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Renal diseases are common health problems that a�ect millions of people around

the world. Among these diseases, kidney stones, which a�ect anywhere from 1

to 15% of the global population and thus; considered one of the leading causes

of chronic kidney diseases (CKD). In addition to kidney stones, renal cancer is the

tenth most prevalent type of cancer, accounting for 2.5% of all cancers. Artificial

intelligence (AI) in medical systems can assist radiologists and other healthcare

professionals in diagnosing di�erent renal diseases (RD) with high reliability. This

study proposes an AI-based transfer learning framework to detect RD at an early

stage. The framework presented on CT scans and images from microscopic

histopathological examinations will help automatically and accurately classify

patients with RD using convolutional neural network (CNN), pre-trained models,

and an optimization algorithm on images. This study used the pre-trained

CNN models VGG16, VGG19, Xception, DenseNet201, MobileNet, MobileNetV2,

MobileNetV3Large, and NASNetMobile. In addition, the Sparrow search algorithm

(SpaSA) is used to enhance the pre-trained model’s performance using the best

configuration. Two datasets were used, the first dataset are four classes: cyst,

normal, stone, and tumor. In case of the latter, there are five categories within

the second dataset that relate to the severity of the tumor: Grade 0, Grade 1,

Grade 2, Grade 3, and Grade 4. DenseNet201 and MobileNet pre-trained models

are the best for the four-classes dataset compared to others. Besides, the SGD

Nesterov parameters optimizer is recommended by three models, while two

models only recommend AdaGrad and AdaMax. Among the pre-trained models

for the five-class dataset, DenseNet201 and Xception are the best. Experimental

results prove the superiority of the proposed framework over other state-of-the-

art classification models. The proposed framework records an accuracy of 99.98%

(four classes) and 100% (five classes).
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1. Introduction

Kidney stones are one of the most common contributing

factors to kidney function loss and, if left untreated, can lead to

chronic kidney disease (CKD) development (1). Kidney stones

are a common health problem that affects 1–15% of the world’s

population and is becoming more common with each passing year

(2). For example, every year, over two million people in the USA

seek treatment at an emergency department for renal colic or stone-

related back pain (3). In addition, around two million patients

worldwide are in the kidney replacement stage (4).

Kidney stones cause various abnormalities, such as renal

failure, loss of employment due to extreme pain, and decreased

life quality due to urinary system obstruction. Kidney stones

disease occurs due to the accumulation of salt and mineral

crystals that are excreted in the urine and turn into stones.

Kidney stones develop due to a lack of regular activity and poor

dietary habits. Furthermore, chronic conditions such as high blood

pressure, diabetes, and obesity can impact stone development. After

treatment, the kidney stone may reoccur and become chronic.

Kidney function impairment due to the formation of kidney

stones endangers human life. Therefore, preventing kidney stone

formation and recurrence is still a significant problem for human

health (2).

Meanwhile, renal tumors are amajor cause ofmorbidity around

the world. Renal cancer is the tenth most prevalent type of cancer,

accounting for 2.5% percent of all cancers, according to Modepalli

et al. (5). Renal cell carcinoma (RCC) is the most frequent type

of kidney cancer, accounting for around 2% of cancer-related

mortality worldwide (6). In the USA, kidney cancer is expected

to cause 73,750 new cases and 14,830 deaths in 2020 (7). Figure 1

(5) shows the renal Oncocytoma Microscopy and Cut surface. The

WHO classification of renal tumors distinguishes 12 different RCC

subtypes. Clear-cell RCC (ccRCC) accounts for around 80% of all

RCC cases (7). As a result, surgeons must look for new microscopic

findings in RCC diagnoses and classification (5). Therefore, renal

tumor histological reclassification is critical based on molecular,

clinical, and pathological features. Experienced pathologists are

required to diagnose RCC using microscopic histopathology

slides. The routine histopathological evaluation for a very small

amount of tissue is time-consuming and labor-intensive due to

the complication of renal neoplasms (8). Besides, some cases are

difficult to diagnose and require additional immunohistochemistry

FIGURE 1

Oncocytoma. (A) Microscopy. (B) Cut surface (5).

TABLE 1 Common renal imaging modalities.

Technique Pros. Cons.

US • Commonly used in

nephrology.

• Low cost.

• Safe.

• Easily operated.

• Real-time

examination.

• Low contrast.

• Artifacts.

• Low signal-to-noise

ratio.

• Hampering the

segmentation process.

CT • High spatial

resolution.

• High-precision

evaluation.

• Low specificity.

• The use of contrast

agents continues to

cause nephrotoxicity.

• Exposure to X-ray

radiation.

DCE MRI • Excellent anatomical

and functional

knowledge.

• Affect the kidney.

• Cause nephrogenic

systemic fibrosis.

BOLDMRI • Renal oxygenation

status evaluation.

• Breathing motion

artifacts are a risk.

DWMRI • Ability to assess whole

kidney perfusion and

diffusion.

• It detects the

movement of water

molecules within the

tissue.

• Limited to respiratory

motion artifacts.

• Issues related to

protocol variability.

testing. Pathological diagnosis of RCC requires novel low-cost, and

efficient approaches.

Ultrasonography (USG), magnetic resonance imaging (MRI),

and Computed tomography (CT) are the common renal imaging

modalities. The clinical condition determines the appropriate

Renal imaging technique, the clinical goal, and patient-specific

factors such as intensity inhomogeneity within the kidney, the

spatial localization of the kidney, the shape variability, and certain

congenital anomalies (1).

Ultrasound (US) imaging is a commonly used radio-free

diagnostic tool that assesses the size andmorphology of the kidneys.

Cysts, stones, and tumors can all be detected in the US. It provides

good anatomical detail as well as real-time examination. On the

other hand, the operator’s experience is crucial in image acquisition.

The US imaging may be interpreted differently by the radiologists

(9). In addition, speckle noise can be seen in the low image

quality (1).

Furthermore, multiple US images of the same kidney may

appear differently (10). MRI provides high spatial resolution

and anatomical and functional information on renal. MRI

imaging can also detect renal abnormalities and malignancies.

Recently, Advanced MRI techniques have gained considerable

attention, such as dynamic contrast-enhanced (DCE) MRI, Blood

oxygen level-dependent (BOLD) MRI, and Diffusion-weighted

(DW) MRI. However, MRI cannot identify classifications, namely

renal stones (1). CT provides information similar to the US

but in higher spatial resolution and sensitivity. CT provides

clearer vascular tomographic images that depict functions and

properties to distinguish interior design elements such as size,

density, and structure. In addition, it provides a high-precision

evaluation of masses, kidney injuries, and stones. Thus, CT is

Effective in diagnosing post-transplant complications. The biggest
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TABLE 2 Related studies summarization.

Reference Application Approach Dataset Pros. Cons. Best
performance

Patil and

Choudhary (19)

CKD risk

classification

HWM + Optimized

DCNN

137 US images Computational

time

Small sample size Sensitivity of 89.98

Yildirim et al. (3) Kidney stone binary

classification

XResNet-50 model 1799 CT images Identify small size

stones

Erroneous

results-limited

dataset

Accuracy of 96.82%

Sudharson et al. (9) Multi-class kidney

abnormalities

ResNet-101- SVM 4,940 augmented

US images

Noise reduction Low accuracy Accuracy of 87.31%

Nazari et al. (6) Death Risk

prediction within

5Y in RCC patients

XGBoost 222 RCC CT images Good accuracy Small dataset Accuracy of 0.98%

Jayapandian et al.

(23)

RBNHP U-Net models. 459 digital renal

biopsies

Six renal histologic

primitives

classification

Multiple DL

networks can

improve the results

F-scores: 0.94

Chen et al. (7) Survival prediction

of ccRCC patients

CellProfiler 1,107 images of

H&E slides

Large dataset External validation-

excluded patients

with difficult

diagnosis

AUC of 97.0% and

increased accuracy

by 6.6%

Aksakalli et al. (2) Kidney stone binary

classification

Decision Tree (DT) 221 X-ray images Execution time Limited dataset Asuccess rate of

85.3%

Ma et al. (16) Multi-class kidney

abnormalities

classification

SVM and back

propagation

algorithms.

400 CT images Noise reduction -

Low computation

time.

Limited dataset High sensitivity,

specificities, and

accuracy of 97.5%

Smail et al. (21) GHS- five-way

classification

problem.

DCNN 2,420 sagittal US Moderate accuracy Small and

imbalanced dataset

Accuracy of 94%

Sudharson et al. (4) TKidney stone

multi- classification.

ResNet-101,

ShuffleNet, and

MobileNet-v2

4,940 augmented

US images

Noise reduction Low accuracy Accuracy of 96.54%

Zheng et al. (17) CAKUT binary

Classification

Imagenet-caffe-

Alex

120 US

CAKUT-150 US

Control

TL and the

conventional

imaging features

integration

Limited dataset -

Low accuracy

Accuracy of 87%

Abdeltawab et al.

(18)

Detection of acute

renal transplant

rejection

TReLU DW-MRI of 56

individuals

A reliable

non-invasive

diagnosis

Small sample size Accuracy of 92.9%

Yin et al. (20) CAKUT binary

Classification

CNN +GNNs 2,687 US CAKUT-

2,246 US Control

Large Data sets Network

architecture

optimization

Accuracy of 85%

Brunetti et al. (22) ADPKD CNN +GA 526 MRI images Moderate accuracy Small dataset Accuracy of 95%

disadvantage is that it exposes patients to ionizing radiation. Table 1

summarizes the common Renal imaging modalities.

The textural analysis is a useful adjunct that quantifies medical

images by analyzing image pixels. It is based on mathematical

techniques, investigates the spatial arrangement of gray-level pixels,

and reveals relationships. Textures can represent histological

variability due to renal architecture and the influence of renal

disease on the distribution of functional indicators (11). Combining

textural analysis and classic machine learning approaches broadens

medical imaging potential in diagnosing and predicting renal

dysfunction indistinguishable from the radiologist’s eye. The

process involves image acquisition, feature extraction, feature

selection, segmentation, and classification. Although the early

diagnosis of RD patients has been linked to high medical costs

and mortality savings, referrals are frequently made too late in

the disease course (12). On the other hand, early detection of RD

results in better patient management and a lower mortality rate by

preventing progression to the endpoint (13). However, the manual

procedure is tightly coupled with the experience of nephrologists

to diagnose a patient’s condition correctly. Besides, it is time-

consuming, error-prone, subjective, and inconsistent. Therefore,

computer-aided diagnosis (CAD) approaches to aid in preventing

progression of RD. CAD’s first concern is automating the earlier

diagnosis stage based on Artificial Intelligence (AI) techniques.

AI significantly impacts healthcare applications, especially in

analyzing medical images.

Interestingly, Deep learning (DL), a field of artificial

intelligence, has been exceedingly used and made a significant

guide in building renal function evaluation frameworks. Thus,

a fully accurate automated procedure for early disease diagnosis
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FIGURE 2

The schematic diagram of sparrow behavior.

based on deep learning algorithms plays an essential role in

the patient’s survival. Furthermore, deep learning has proven

to be promising in interpreting medical images that surpass

human experts; besides, it minimizes physician-induced errors

due to its powerful classification, detection, and segmentation

capabilities (14).

1.1. Paper contributions

To the best of our knowledge, deploying hyperparameter

optimization with automated RD detection is still a vague area,

and several challenges and issues have not yet been addressed.

Therefore, this study proposes a dualistic RD classification (DRDC)

framework based on transfer learning (TL) with hyperparameters

optimization. The DRDC framework performs automatic, accurate

kidney stones and tumors classification using CT images and

microscopic histopathological examination. The DRDC uses

an optimized Convolutional Neural Network (CNN) by the

Sparrow Search Algorithm (SpaSA) (14, 15). The contributions

are as follows:

• Proposing DRDC framework for accurately classifying kidney

stones and tumors based on the CT images and microscopic

histopathological.

• The SpaSA optimizes the CNN parameters and

hyperparameters to improve classification accuracy

by finding the optimal configurations for the

CNNmodels.

• The proposed framework is characterized by adaptability

via automatic assignment of the CNN architecture’s

hyperparameters.

• Two distinct datasets were used in the experiments. The

first database is classified into four CT classes, Normal,

Cyst, Tumor, and Stone, while the second dataset is

classified into five histopathological classes, in case of

tumor exists.

• The proposed method yields very promising

outcomes compared to state-of-the-

art techniques,

• A manual error analysis is conducted to determine

the reason behind the misclassification and how to

rectify it.
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FIGURE 3

The proposed DRDC framework classification methodology.

1.2. Paper organization

This paper is organized as follows: Section 2 summarizes related

works about automatic diagnosis of different RD in healthcare

informatics. Section 3 introduces the background of computer-

aided decision support systems props. Section 4 presents the

proposed framework DRDC in detail. In Section 5, the experiments

are introduced, and the findings are discussed. The final section

summarizes the findings and draws the necessary conclusions.

2. Related studies

Yildirim et al. (3) proposed an automated detection and

localization technique for kidney stone diagnosis using DL. A

binary classifier based on 1,799 CT images is introduced on a four-

stage XResNet-50model. CT images are the input to themodel, and

the output class is provided beside the region of interest (RoI). The

labeling process is carried out by the experts carried out without

CT image segmentation. The proposed model obtained a proper

diagnosis with an accuracy of 96.82%. However, the model gave

erroneous results and focused only on the stomach. In addition,

a limited dataset is used, which limits the model’s generalizability.

Aksakalli et al. (2) developed a DL model that detects whether a

kidney X-ray image is patient or healthy. The proposed method

comprises six phases: scaling, resizing, gray-level values extraction,

generating CSV, resampling, and evaluation. They used small data

set of 221 kidney X-ray images. Experiments demonstrated that the

proposed method achieved an F1-score with a success rate of 85.3%

utilizing the S + U sampling method.

Ma et al. (16) proposed a Heterogeneous, Modified Artificial

Neural Network (HMANN) method for the multi-classification

of kidney stones. The deep learning-based HMANN performs

preprocessing, feature extraction, segmentation, and chronic renal

failure classification. Based on an ultrasound image, the model

achieves high accuracy of 97.5% in predicting kidney stones and

the RoI. However, the HMANN relies on a small CT dataset. An

ensemble of pre-trained DNN -based methods are introduced in

(4) for kidney stone muti-classification (normal, cyst, stone, and

tumor). The method consists of four processes: augmentation,

speckle noise, TL of DNNs, and classification process. They used

a dataset consisting of 4,940 augmented US images. However, a

modification in the architecture of DNNs is needed to improve

the accuracy. Then, the authors proposed a kidney stone multi-

Classification CAD based on US image diagnosis System (9). They

aimed to remove Speckle noise in the US images using a deep

residual learning network (RLN). They used a pre-trained ResNet-

101 model for Feature extraction and SVM for classification. For

training and testing, they used 4,940 augmented US images.

Zheng et al. (17) studied the US anatomic characteristics

of children’s kidneys as biomarkers of children with congenital

abnormalities of the kidney and urinary tract (CAKUT). They

used a deep TL approach for developing a binary classification

for control and children with CAKUT. However, they used a

limited dataset consisting of only 50 patients. An ML-based CAD

system that combines imaging markers and clinical biomarkers

is developed to detect acute renal transplant rejection (18). The

proposed system consists of data prepossessing, ROI selection; 3D

map extraction; and classification. Although the proposed system

offers high reliability and non-invasive diagnosis, it requires a larger

sample size. Patil and Choudhary et al. (19) developed a deep
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FIGURE 4

The detailed phases of the proposed DRDC framework.

CKD risk classification new prediction model based on US images.

The proposed model consists of preprocessing, feature extraction,

and classification. Feature extraction involves texture analysis, local

binary pattern (LBP) model, area extraction, and mean intensity

extraction.

An optimized deep CNN is used with the DM-HWM model’s

optimization. They used a manually collected dataset that contains

137 US images. The model achieves a Sensitivity of 89.98. However,

it depends on the small sample size. Yin et al. (20) developed

a multi-instance CNN-based learning classifier based on 2D US

images. For the optimization of features learned from CNN, they

used GNNs. The proposed method achieves about 85% of accuracy.

However, the automated network architecture optimization is still

missing. Smail et al. (21) developed a five-layer CNN to classify five-

way Grade Hydronephrosis Severity (GHS) based on US images.

Deep learning algorithms are used to provide human grading

experts. DL standards limited the dataset, and it was collected from

687 patients. Dataset was imbalanced and only contained one image

per patient visit. The Detection of Autosomal Dominant Polycystic

Kidney Disease (ADPKD) is time-consuming and costly. Besides,

tracking the progression of ADPKD disease over time is essential

for treatment. Brunetti et al. (22) developed an automated CNN-

based procedure to segment and classify ADPKD. They used the

Genetic algorithm (GA) for CNN’s architecture optimization. They

used a limited dataset of 526 MRI images.

Nazari et al. (6) created a machine learning-based model to

predict RCC patients’ overall survival. The proposedmodel consists

of the acquisition, manual ROI tumor segmentation, preprocessing,

feature extraction, and classification. The best classification

accuracy (0.98%) was achieved by the XGBoost model trained and

validated on 222 RCC-CT images for 70 patients. Furthermore,

a reliable DL-based CNN framework for the segmentation of

renal biopsy and nephrectomies histologic primitives (RBNHP)

is proposed (23). Multiple DL approaches were trained with
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FIGURE 5

Samples from the used datasets.

TABLE 3 Di�erent augmentation techniques and the corresponding

configurations used to balance the datasets.

Technique Value

Rotation 30◦

Width shift ratio 20%

Height shift ratio 20%

Shear ratio 20%

Zoom ratio 20%

Brightness change [0.8 : 1.2]

Vertical flip X

Horizontal flip X

optimal digital magnification for the computational derivation of

histomorphometric features. This clinical decision support used

459 digital renal biopsies from 38 histology laboratories. Chen

et al. (7) introduced a computational recognition machine learning

model integrated with clinicopathologic factors. The model aimed

at automated and accurate diagnosis and survival prediction of

clear cell RCC patients based on histopathologic images. A total

of 1,107 images of H&E slides from 947 RCC patients were used.

Segmentation and feature extraction pipeline via CellProfiler is

used. High versus low-risk scores were found; however, the median

score was used as the cut-off value.

2.1. Related studies summarization

Table 2 summarizes the discussed related studies. They are

ordered in descending order according to the publication year. As

far as the authors know, this study is the first to (1) investigate the

role of transfer learning and hyperparameter optimization along

TABLE 4 The solution indexing and the corresponding hyperparameters.

Element
index

Corresponding hyperparameter

1 Loss function

2 Batch size

3 Dropout ratio

4 TL learning ratio

5 Weights (i.e., parameters) optimizer

6 Dimension scaling technique

7 Apply data augmentation or not

8 Rotation value (in case of data augmentation is applied)

9 Width shift value (in case of data augmentation is applied)

10 Height shift value (in case of data augmentation is applied)

11 Shear value (in case of data augmentation is applied)

12 Zoom value (in case of data augmentation is applied)

13 Horizontal flipping flag (in case of data augmentation is

applied)

14 Vertical flipping flag (in case of data augmentation is

applied)

15 Brightness changing range (in case of data augmentation is

applied)

with different renal disease. (2) diagnosis of different RD based on

the two-phase classification for stones and tumors.

3. Background

In recent years, doctors have increasingly used machine

learning as a diagnostic tool, which provides them with

complementary information (24). Recently, deep learning (DL)

has been applied in many medical imaging analysis techniques.
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Convolution neural networks (CNNs) have been widely used in

solving many problems, especially classification (25). CNN is one

of the most well-known and influential deep learning models

in computer vision, speech recognition, and medical diagnosis

(14). Deep CNN architecture named AlexNet was shown to be

very effective on highly challenging datasets when applied to

the ImageNet LSVRC-2012 competition with purely supervised

learning (26, 27). With CNN DL Models, relevant features are

extracted using various layers of CNNs followed by fully-connected

neural networks. In transfer learning, components of a model

developed for one purpose are used to construct a new model for

a different task. It seems like a very interesting research area to

train Deep Learningmodels on different datasets and transfer layers

between themodels for various tasks. The novel model incorporates

more training data and upgraded neural layers (28, 29). The

concept of meta-learningmay contribute to achieving a higher level

of reuse in the future.

Sparrow Search Algorithm (SpaSA), a revolutionary

metaheuristic algorithm introduced in 2020, is primarily inspired

by sparrows’ foraging and anti-predation behavior. Based on

benchmark functions, SpaSA has a better optimization capability

and is more efficient than PSO, GWO, LAPO, and other learning

algorithms (30). This is because the sparrow has a small brain

capacity but is an intelligent, socially cooperative creature with

good memory and a good sense of division of tasks. Therefore,

SpaSA has proven to be an incredibly powerful optimization

algorithm when inspired by the sparrow population’s natural

foraging and anti-predator behavior (31).

In the SpaSA, as shown in Figure 2, sparrow flocks are modeled

as they go about foraging.With a superimposed reconnaissance and

early warning system, sparrow flocks forage through a discoverer-

joiner model. The sparrow population consists of discoverers,

joiners, and scouts. As with many animals, individuals adept at

finding food tend to be the discoverers, while other individuals play

the role of joiners. The discoverer guides the population with a

high fitness value, a wide search range, and the ability to guide the

population to find food. The joiner follows the discoverer hunting

to improve their fitness. Furthermore, a proportion of individuals

in the population serve as scouts to watch out for dangers such as

predators and companions, thereby improving predation and risk

prevention abilities (32, 33).

Six idealized intrinsic rules govern sparrow behavior: (1) The

producers maintain high energy reserves and guide all scroungers.

(2) When a sparrow discovers a predator, it chirps to alert the

other sparrow. (3) In this study, the percentage of producers is

set at 20%. On the other hand, each sparrow has the potential to

be a producer if it can discover higher quality food supplies and

has a larger energy reserve. (4) Scroungers may leave their current

places if they become starving. (5) Scroungers stalk those producers

who can offer the best food sources. (6) When they detect danger,

peripheral sparrows fly toward the center of a group (31, 34, 35).

4. Methodology

This paper proposes an efficient Dualistic Renal Disease

Classification (DRDC) framework. The DRDC framework is

developed for the automatic and accurate classification of the

kidney. The DRDC framework uses CT and histopathological

kidney images. In addition, the framework aggregates

convolution neural networks, transfer learning, and the

Sparrow search algorithm. Figure 3 depicts the classification

methodology of the proposed DRDC framework. In

addition, the DRDC framework phases are detailed as shown

in Figure 4.

The patient will first get a CT scan of the kidney, as indicated

in Figure 3, and the scan will be labeled with the help of the

first recommended classifier. After that, a diagnosis of “Normal,”

1 Function Update SpaSA Solutions (solutions, scoresList)

// Sort the population scores.

2 Sort SpaSA Solutions (solutions, scoresList) ; // Sort the

scores list in descending order.

3 best,worst, optimal, bestScore,worstScore =

Extract From Solutions (solutions, scoresList) ;

// Extract the best, worst, and optimial

solutions; and best and worst scores.

// Start the updating process using SpaSA

equations.

// The discoverer location updating process

(Equation 1).

4 i = 1 ; // Initialize a counter.

5 while (i ≤ PD) do

6 if (R2 < ST) then

7 solutions[i] = solutions[i]× exp(
−t

α×Tmax
)

8 else

9 solutions[i] = solutions[i]+ Q× L

10 i = i+ 1 ; // Increment the counter.

// The followers’ location updating process

(Equation 2).

11 i = 1 ; // Initialize a counter.

12 while (i ≤ (Nmax − PD)) do

13 if (i > 0.5× Nmax) then

14 solutions[i] = Q× exp

(

worst−solutions[i]

i2

)

15 else

16 solutions[i] = optimal+ |solutions[i]− optimal| × A+ × L

17 i = i+ 1 ; // Increment the counter.

// The anti-predation behavior (Equation 4).

18 i = 1 ; // Initialize a counter.

19 while (i ≤ SD) do

20 if (scores[i] 6= bestScore) then

21 solutions[i] = best + β × |solutions[i]− best|

22 else

23 solutions[i] = solutions[i]+ K ×

(

|solutions[i]−worst|
(scores[i]−worstScore)+ǫ

)

24 i = i+ 1 ; // Increment the counter.

25 return solutions ; // Return the updated population

26 End Function

Algorithm 1. The population (i.e., solutions) updating process using

the SpaSA meta-heuristic optimizer.
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Input: model, dataset (Model name and dataset)

Output: best, bestScore (The best overall score and

solution)

1 Partition the dataset into training, testing,

and validation portions based on the SR,

creating trainX, validationX, testX, trainY, validationY,

and testY

2 Create an initial pre-trained TL model, model

3 Generate initial solutions, solutions

4 Perform the learning SpaSA hyperparameters

optimization process for Tmax iterations

5 Initialize the iterations counter, t, to 1 where

t ≤ Tmax

6 while (t ≤ Tmax) do

7 Initialize the sparrow counter, i, to 1 where

i ≤ Nmax

8 Initialize the scores list, scoresList

9 while (i ≤ Nmax) do

10 Calculate the fitness score (i.e., accuracy)

for the current solution, score, using model,

solutions[i], trainX, trainY, validationX, and

validationY

11 Append score to scoresList

12 Increment the sparrow counter, i

13 Update the population using SpaSA

(Algorithm 1) with solutions and scoresList

14 Increment the iterations counter, t

15 Return the best score and solution, best and

bestScore

Algorithm 2. Pseudocode for the proposed DRDC framework.

TABLE 5 The used datasets specifications summarization.

Dataset No. of
classes

Classes No. of
images
(before)

No. of
images
(after)

CT KIDNEY

DATASET:

Normal-cyst-

tumor and

stone

4 “Cyst”, “Normal”,

“Stone”, and

“Tumor”

12, 446 20, 308

kidney

cancer

5 “Grade 0”, “Grade

1”, “Grade 2”,

“Grade 3”, and

“Grade 4”

277 355

“Stone,” “Cyst,” or “Tumor” should be assigned. If the scan

comes out as “Normal”, the patient’s kidneys are fine. If the

scan results in a “Tumor”, the patient will undergo microscopic

histological analysis to determine the grade of the tumor (or

cancer). It is worth noting that “Grade 0” is the lowest while

“Grade 4” is the highest. Finally, if the scan is “Stone” or

“Cyst”, this patient should follow other treatments and diagnosis

approaches.

TABLE 6 The common experiments settings.

Configuration Specifications

Apply Dataset Shuffling? Yes (Random)

Input Image Size (128× 128× 3)

Hyperparameters metaheuristic

optimizer

Sparrow search algorithm (SpaSA)

Train split ratio 85% to 15% [i.e., 85% for training (and

validation) and 15% for testing]

SpaSA size of population 10

SpaSA number of iterations 10

Number of epochs 5

Output activation function SoftMax

Pre-trained models VGG19, DenseNet201, MobileNet,

VGG16, NASNetMobile, Xception,

MobileNetV3Large, and MobileNetV2

Pre-trained parameters initializers ImageNet

Losses range Categorical crossentropy, Categorical

hinge, KLDivergence, Poisson, Squared

Hinge, and Hinge

Parameters optimizers range Adam, NAdam, AdaGrad, AdaDelta,

AdaMax, RMSProp, SGD, Ftrl, SGD

Nesterov, RMSProp Centered, and

Adam AMSGrad

Dropout range [0 → 0.6]

Batch size range 4 → 48 (step = 4)

Pre-trained model learn ratio range 1 → 100 (step = 1)

Scaling techniques Normalize, standard, min max, and max

Abs

Apply data augmentation (DA) [Yes,No]

DA rotation range 0◦ → 45◦ (step = 1◦)

DA width shift range [0 → 0.25]

DA height shift range [0 → 0.25]

DA shear range [0 → 0.25]

DA zoom range [0 → 0.25]

DA horizontal flip range [Yes,No]

DA vertical flip range [Yes,No]

DA brightness range [0.5 → 2.0]

Scripting language Python

Python major packages Tensorflow, Keras, NumPy, OpenCV,

SciPy, and Matplotlib

Working environment Google Colab with GPU [i.e., Intel(R)

Xeon(R) CPU @ 2.00GHz, Tesla T4 16

GB GPU, CUDA v.11.2, and 12 GB

RAM]

4.1. Phase 1: Dataset acquisition

Datasets are accessible from several sources, including

hospitals, clinics, and online repositories. The datasets used in

this study are collected from two public databases (36, 37). The

datasets’ characteristics are explored in Section 5.1. In summary,

this study uses two distinct modalities CT scans and microscopic

histopathology examinations (i.e., histopathological slides).

Figure 5 depicts images from the used datasets.
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TABLE 7 Four-classes specific experiments configurations.

Configuration Specifications

Dataset Sources https://www.kaggle.com/nazmul0087/ct-kidney-

dataset-normal-cyst-tumor-and-stone

Number of Classes 4

Classes “Cyst”, “Normal”, “Stone”, and “Tumor”

Dataset Size before Data

Balancing

“Cyst”: 3, 709, “Normal”: 5, 077, “Stone”: 1, 377,

and “Tumor”: 2, 283

Dataset Size after Data

Balancing

“Cyst”: 5, 077, “Normal”: 5, 077, “Stone”: 5, 077,

and “Tumor”: 5, 077

4.2. Phase 2: Dataset pre-processing

In the second stage, three processes are used to prepare the data

sets for further analysis. The processes are resizing, dimensional

scaling, and balancing.

4.2.1. Process A: Dataset resizing
The used datasets are not found in the same size; hence, in the

RGB color mode, the datasets are shrunk to a size of (128, 128, 3).

Finally, the sampling is performed by using bicubic interpolation.

4.2.2. Process B: Dataset scaling
The proposed DRDC framework uses four scaling methods,

which will be discussed later. They are (1) normalization ( X
max (X) ),

(2) standardization (X−µ
σ

), (3) min-max scaler ( X−min (X)
max (X)−min (X) ),

and (4) max-abs scaler ( X
|max (X)| ) where X is the input image,

Xoutput is the scaled image, µ is the image mean, σ is the image

standard deviation.

4.2.3. Process C: Dataset balancing
The used datasets are not found to be balanced. This issue can

lead to a high rate of misclassification or overfitting. Therefore,

data balancing techniques should be handled; hence, the data

augmentation technique is deployed to overcome this issue. The

DRDC framework employs rotation, shifts, shearing, zooming,

flipping, and brightness augmentation. Table 3 depicts the intended

augmentation methods and their related settings employed to

provide dataset balancing.

4.3. Phase 3: Learning phase

After pre-processing the datasets, the learning phase comes in.

The current study utilizes the VGG19, DenseNet201, MobileNet,

VGG16, NASNetMobile, Xception, MobileNetV3Large, and

MobileNetV2 pre-trained CNNmodels.

In short, VGG16 and VGG19 are CNN models created

by the Visual Geometry Group at the University of Oxford.

Their architecture is straightforward, utilizing many layers of 3x3

convolutional filters with max pooling layers in between. VGG16

has 16 layers and VGG19 has 19 layers (38). DenseNet201 is

TABLE 8 CM findings for the Four-classes dataset.

Model
name

TP TN FP FN

VGG16 19,920 60,578 334 384

VGG19 20,073 60,676 224 227

Xception 20,292 60,900 12 12

DenseNet201 20,300 60,910 2 4

MobileNet 20,300 60,908 4 4

MobileNetV2 20,067 60,739 173 237

MobileNetV3

Large

19,200 59,913 999 1,104

NASNetMobile 20,134 60,770 82 150

another CNN model developed by Huang et al. (39). It employs

dense connectivity, allowing each layer to connect to every other

layer in a feedforward manner, resulting in optimal parameter

utilization and improved feature propagation (39). MobileNet

and MobileNetV2 are lightweight CNN models meant for mobile

and embedded applications. Depthwise separable convolutions

are used, reducing parameters and computations necessary for

inference while maintaining high accuracy. MobileNetV3Large is

the latest iteration of the MobileNet architecture, incorporating

features such as squeeze-and-excitation blocks and hard-swish

activation functions. Thesemodifications enhance the accuracy and

efficiency of the network (40). Google’s NASNetMobile is a CNN

model that utilizes neural architecture search (NAS) to discover the

optimal architecture for a given task via reinforcement learning. It

has demonstrated state-of-the-art accuracy on image classification

and object detection tasks (41). Finally, Xception is a CNN

model created by Chollet in (42). It employs depthwise separable

convolutions in a modified Inception architecture, resulting in

reduced parameters and computations necessary for inference

while maintaining high accuracy (43).

This phase uses the SpaSA meta-heuristic optimizer for the

optimization of hyperparameters (e.g., loss function and batch

size). The following mechanism aims to discover the optimum

setups for each pre-trained TL model utilized. This phase

implements three processes. They are:

− Process A: Initial Population Generation.

− Process B: Fitness Function Runner.

− Process C: Population Updating.

The first process (i.e., Process A) is executed just once, while the

other two processes are repeatedly executed for some fixed number

of cycles Tmax.

4.3.1. Process A: Initial population generation
When the learning phase begins, a single random number

generation is used to seed the population. A population pack has

a maximum of Nmax possible solutions. Each solution is a vector

sized 1 × D where each element is in [0, 1]. Hyperparameters are

assumed to be reflected in each solution element. Table 4 shows the

solution indexing and the corresponding hyperparameters. We can
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TABLE 9 The best solutions following the LOP for the Four-class dataset.

Model
name

Loss Batch
size

Dropout TF
learn
ratio

Optimizer Scaler Apply
augmentation

Rotation
range

Width
shift
range

Height
shift
range

Shear
range

Zoom
range

Horizontal
flip

Vertical
flip

Brightness
range

VGG16 Poisson 24 0.01 22 SGD Nesterov MinMax No N/A N/A N/A N/A N/A N/A N/A N/A

VGG19 Categorical

Hinge

20 0.16 89 AdaGrad MaxAbs Yes 44 0.14 0.14 0.05 0.21 Yes No 1.25-1.85

Xception KLDivergence 24 0.46 89 AdaMax Standardization No N/A N/A N/A N/A N/A N/A N/A N/A

DenseNet201 KLDivergence 12 0.18 52 AdaGrad Standardization Yes 3 0.22 0.14 0.04 0.03 No Yes 1.01-1.86

MobileNet Poisson 24 0.22 46 AdaMax Normalization Yes 38 0.07 0.08 0.12 0.03 Yes No 1.35-1.89

MobileNetV2 KLDivergence 16 0.58 76 SGD Nesterov Standardization Yes 35 0.11 0.09 0.17 0.11 No Yes 0.61-1.81

MobileNetV3

Large

Categorical

Hinge

16 0.27 42 SGD Nesterov MaxAbs No N/A N/A N/A N/A N/A N/A N/A N/A

NASNetMobile KLDivergence 44 0.33 41 SGD MaxAbs Yes 0 0.1 0.08 0.03 0.12 Yes No 1.23-1.24

TABLE 10 The Four-classes dataset evaluates the maximized metrics.

Model
name

Accuracy (%) F1 (%) Precision (%) Sensitivity (%) Specificity (%) AUC (%) IoU (%) Cosine
similarity (%)

VGG16 98.28 98.22 98.35 98.11 99.45 99.91 94.78 98.21

VGG19 98.89 98.89 98.90 98.88 99.63 99.61 99.17 98.96

Xception 99.94 99.94 99.94 99.94 99.98 99.98 99.71 99.94

DenseNet201 99.98 99.98 99.99 99.98 100 100 99.61 99.98

MobileNet 99.98 99.98 99.98 99.98 99.99 100 99.79 99.97

MobileNetV2 99.05 98.97 99.14 98.83 99.72 99.98 97.43 99.08

MobileNetV3Large 94.83 94.78 95.04 94.56 98.36 99.23 94.29 95.56

NASNetMobile 99.50 99.42 99.59 99.26 99.87 99.99 97.24 99.37
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TABLE 12 Five-classes specific experiments configurations.

Configuration Specifications

Dataset Source https://www.kaggle.com/atreyamajumdar/

kidney-cancer

Number of Classes 5

Classes “Grade 0”, “Grade 1”, “Grade 2”, “Grade 3”,

and “Grade 4”

Dataset Size before Data

Balancing

“Grade 0”: 45, “Grade 1”: 45, “Grade 2”: 60,

“Grade 3”: 67, and “Grade 4”: 60

Dataset Size after Data

Balancing

“Grade 0”: 67, “Grade 1”: 67, “Grade 2”: 67,

“Grade 3”: 67, and “Grade 4”: 67

TABLE 13 The Five-classes dataset CM results.

Model
Name

TP TN FP FN

VGG16 229 1,287 25 99

VGG19 313 1,306 6 15

Xception 312 1,248 0 0

DenseNet201 320 1,280 0 0

MobileNet 323 1,308 4 5

MobileNetV2 318 1,327 1 14

MobileNetV3Large 91 1,320 8 241

NASNetMobile 230 1,327 1 102

derive from Table 4 that D = 15 if data augmentation is used and

D = 7 otherwise.

4.3.2. Process B: Fitness function runner
Each solution’s fitness function score is calculated in this stage,

which contains subprocesses. They are:

− Subprocess B.1: Hyperparameters Mapping.

− Subprocess B.2: Model Creator and Injector.

− Subprocess B.3: Model Training.

− Subprocess B.4: Model Evaluation.

Subprocess B.1: Hyperparameters mapping: This subprocess

converts the solution in “Process A” to the corresponding

hyperparameters as defined in Table 4. How does this happen?

Assume that you must transform the solution’s batch size (the

second element) into a hyperparameter. The batch size selection

range needs to be established initially. This study uses the

“4 → 48 (step = 4)” range. Hence, we have 12 possibilities.

We can determine which possibility with a simple calculation
(

solution[index]× length
(

ranges[index]
))

. If the random numeric

value is 0.85 and we have 12 possibilities, then the index is 11

(i.e., the batch size value of 44). It is worth noting that each

hyperparameter’s ranges are defined in Table 6.

Subprocess B.2: Model creation and injection: After mapping

each element in the solution to the relevant hyperparameter, the

target pre-trained TL model will be built with the hyperparameters.

The pre-trained TL models employed in the current work are
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TABLE 14 After the LOP, the best solutions for the Five-classes dataset.

Model
name

Loss Batch
size

Dropout TF
learn
ratio

Optimizer Scaler Apply
augmentation

Rotation
range

Width
shift
range

Height
shift
range

Shear
range

Zoom
range

Horizontal
flip

Vertical
flip

Brightness
range

VGG16 Squared

Hinge

8 0.51 68 SGD Nesterov MinMax Yes 5 0.11 0.15 0.22 0.2 No No 0.57-1.37

VGG19 Poisson 8 0.25 13 Adam MinMax Yes 23 0.17 0.11 0.14 0.09 Yes Yes 0.58–1.24

Xception Poisson 24 0.17 70 AdaMax Normalization Yes 36 0.17 0.01 0.03 0.04 No No 1.06–1.41

DenseNet201 Poisson 16 0.56 7 RMSProp MinMax Yes 5 0.17 0.16 0.25 0.09 No Yes 0.84–1.04

MobileNet Categorical

Hinge

8 0.44 12 SGD MinMax Yes 29 0.02 0.19 0.18 0.13 No Yes 1.09–1.73

MobileNetV2 Categorical

Crossentropy

4 0 0 Adam Normalization Yes 0 0 0 0 0 Yes Yes 0.5–0.5

MobileNetV3

Large

Categorical

Crossentropy

4 0 0 Adam Normalization Yes 7 0.03 0 0 0 Yes Yes 0.5–0.5

NASNetMobile Categorical

Crossentropy

4 0 0 Adam Normalization Yes 0 0 0 0 0 Yes Yes 0.5–0.5

TABLE 15 The Five-classes dataset experiments with the maxmimized metrics.

Model name Accuracy (%) F1 (%) Precision (%) Sensitivity (%) Specificity
(%)

AUC (%) IoU (%) Cosine
similarity (%)

VGG16 81.10 76.21 90.91 69.82 98.09 97.45 75.84 85.08

VGG19 97.56 96.53 98.17 95.43 99.54 99.82 87.18 95.65

Xception 100 100 100 100 100 100 98.58 99.86

DenseNet201 100 100 100 100 100 100 99.74 99.99

MobileNet 98.78 98.62 98.78 98.48 99.70 99.97 96.99 98.45

MobileNetV2 98.19 96.88 99.70 95.78 99.92 99.96 85.50 96.10

MobileNetV3 Large 62.65 32.36 43.67 27.41 99.40 88.34 56.91 67.17

NASNetMobile 95.78 74.71 88.86 69.28 99.92 99.61 71.98 88.87
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SeresNext50, SeresNext101, SeNet154, MobileNet, MobileNetV2,

MobileNetV3Small, and MobileNetV3Large, using the “ImageNet”

pre-trained weights.

Subprocess B.3: Model training: The pre-trained TL model

will start the training for several epochs defined by 5 in this study.

Subprocess B.4: Model evaluation: The entire dataset is used

to evaluate the pre-trained TL model to validate its generalization.

To judge the model performance, different performance metrics

are used, such as accuracy ( TP+TN
TP+TN+FP+FN ), precision ( TP

TP+FP ),

specificity ( TN
TN+FP ), recall (i.e., sensitivity) ( TP

TP+FN ), F1-score

( 2×TP
2×TP+FP+FN ), AUC, IoU, and cosine similarity.

4.3.3. Process C: Population updating
The population is arranged descending by fitness score, with

the best solution at the top and the worst at the bottom. This is

important to determine Xt
best and Xt

worst used in the rest of the

process. The SpaSA equations are utilized in this process to update

the population. First, the discoverer location update procedure is

represented in Equation 1. Next, Equation 2 explains the followers’

location updating process. Finally, Equation 4 describes the anti-

predation behavior.

Xt+1 =

{

Xt × exp(
−h

α×Tmax
)
, if (R2 < ST)

Xt + Q× L, Otherwise
(1)

From Equation 1,Xt is the solution at iteration t, t is the current

iteration number, α is a random number ∈ [0, 1], Q is a normal

distributed random number. L represents a 1×Dmatrix of ones, R2
and ST are the warning and safety values respectively, R2 ∈ [0, 1],

and ST ∈ [0.5, 1].

Xt =







Q× exp
(
Xtworst−Xt

i2
)
, if (i > n

2 )

Xt
P + |Xt − Xt+1

P | × A+ × L, Otherwise
(2)

From Equation 2, Xt
P is the best position of the discoverer at

iteration t, Xt
worst is the iteration’s t poorest position, A is a (1× D)

matrix, and A+ is defined in Equation 3.

A+ = AT × (A× AT)−1 (3)

Xt+1 =







Xt
best + β × |Xt − Xt

best|, if (fi 6= fg)

Xt + K ×

(

|Xt−Xt
worst |

(fi−fw)+ǫ

)

, Otherwise
(4)

From Equation 4, Xt
best is the best solution at iteration t. β is

the control step-size parameter. It is a normal distributed random

number, K is a random number ∈ [−1, 1] and it depicts the

movement direction and the sparrow, as well as controlling the

moving step size, fi denotes the current sparrow individual fitness

value, fg and fw are the optimal and worst fitness values respectively,

and ǫ is a very small floating-point number to avoid the division by

zeros.

Algorithm 1 explains the SpaSA meta-heuristic optimizer

population (i.e., solution) updating process.
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FIGURE 6

CM related to the Four-classes dataset.

The steps of the proposed DRDC framework are computed

iteratively for a maximum number of iterations Tmax. After

completing the learning iterations, the optimal combination can be

employed in subsequent systems or analyses. The proposed overall

parameters learning and hyperparameters optimization technique

is summarized by the Algorithm 2.

5. Experimental results and discussion

5.1. The used datasets

The experiments are carried out using two databases. The

first dataset is divided into four CT classes, and the second into

five histopathology classes. For the first dataset, the authors used

CT KIDNEY DATASET: Normal-Cyst-Tumor and Stone, which

contained 12,446. The second dataset, kidney cancer, contained

277 images.

In both datasets, data augmentation is used before the training

method to up-sample and normalize the number of images in each

category. The first dataset had 20,308 images after equalization,

with 5,077 images in each class. In addition, following equalization,

the second dataset comprised 355 images, with each class including

67 images. Table 5 provides a brief overview of the parameters of

the datasets that were used. Figure 5 shows samples from the used

datasets.

5.2. Experiments settings

The configurations of different performed experiments are

reported in Table 6.

5.3. The Four-classes dataset experiment

The settings for the four-classes dataset are depicted in Table 7.

The TP, TN, FP, and FN of the best solutions after each

pre-trained model’s learning and optimization operations

on the Four-classes dataset are reported in Table 8. The

DenseNet201 pre-trained model recorded the lowest FP and

FN values. MobileNetV3Large recorded the greatest FP and

FN values.

Table 9 displays the best solution combinations following

each model’s learning and optimization process (LOP). Four

models recommend the KLDivergence loss, while two models

only suggest Categorical Crossentropy and Poisson. Three models

recommend the SGD Nesterov parameters optimizer, while

two only recommend AdaGrad and AdaMax. Three models

recommend the standardization and max-abs scaler. Finally, five

models recommended applying data augmentation.

We can present several performance measures based on

the data reported in Table 8 and the learning history. The

measurements reported are classified into two groups. The

first reflects the metrics that must be optimized (Table 10).

In the second, we see the metrics that need to be reduced

(Table 11).

We can claim that the DenseNet201 andMobileNet pre-trained

models perform the best for the Four-classes dataset.

5.4. The Five-classes dataset experiment

The experiment settings for the Five-classes dataset are

summarized in Table 12.
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FIGURE 7

CM related to the Five-classes dataset.

FIGURE 8

Summarization of the learning and optimization experiments related to the Four-classes dataset.

The TP, TN, FP, and FN of the best solutions for each pre-

trained model after learning and optimization operations for the

Four-classes dataset are reported in Table 13. The pre-trained

DenseNet201 model, for example, has the lowest FP and FN

values. In contrast, MobileNetV3Large has the highest FP and FN

values.

Table 14 displays the best solution combinations for each

model. It demonstrates that three models recommend the Poisson
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FIGURE 9

Summarization of the learning and optimization experiments related to the Five-classes dataset.

TABLE 17 A comparison of the proposed framework and related studies.

Study Year Dataset Approach Best accuracy

Yildirim et al. (3) 2021 2021 Coronal CT DL 96.82%

The DRDC Framework 2022 CT Hybrid (SpaSA and TL) 99.98%

The DRDC Framework 2022 Histopathological Hybrid (SpaSA and TL) 100%

and Categorical Crossentropy losses. Four models recommend

the min-max and normalization scalers. Four models recommend

the Adam optimizer. Finally, all models suggest using data

augmentation.

Several performance indicators based on the values are in

Table 13. The measurements reported are classified into two

groups. The first identifies the metrics that must be optimized (i.e.,

Accuracy, F1, Precision, Sensitivity, Recall, Specificity, AUC, IoU,

and Cosine Similarity). The second category reflects the metrics

that must be reduced (i.e., Categorical Crossentropy, Kullback

Leibler Divergence, Categorical Hinge, Hinge, Squared Hinge,

Poisson, Logcosh Error, Mean Absolute Error, Mean Squared Error,

Mean Squared Logarithmic Error, and Root Mean Squared Error).

Table 15 reports the first category metrics, while Table 16 reports

the second category.

We can infer that the DenseNet201 and Xception pre-trained

models are the best concerning the second dataset. The graphical

confusion matrices (CM) constructed using the Four-classes, and

Five-classes datasets are shown in Figures 6, 7.

Figures 8, 9 show graphical summaries of the learning process

outcomes for the two datasets.

Table 17 compares the proposed framework to relevant studies.

It demonstrates that the DRDC framework outperforms the

framework presented by Yildirim et al. (3).

5.5. Misclassified images analysis

Figure 10 shows four samples where the upper two samples

are diagnosed incorrectly while the lower two are diagnosed

correctly. The upper two samples are from the “Stone” category

while diagnosed as “Cyst”. The lower two samples are from the

“Cyst” category. The green arrows show the locations of the stones.

The blue arrows show the cyst locations. The authors think that

the reasons behind the misclassification can be (1) the small

size of the stones, (2) the size of the kidney itself, and (3) the

common portion in the scans, which is represented by the red

rectangles.
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FIGURE 10

(A–D) Samples from the misclassified images.

6. Conclusions and future work

A new AI-powered transfer learning framework has been

proposed for detecting renal diseases at an early stage, which could

potentially transform the way medical professionals diagnose and

treat these conditions. Renal diseases, including kidney stones and

renal cancer, are a widespread health issue globally, and timely

detection is crucial to effectively treat and prevent chronic kidney

disease.

The application of deep learning techniques, like convolutional

neural networks and pre-trained models, can significantly improve

the accuracy and reliability of renal disease diagnosis. Pre-trained

CNN models are particularly helpful when working with a limited

dataset, and fine-tuning their hyperparameters can further boost

their performance.

To optimize the performance of pre-trained models, the study

utilized the Sparrow search algorithm (SpaSA) to identify the best

models for the four-class and five-class datasets. The DenseNet201

and MobileNet pre-trained models were the most effective for

the four-class dataset, while the DenseNet201 and Xception pre-

trained models were the best for the five-class dataset. The study

recommends using the KLDivergence loss and the SGD Nesterov

parameters optimizer for the four-class dataset.

The study also performed manual error analysis to enhance

the pre-trained models’ performance, which could lead to more

precise diagnoses and better treatment options for patients with

renal diseases.

The proposed framework can be further improved by applying

various metaheuristics to tune the classifier and optimizer

parameters. In the future, combining classifiers and optimization

for smartphone deployment can make this technology more

accessible to medical professionals and patients.

Overall, the proposed AI-based transfer learning framework

for the early and accurate detection of renal diseases has

the potential to greatly enhance the accuracy and reliability

of diagnosis and treatment. The study’s findings suggest that

the proposed framework outperforms other state-of-the-art

classification models, and future research can further improve its

performance and accessibility.
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