per 
B-scan. This was automatically divided into three fields: the foveal 
area (a central circle with a diameter of 1 mm), the parafoveal area 
(an annulus centered on the fovea with an inner ring with a diameter 
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of 3 mm), and the perifoveal area (an annulus centered on the fovea 
with outer ring diameters of 6 mm; Figure 1).Vessel density (VD), 
perfusion density (PD), and foveal avascular zone (FAZ) parameters 
were quantitatively analyzed within the superficial capillary plexus 
(SCP), defined as the area extending from the inner limiting 
membrane to 110 μm above the retinal pigment epithelium. This was 
analyzed by built-in angiography software, which calculated the 
average VD and PD using a grid overlay according to standard 
ETDRS subfields. VD was defined as the total length of perfused 
vessels per unit area in the measurement region, and PD was defined 
as the total area of perfused retinal microvasculature per unit area on 
binarized vasculature images. FAZ was defined as a region within the 
foveal at the center of the retina devoid of retinal blood vessels. Area, 
perimeter, and circularity are FAZ parameters that we  used for 
this study.

Statistical analysis

All data analyses were performed using SPSS version 25.0 (IBM 
Corp, Armonk, NY, USA). Continuous data were represented as 
mean ± standard deviations (SD), categorical data were expressed as 
number (percentage, %). Univariate linear regression models were 
used to analyze potential associations between systemic risk factors 
and OCTA-derived metrics, with regression coefficients calculated to 
estimate the magnitude of microvascular change associated with 
predictor variables. Bonferroni correction for multiple comparison 

was performed to assess differences between FAZ parameters and VD, 
PD at each annulus. Multiple linear regression analyses were 
subsequently performed to determine independent risk factors of 
retinal microvascular dysfunction. Generalized estimating equations 
approach were used to adjust for correlations between paired eyes. A 
p-value of <0.013 (0.05/4) for VD, PD, and a p-value of <0.017 (0.05/3) 
for FAZ parameters were considered statistically significant 
for association.

Results

A total of 191 patients underwent OCTA examinations. Thirty 
participants were excluded due to a history of reported ocular diseases, 
surgeries, or laser treatments, and 10 participants were excluded due 
to a history of severe systemic diseases or having type 1 diabetes. A 
further seven participants were excluded due to poor quality. 236 eyes 
of 144 T2DM patients were included for analysis, with a mean (SD) 
age of 53.61 (10.34) years, and 56.9% males. Characteristics of 
participants are detailed in Table 1, and prevalence of hypertension 
(33.3%), chronic kidney disease (12.5%), smoking history (22.2%), 
obesity (7.6%), and cardiovascular disease (6.3%) were noted amongst 
study subjects.

Table 2 describes the mean characteristics of vessel density and 
perfusion density within regions captured by OCTA. Mean SCP-VD 
in the parafoveal region was 14.97 ± 2.88 and 15.23 ± 2.31 mm−1 in the 
macular region. Mean SCP-PD in the parafoveal region was 0.36 ± 0.07 

FIGURE 1

Quantitative measurement of optical coherence tomography angiography (OCTA) 6 × 6-mm scans in a type 2 diabetes mellitus (T2DM) patient. 
(A) 6 × 6-mm en face image of the superficial capillary plexus (SCP). (B) B-scans with flow encoding show the slab segmentation (horizontal purple 
lines), which included the SCP. (C) Angioplex metrics, including vessel density, perfusion density and foveal avascular zone (FAZ) parameters. (D) OCT 
en face image of the superficial layer overlaid with the early treatment of diabetic retinopathy study grid (ETDRS).
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and 0.37 ± 0.06  in the macular region. The average FAZ area was 
0.29 ± 0.12 mm2.

Table 3 demonstrates the association of various systemic factors 
with SCP-VD in anatomical regions captured by OCTA. Significant 
associations with signal strength, sex, cardiovascular disease, DR 
stage, CKD, RBC, PLT, Scr, UACR, and APOB for VD were apparent 

on univariate analysis (all p < 0.05). Following multivariable analysis, 
macular VD correlated positively with signal strength (β = 0.968, 
p < 0.001), eGFR (β = 0.601, p = 0.009), and APOB (β = 0.290, p < 0.001).
Similarly, abnormal renal function was associated with reduced VD 
as measured by OCTA (Figure 2). Foveal VD was also significantly 
correlated with signal strength (β = 0.559, p = 0.001), diabetes mellitus 
(DM) duration (β = 0.576, p = 0.011), and PLT (β = 0.544, p = 0.003).

Table 4 demonstrates associations between systemic factors and 
SCP-PD. Univariate linear regression analysis showed that sex, signal 
strength, cardiovascular disease, DR stage, PLT, Scr, and APOB were 
associated with PD (all p < 0.013). Following adjustment for 
confounding factors, positive associations remained for signal strength 
(β = 0.027, p < 0.001), DM duration (β = 0.013, p = 0.012), PLT 
(β = 0.013, p = 0.002), eGFR (β = 0.017, p = 0.006), and APOB (β = 0.007, 
p = 0.002). The diagrams showing the correlations between OCTA 
parameters and systemic risk factors such as PLT, APOB and eGFR are 
shown in Figure 3.

Table 5 shows the association between systemic factors and FAZ 
parameters in OCTA 6 × 6-mm scans. Univariate linear regression 
analysis showed that DR stage, UACR, and TRIG were associated with 
FAZ parameters (all p < 0.017). In a multivariable-adjusted model, 
UACR was negatively associated with FAZ area (β = −0.029, p = 0.007) 
and FAZ perimeter (β = −0.159, p = 0.003), whilst age and chronic 
kidney disease positively impacted FAZ area (β = 0.030, p = 0.06; 
β = 0.128, p = 0.016, respectively), and FAZ perimeter (β = 0.117, 
p = 0.014; β = 0.688, p = 0.007, respectively).

Discussion

In this study, the retinal microvasculature of a Chinese 
population with T2DM was examined for its correlation with 

TABLE 1 Patient demographics and clinical characteristics.

Characteristic Subjects (n = 144)

Demographics

  Male, n (%) 82 (56.9)

  Age (y) 53.61 ± 10.34

  DM duration (y) 7.92 ± 5.48

  BMI (kg/m2) 23.51 ± 3.39

  SBP (mmHg) 128.36 ± 16.51

  DBP (mmHg) 80.19 ± 10.04

Comorbidities

  Hypertension, n (%) 48 (33.3)

  Chronic kidney disease, n (%) 18 (12.5)

  Cardiovascular disease, n (%) 9 (6.3)

  Smoking history, n (%) 32 (22.2)

  Obesity, n (%) 11 (7.6)

  DR, n (%) 115 (79.9)

DR stage

  Mild NPDR, n (%) 54 (20.1)

  Moderate NPDR, n (%) 16 (11.1)

  Severe NPDR, n (%) 22 (15.3)

  PDR, n (%) 23 (16.0)

Lab values

  HbA1c (%) 9.69 ± 2.56

  Glucose (mmol/L) 12.13 ± 5.69

  HGB (g/L) 133.40 ± 19.30

  RBC (10^12/L) 4.59 ± 0.77

  PLT (10^9/L) 254.01 ± 73.72

  Scr (μmol/L) 72 (IQR 61–88)

  eGFR (mL/min/L.73m2) 89.05 ± 24.84

  UACR (mg/g) 19 (IQR 8–89)

  CHOL (mmol/L) 4.84 ± 1.23

  TRIG (mmol/L) 2.34 ± 1.98

  HDL (mmol/L) 1.00 ± 0.30

  LDL (mmol/L) 3.05 ± 1.07

  Lpa (mg/L) 0.29 ± 0.27

  APOA (g/L) 1.19 ± 0.26

  APOB (g/L) 1.12 ± 0.57

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; DM, 
diabetes mellitus; DR, diabetic retinopathy; NPDR, nonproliferative diabetic retinopathy; 
PDR, proliferative diabetic retinopathy; RBC, red blood cell count; HGB, hemoglobin; PLT, 
blood platelet; eGFR, estimated glomerular filtration rate; Scr, serum creatinine; UACR, 
urine albumin to creatinine ratio; CHOL, total cholesterol; TRIG, triglyceride; HDL, high-
density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; Lpa, lipoprotein a; 
ApoA, apolipoprotein A; ApoB, apolipoprotein B.

TABLE 2 Vessel density and perfusion density in superficial vascular 
capillary plexus and foveal avascular zone (FAZ) measurements.

Optical coherence 
tomography angiography 
(OCTA) parameters

(n = 236 eyes)

Signal strength 7.78 ± 1.28

Vessel density (mm−1)

  Foveal 5.76 ± 2.91

  Parafoveal 14.97 ± 2.88

  Perifoveal 15.67 ± 2.26

Macular 6*6 mm 15.23 ± 2.31

Perfusion density

  Foveal 0.13 ± 0.07

  Parafoveal 0.36 ± 0.07

  Perifoveal 0.39 ± 0.06

  Macular 6*6 mm 0.37 ± 0.06

FAZ parameters

  FAZ area (mm2) 0.29 ± 0.12

  FAZ perimeter (mm) 2.25 ± 0.55

  FAZ circularity 0.68 ± 0.09
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TABLE 3 Associations of systemic factors with vessel density in 6 × 6-mm optical coherence tomography angiography (OCTA) scans.

(a) Univariate analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Demographics

  Sex 1.157 0.007* 0.394 0.370 0.091 0.798 0.191 0.596

  Age −0.298 0.117 −0.088 0.790 −0.197 0.302 −0.176 0.370

  DM duration 0.212 0.420 −0.187 0.298 −0.337 0.045 −0.289 0.072

  BMI −0.007 0.977 0.391 0.079 0.121 0.543 0.177 0.365

  SBP 0.238 0.463 0.026 0.904 −0.294 0.177 −0.211 0.309

  DBP 0.379 0.148 0.279 0.209 −0.014 0.947 0.061 0.763

  Signal strength 0.285 0.136 0.931 <0.001* 0.981 <0.001* 0.949 <0.001*

Comorbidities

  Hypertension −0.507 0.293 −0.459 0.358 −0.526 0.174 −0.512 0.200

  Cardiovascular 

disease 0.050 0.950 0.837 0.108 1.061 0.011* 0.988 0.019

  Smoking 0.542 0.384 0.906 0.044 0.800 0.048 0.817 0.037

  Chronic kidney 

disease 0.921 0.452 −1.234 0.046 −1.626 0.009* −1.469 0.013

  Obesity −0.025 0.969 0.764 0.311 0.316 0.660 0.411 0.563

DR stage

  Mild NPDR 0.192 0.702 −0.754 0.115 −0.756 0.037 −0.724 0.053

  Moderate NPDR −0.202 0.708 −0.812 0.162 −0.652 0.138 −0.685 0.132

  Severe NPDR 1.304 0.171 −1.744 0.031 −2.220 <0.001* −2.018 0.002*

  PDR 0.555 0.438 −1.982 0.001* −2.229 <0.001* −2.107 <0.001*

Lab values

  Glucose 0.003 0.986 −0.044 0.814 −0.019 0.897 −0.025 0.867

  HbA1c 0.077 0.744 0.134 0.524 0.063 0.714 0.082 0.642

  HGB −0.055 0.868 0.586 0.018 0.437 0.031 0.459 0.025

  RBC 0.171 0.406 0.472 0.011* 0.347 0.039 0.372 0.025

  PLT 0.565 0.008* 0.342 0.059 0.263 0.079 0.288 0.057

  Scr 0.872 0.011* −0.017 0.923 −0.221 0.413 −0.145 0.538

  eGFR −0.447 0.187 0.184 0.363 0.417 0.036 0.343 0.072

  UACR 0.641 0.188 −0.468 0.148 −0.590 0.011* −0.532 0.030

  CHOL 0.411 0.080 0.005 0.981 −0.023 0.889 −0.004 0.981

  TRIG 0.006 0.971 −0.188 0.360 −0.211 0.184 −0.200 0.222

  HDL −0.245 0.236 −0.148 0.461 0.095 0.532 0.031 0.842

  LDL 0.340 0.231 −0.010 0.957 −0.041 0.819 −0.024 0.892

  Lpa 0.256 0.564 −0.037 0.811 −0.071 0.713 −0.057 0.732

  APOA −0.180 0.415 −0.170 0.422 −0.060 0.722 −0.088 0.608

  APOB 0.411 0.012* 0.427 <0.001* 0.312 0.001* 0.341 <0.001*

(b) Multivariable analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Signal strength 0.559 0.001* 1.008 <0.001* 0.973 <0.001* 0.968 <0.001*

DM duration 0.576 0.011* 0.208 0.316 0.082 0.329 0.123 0.404

Hypertension −0.911 0.033 −0.023 0.955 −0.043 0.875 −0.059 0.837

DR stage

(Continued)
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systemic factors. Of note, several blood biomarkers and systemic 
influences were correlated with VD and PD regions of interest 
within OCTA scans after adjustment for confounding factors, 
including signal strength, DM duration, PLT, eGFR, and 
APOB. After multivariable analysis, age, chronic kidney disease, DR 
stage, UACR, and APOB correlated with FAZ parameters. Our 
results suggest the retinal microvasculature may be influenced by 
the presence of systemic factors.

DM duration correlates with OCTA 
parameters

DM duration was independently associated with foveal VD and 
PD in the multivariable-adjusted model, indicating the long-term 
impact of abnormal blood glucose levels in the microvascular system. 
Our findings were in concordance with previous research by Czakó 
et al. (18), who found that DM duration was strongly associated with 

FIGURE 2

Optical coherence tomography angiography (OCTA) images in representative patients with impaired renal function and with normal renal function. For 
all 6 × 6-mm OCTA images, the top row demonstrates retinal microvasculature in type 2 diabetes mellitus (T2DM) patients with impaired renal function, 
and the bottom row shows retinal microvasculature in T2DM patients with normal renal function.

(b) Multivariable analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Mild NPDR −0.009 0.993 −0.986 0.152 −1.283 0.017 −1.193 0.028

Moderate NPDR 0.727 0.401 −0.628 0.408 −1.045 0.066 −0.904 0.123

Severe NPDR −0.355 0.487 −0.831 0.118 −0.634 0.090 −0.681 0.077

PDR 0.033 0.947 −0.792 0.084 −0.768 0.015 −0.750 0.023

PLT 0.544 0.003* 0.182 0.277 0.095 0.413 0.124 0.313

eGFR −0.077 0.817 0.547 0.064 0.637 0.005* 0.601 0.009*

CHOL 0.235 0.355 0.433 0.061 −0.324 0.038 −0.327 0.040

APOB 0.099 0.449 0.424 0.001* 0.258 0.001* 0.290 <0.001*

Values in bold are results that are statistically significant before Bonferroni correction (P < 0.05).
*Statistically significant results (P < 0.013).
Multivariable model-adjusted for age, sex, signal strength, DM duration, hypertension, cardiovascular disease, DR stage, chronic kidney disease, RBC, PLT, eGFR, UACR, CHOL, TRIG, and 
APOB.

TABLE 3 (Continued)
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TABLE 4 Associations of systemic factors with perfusion density in 6 × 6-mm optical coherence tomography angiography (OCTA) scans.

(a) Univariate analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Demographics

  Sex 0.027 0.007* 0.013 0.248 0.006 0.504 0.008 0.371

  Age −0.007 0.133 −0.002 0.700 −0.005 0.281 −0.005 0.350

  DM duration 0.005 0.391 −0.004 0.422 −0.009 0.041 −0.007 0.075

  BMI −0.001 0.843 0.009 0.108 0.003 0.596 0.004 0.419

  SBP 0.006 0.453 0.001 0.910 −0.008 0.165 −0.006 0.300

  DBP 0.009 0.149 0.007 0.238 −0.001 0.887 0.001 0.823

  Signal strength 0.007 0.139 0.023 <0.001* 0.026 <0.001* 0.025 <0.001*

Comorbidities

  Hypertension −0.011 0.301 −0.011 0.382 −0.013 0.203 −0.013 0.229

  Cardiovascular 

disease 0.001 0.945 0.020 0.152 0.027 0.011* 0.024 0.025

  Smoking 0.013 0.378 0.022 0.056 0.021 0.049 0.021 0.040

  Chronic kidney 

disease 0.027 0.374 −0.025 0.117 −0.037 0.027 −0.033 0.036

  Obesity −0.004 0.805 0.014 0.461 0.003 0.859 0.006 0.750

DR stage

  Mild NPDR 0.005 0.674 −0.018 0.142 −0.019 0.050 −0.018 0.064

  Moderate NPDR −0.003 0.827 −0.016 0.272 −0.015 0.209 −0.015 0.211

  Severe NPDR 0.032 0.157 −0.035 0.089 −0.051 0.003* −0.045 0.010*

  PDR 0.019 0.272 −0.040 0.012* −0.047 0.001* −0.004 0.001*

Lab values

  Glucose 0.000 0.989 −0.001 0.765 −0.001 0.865 −0.001 0.835

  HbA1c 0.002 0.768 0.002 0.680 0.002 0.675 0.002 0.669

  HGB −0.002 0.797 0.014 0.033 0.011 0.033 0.012 0.032

  RBC 0.003 0.542 0.011 0.024 0.009 0.043 0.009 0.035

  PLT 0.013 0.008* 0.008 0.067 0.007 0.089 0.007 0.068

  Scr 0.021 0.019 0.001 0.821 −0.005 0.440 −0.003 0.579

  eGFR −0.011 0.170 0.003 0.501 0.010 0.051 0.008 0.100

  UACR 0.017 0.160 −0.010 0.243 −0.014 0.030 −0.012 0.064

  CHOL 0.010 0.078 −0.001 0.910 −0.001 0.823 −0.001 0.895

  TRIG 0.000 0.969 −0.005 0.323 −0.005 0.224 −0.005 0.248

  HDL −0.005 0.250 −0.004 0.378 0.001 0.705 0.000 0.995

  LDL 0.008 0.216 0.000 0.963 −0.001 0.802 −0.001 0.870

  Lpa 0.007 0.507 0.000 0.985 −0.001 0.825 −0.001 0.864

  APOA −0.004 0.408 −0.005 0.364 −0.002 0.602 −0.003 0.517

  APOB 0.009 0.019 0.010 0.001* 0.007 0.008* 0.008 0.004*

(b) Multivariable analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Signal strength 0.014 <0.001* 0.026 <0.001* 0.027 <0.001* 0.027 <0.001*

DM duration 0.013 0.012* 0.005 0.300 0.001 0.801 0.002 0.563

Hypertension −0.021 0.029 −0.001 0.911 −0.002 0.782 −0.002 0.748

DR stage

Mild NPDR 0.005 0.831 −0.018 0.327 −0.021 0.142 −0.020 0.174

(Continued)
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decreased retinal VD after interaction analysis with the effects of 
systemic risk factors, and by Qian et al. (11), who reported a negative 
correlation between DM duration and OCTA metrics such as SCP-VD 
and SCP-PD in 1118 DM patients. Furthermore, larger FAZ and lower 
retinal capillary densities in children and adolescents with diabetes 
were observed in a case–control study (19), and these changes are 
associated with DM duration and poor glycemic control.

Although DM duration was a significant risk factor for 
microvascular abnormalities, we  found no correlations between 
OCTA parameters and HbA1c or blood glucose in univariate or 
multivariable models. In this study, we assessed T2DM patients with 
a relatively short period of diabetes (71.5%, ≤10 years), and less than 
half of the patients (43.3%) had poor glycemic control (HbA1c > 10%), 
which may not be  representative of all disease durations, and the 
results should be interpreted with caution.

Hypertension weakly correlates with OCTA 
parameters

Hypertension negatively impacted foveal VD and PD after 
controlling for confounding factors (p < 0.05), demonstrating some 
influence over vessel integrity. However, none of these correlations 
persist after Bonferroni correction. In spite of several observational 
studies (20, 21) not finding hypertension or blood pressure to be risk 
factors for microvascular complication in diabetics, multiple OCTA 
studies have demonstrated its impacts on retinal microvasculature, 
including Lee et al. (13) whom reported hypertension correlated with 
lower SCP-VD (β = −0.239, p = 0.039) in diabetic patients than 
hypertensive controls, and case-control studies by Sun et al. (22) and 
Donati et al. (23) demonstrating non-diabetic hypertensive eyes had 
decreased VD as well as increased FAZ after adjusting for sex, age, and 

A B C

D E F

FIGURE 3

Correlations between systemic risk factors and optical coherence tomography angiography (OCTA) parameters. (A) Scatter plot between platelets 
(PLT) and vessel density (VD) in foveal; (B) scatter plot between PLT and perfusion density (PD) in foveal; (C) scatter plot between eGFR and VD in 
perifoveal; (D) scatter plot between eGFR and VD in macular 6 × 6-mm; (E) scatter plot between APOB and VD in perifoveal; (F) Scatter plot between 
apolipoprotein B (APOB) and VD in macular 6 × 6-mm.

(b) Multivariable analysis

Foveal P-value Parafoveal P-value Perifoveal P-value Macular P-value

Moderate NPDR 0.021 0.201 −0.010 0.606 −0.020 0.192 −0.017 0.283

Severe NPDR −0.006 0.617 −0.017 0.203 −0.014 0.155 −0.015 0.146

PDR 0.001 0.905 −0.020 0.088 −0.020 0.016 −0.019 0.023

PLT 0.013 0.002* 0.004 0.295 0.002 0.557 0.003 0.405

eGFR −0.001 0.857 0.014 0.052 0.018 0.003* 0.017 0.006*

CHOL 0.006 0.312 −0.012 0.043 −0.009 0.023 −0.009 0.023

APOB 0.002 0.535 0.010 0.002* 0.006 0.004* 0.007 0.002*

Values in bold are results that are statistically significant before Bonferroni correction (P < 0.05).
*Statistically significant results (P < 0.013).
Multivariable model-adjusted for age, sex, signal strength, DM duration, hypertension, cardiovascular disease, DR stage, chronic kidney disease, RBC, PLT, eGFR, UACR, CHOL, TRIG, and 
APOB.

TABLE 4 (Continued)

https://doi.org/10.3389/fmed.2023.1107064
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 
10

.3
3

8
9

/fm
ed

.2
0

2
3.110

70
6

4

Fro
n

tie
rs in

 M
e

d
icin

e
0

9
fro

n
tie

rsin
.o

rg

TABLE 5 Association of systemic factors with FAZ parameters in OCTA 6 × 6-mm scans.

Univariate Multivariable-adjusted

FAZ 
area

P-value FAZ 
perimeter

P-value FAZ 
circularity

P-value FAZ 
area

P-value FAZ 
perimeter

P-value FAZ 
circularity

P-value

Demographics

  Sex 0.022 0.245 0.053 0.525 0.016 0.186 0.017 0.358 0.037 0.666 0.008 0.520

  Age 0.017 0.044 0.061 0.125 0.006 0.276 0.030 0.006* 0.117 0.014* −0.003 0.707

  DM duration −0.001 0.932 0.000 0.996 −0.005 0.360 - - - - - -

  BMI 0.002 0.483 −0.006 0.612 0.001 0.738 - - - - - -

  SBP −0.009 0.342 −0.041 0.336 −0.006 0.340 - - - - - -

  DBP −0.012 0.180 −0.058 0.107 −0.008 0.230 - - - - - -

  Signal strength 0.003 0.722 0.009 0.804 0.006 0.232 - - - - - -

Comorbidities

  Hypertension −0.005 0.803 0.001 0.989 −0.003 0.809 0.018 0.399 0.083 0.358 0.004 0.758

  Cardiovascular 

disease −0.011 0.711 −0.015 0.900 0.019 0.140 - - - - - -

  Smoking 0.000 0.999 −0.002 0.982 −0.002 0.884 - - - - - -

  Chronic kidney 

disease −0.007 0.854 0.054 0.767 −0.045 0.017 0.128 0.016* 0.688 0.007* −0.072 0.018

  Obesity 0.031 0.167 −0.130 0.272 0.029 0.234 - - - - - -

  DR stage

  Mild NPDR −0.052 0.010* −0.211 0.011* −0.017 0.215 −0.063 0.009* −0.259 0.010* −0.016 0.282

  Moderate NPDR 0.021 0.448 0.210 0.046 −0.065 0.004* 0.028 0.343 0.249 0.034 −0.070 0.005*

  Severe NPDR −0.021 0.481 −0.155 0.277 −0.021 0.190 0.017 0.679 −0.067 0.731 −0.002 0.906

  PDR −0.065 0.067 −0.247 0.128 −0.052 0.018 −0.025 0.514 −0.067 0.674 −0.038 0.187

Lab values

  Glucose −0.013 0.118 −0.046 0.159 −0.003 0.648 - - - - - -

  HbA1c −0.013 0.153 −0.034 0.394 −0.007 0.165 - - - - - -

  HGB −0.005 0.670 −0.013 0.773 −0.003 0.617 - - - - - -

  RBC −0.005 0.607 −0.010 0.800 0.001 0.822 - - - - - -

  PLT −0.016 0.123 −0.063 0.150 −0.004 0.503 - - - - - -

  Scr −0.015 0.104 −0.057 0.148 −0.002 0.646 - - - - - -

  eGFR 0.009 0.371 0.032 0.460 0.001 0.916 0.027 0.059 0.113 0.069 −0.012 0.270

(Continued)
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ocular parameters. In addition, a longitudinal analysis of 4,758 T2DM 
patients with non- or mild DR demonstrated blood pressures conferred 
to risk of DR progression (24).

Hypertension is thought to contribute to accelerated 
microvascular impairment in individuals with T2DM. Chronic 
hyperglycemia results in global microvascular changes like thickening 
of the vascular basement membrane and increased endothelial 
permeability, and the presence of hypertension increases pressure 
along these membranes which accelerate the pathological change and 
weaken retinal capillary walls. Therefore, a deficit in perfusion density 
on OCTA should present as a red flag for underlying poor blood 
pressure control and could be a risk factor if investigated further. More 
studies with large-scale sample sizes and detailed blood pressure 
monitoring are required to clarify the impact of hypertension on 
retinal microvasculature and diabetes management.

Chronic kidney disease and renal function 
correlate with OCTA parameters

Our results showed that eGFR was positively associated with VD 
and PD, which was in line with results from previous studies exploring 
correlations between renal function and retinal microvasculature. Yeung 
et al. (25) reported that patients with CKD (eGFR<60 mL/min/1.73m2) 
had lower parafoveal SCP-VD compared to those of control group 
(p < 0.001), with eGFR strongly related with SCP-VD in multivariate-
adjusted models. Observational cross-sectional studies (26, 27) aimed at 
investigating the relationship between systemic risk factors and OCTA 
parameters in patients with systemic hypertension found a significant 
correlation between eGFR and retinal capillary density after adjusting for 
age, sex, and blood pressure, suggesting impaired renal function could 
be one of important risk factors in retinal microvascular alterations. 
Similarly, Zhuang et al. (28) demonstrated that decreased SCP-VD was 
independently correlated with lower eGFR among T2DM patients, while 
other investigators (29) found a significant relationship between lower 
SCP-VD, SCP-PD, and higher UACR in T2DM patients after controlling 
for systemic and ocular parameters.

In addition, our study showed that chronic kidney disease 
positively impacted FAZ area and perimeter, while UACR was 
negatively associated with FAZ area and perimeter after adjusting for 
multiple variables. Lee et  al. (13) reported that lower eGFR was 
associated with greater FAZ size in diabetic patients, which suggested 
that abnormal renal function may have an impact on the foveal and 
adjacent small vessels. However, FAZ morphology can be variable even 
in healthy individuals (30, 31), this variation must be considered and 
posed as a challenge when assessing possible pathological FAZ 
alternations. A relatively low number of chronic kidney disease patients 
(18/144) in our study population may hinder the interpretation of these 
findings, larger longitudinal studies will be needed to examine the 
effects of renal function in OCTA-derived metrics.

Aberrant lipid indices correlate with OCTA 
parameters

Our study suggested that APOB was positively correlated with 
parafoveal, perifoveal and macular VD and PD, after controlling for 
other variables. TRIG was negatively correlated with FAZ area, 
although this correlation did not persist in multivariable analysis.
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Dyslipidemia is an established risk factor for microvascular 
complications. It is now recognized that elevated CHOL levels induced 
inflammatory reaction in the microvascular system, which occurs long 
before events in the large vessels. (32) A randomized placebo-controlled 
trial by Kaushik et al. (33) proved that cholesterol-reducing medications 
retards DR progression in diabetic patients with proper glycemic control 
and hypercholesterolemia. This observation corresponds well with a 
nested case–control study by Aryan et al. (34) whom indicated a positive 
association of serum CHOL levels with microvascular complications 
(OR = 1.1, CI:1.0–2.2, p = 0.004) on 444 T2DM cases and 439 controls, 
although this correlation disappeared after interaction analysis with 
demographic and systemic factors. A large-scale cohort study (35), on 
the other hand, found a significant correlation between elevated serum 
levels of TRIG, decreased HDL levels, and diabetes-related microvascular 
complications in 72,289 T2DM patients, implying that aberrant lipid 
indices may reflect retinal microangiopathy in diabetics.

While there is little evidence that LDL has a causal effect on the 
risk of microvascular disease, growing evidence (36, 37) has shown 
that compared to traditional lipid indices, ApoB provides incremental 
information on lipid metabolism and may play a significant role in 
the development of vascular disease. To date, only a few studies have 
looked into the relationship between ApoB and retinal vascular 
system in diabetics. Shi et  al. (38) found that foveal SCP-VD 
measured from OCTA 3 × 3 mm scans were negatively correlated with 
serum ApoB levels in T2DM patients (β = −0.016, p < 0.001), however, 
this correlation was not significant after controlling for other 
risk factors.

PLT correlates with OCTA parameters

Our study found that PLT was significantly associated with 
increased VD and PD in the foveal region after adjusting for other 
confounders. The influence of PLT on the microvascular system has 
so far remained uncertain. Considering the physical proximity of PLT 
to the vascular endothelium, a relationship between PLT and 
microvascular alterations is assumed. Yuan et al. (39) implicated that 
platelet hyperactivity in diabetic individuals may undermine tissue 
perfusion as well as contribute to microvascular occlusion. Data from 
3,009 participants recruited for the Blue Mountains Eye Study (BMES) 
(40) revealed that higher PLT correlated with narrower arteriolar 
caliber and wider venular caliber, implying that elevated levels of PLT 
could have adverse effects on microvasculature. However, the 
mechanisms that underlie this association are unclear and research on 
this topic is sparse. Based on OCTA measurement, we speculate that 
PLT levels may be a marker for microvascular dysfunction in diabetic 
patients. More studies are required to corroborate this hypothesis.

Limitation

There are several limitations of our present study. The first one is 
that the study was a single-center study with a relatively small sample 
size. Second, most participants in this study have mild or moderate 
diabetic retinopathy (115/140, 79.9%), while the effect of diabetic 
retinopathy has been taken into account in multivariable models, it 
may still have confounding effects on OCTA measurement due to the 
pathological change in DR itself. Thirdly, we did not account for 
ocular factors, such as axial length and refractive error in the analysis, 

as subjects with high myopia (axial length > 26 mm) were excluded. 
However, ocular magnification in OCTA images caused by varying 
axial lengths may interfere with accurate interpretation of OCTA 
measures. (10) Finally, VD and PD in the deep capillary plexus 
(DCP) could not be  evaluated due to the limitations of built-in 
angiography software in the OCTA instrument, which may be more 
sensitive in detecting retinal microvascular changes in diabetic 
patients at an early stage.

In conclusion, this study provided evidence that systemic risk 
factors are associated with retinal microvasculature among T2DM 
patients in a Chinese population. Further longitudinal and large-scale 
studies are needed to corroborate our findings.
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