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Background: Cancer-related fatigue (CRF) is the most distressing side effect in

cancer patients and affects the survival rate. However, most patients do not report

their fatigue level. This study is aimed to develop an objective CRF assessment

method based on heart rate variability (HRV).

Methods: In this study, patients with lung cancer who received chemotherapy

or target therapy were enrolled. Patients wore wearable devices with

photoplethysmography that regularly recorded HRV parameters for seven

consecutive days and completed the Brief Fatigue Inventory (BFI) questionnaire.

The collected parameters were divided into the active and sleep phase parameters

to allow tracking of fatigue variation. Statistical analysis was used to identify

correlations between fatigue scores and HRV parameters.

Findings: In this study, 60 patients with lung cancer were enrolled. The HRV

parameters including the low-frequency/high-frequency (LF/HF) ratio and the

LF/HF disorder ratio in the active phase and the sleep phase were extracted.

A linear classifier with HRV-based cutoff points achieved correct classification

rates of 73 and 88% for mild and moderate fatigue levels, respectively.

Conclusion: Fatigue was effectively identified, and the data were effectively

classified using a 24-h HRV device. This objective fatigue monitoring method may

enable clinicians to effectively handle fatigue problems.
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1. Introduction

Cancer-related fatigue (CRF), defined as a persistent, painful
sense of physical, emotional, and cognitive exhaustion related to
cancer, is a multidimensional phenomenon that develops over
time and can severely affect mobility and be psychologically
impaired (1, 2). Moderate-to-severe CRF affects up to 90% of
patients who undergo chemotherapy, with approximately 30–
40% experiencing fatigue for years after treatment completion
(1). CRF is generally identified by active reporting by cancer
patients or by active assessment by healthcare professionals
using scales or questionnaires. However, patients with CRF can
gradually become accustomed to an impaired physical condition
and may consider discomfort to be normal (1). Therefore, CRF
is often underestimated and untreated. Furthermore, most of the
methods used to measure CRF are relatively subjective. Therefore,
developing objective tools that encourage effective communication
between patients, caregivers, and healthcare providers regarding
early reports can improve the efficiency of fatigue management.

Most studies have subjectively evaluated the severity of CRF
through questions. The Brief Fatigue Inventory (BFI) is one of the
most used means of rapidly assessing CRF in patients with cancer
(3). The BFI is a simple, self-administered, and easily scored fatigue
scale. The psychometric properties of the BFI have been established
in many countries, and the scale has good reliability and validity
(4). According to a multivariate analysis of variance between
BFI scores and fatigue interference items, three levels of fatigue
severity, namely, mild, moderate, and severe, can be identified
using cutoff point BFI scores of 1–3, 4–6, and 7–10, respectively
(5, 6). In addition, hematological variables, including albumin
and hemoglobin levels, were highly correlated with BFI scores
in patients with cancer. Although fatigue levels can be effectively
monitored using CRF assessment tools, such as BFI, without
invasive blood tests, such tools require healthcare professionals to
perform active assessments to understand the trajectory of fatigue.

Heart rate variability (HRV) is not new, but there are many
innovative applications (7), especially in health and wellbeing (8).
HRV is typically classified into two categories: time domain and
frequency domain. Frequency-domain measurements of HRV are
based on the analysis of the RR intervals using signal processing
and frequency techniques. The RR interval denotes the duration
between every identified heartbeat, ascertained from the peak (R)
to the peak (R) on the QRS complex. HRV may be associated
with fatigue and its corresponding effects, such as poor sleep
quality. The measurements in the frequency domain of HRV
include high frequencies (HF), between 0.14 and 0.4 Hz, and low
frequencies (LF), between 0.05 and 0.15 Hz. The LF to HF ratio
(LF/HF) represents the relative activity between the sympathetic
nervous system and the parasympathetic nervous system under
controlled conditions (1). HRV has been used to measure fatigue
in numerous situations and in various disease groups (9), and
has been used to identify states of wakefulness and fatigue (10).
Although further verification is needed, evidence suggests that

Abbreviations: ANS, autonomic nervous system; BFI, brief fatigue inventory;
CRF, cancer-related fatigue; HF, high frequencies; HRV, heart rate variability;
LF, low frequencies; LF/HF, LF to HF ratio; LHDA, LHDAct

P ; LHDS, LHDSleep
P ;

LHP: LHP; PPG, photoplethysmography.

higher levels of norepinephrine in the brain may be the cause
of these symptoms (11). In states of non-rapid eye movement
(non-REM), the LF/HF ratio gradually decreases as sleep deepens
(10, 12). The LH/HF ratio reflects sleep activity, and higher
levels of fatigue can lead to higher frequencies of rest during
the day, which can affect sleep quality at night. Additionally,
CRF can be associated with impaired autonomic nervous system
(ANS) function; the neurotoxic effects of cancer itself, metastasis,
surgery, radiation therapy, and chemotherapy can lead to direct
and indirect structural damage to the ANS (13, 14). Several studies
and case reports have characterized cancer and its treatment as
causes of autonomic dysregulation, and abnormal HR recovery was
associated with shorter survival times (14, 15).

Studies have shown that wrist-based photoplethysmography
(PPG) device data can be consistent with RR intervals from
electrocardiography (ECG) devices for heart rate variability
analysis (16). In a pilot study (17), we sampled HRV signals
from 12 patients with lung cancer using a wearable-based PPG
device measurement system. Data were collected using HRV
measurements completed once every hour for 24 h for seven
consecutive days. Regression analysis of the data revealed that the
parameters of the LF/HF ratio that were labeled as active and sleep
phases were linearly correlated with the BFI scores. That is, patients
with a higher LF/HF ratio in the sleep phase or a lower LF/HF ratio
in the active phase had higher fatigue scores.

In this study, as a continuing work of the previous study,
objective CRF assessment criteria based on HRV signals measured
through wearable devices with PPG sensors were developed.
Therefore, the characteristics of the data, including the correlations
in the characteristics and cutoff points between mild and moderate
CRF categories, from 60 patients with lung cancer, were identified.
Based on the cutoff points, the linear classification models were
developed with a weighted voting strategy to effectively differentiate
the moderate CRF category from the mild one.

2. Materials and methods

2.1. HRV measurement

In this study, a PPG smartband developed by ViPCare, Gadgle
Creative Tech, Taiwan was used to collect PPG signals from the
participants. Table 1 presents the validity results by comparing
the PPG smartband with a reference ECG device (QHRV, Medeia)
in terms of HRV parameters in the time domain and frequency
domain. 3-min resting HRV recordings were collected via both
smartband and ECG device with a three-lead arrangement in a
sitting position. The signal sampling rate was set to 100 and 200 Hz
for the smartband and the ECG device, respectively. Three male
healthy participants, aged between 20 and 40 years, were involved
in the experiments and each of them conducted the HRV recording
experiment three times. Time domain parameters included heart
rate (HR) in beats/min (BPM), the mean value in ms, and the
standard deviation of the NN intervals (SDNN) in ms. The NN
interval data is essentially synonymous with RR interval data,
albeit with an additional filtering process designed to eliminate
artifacts and noise that may render certain RR intervals unreliable.
The mean value and SDNN corresponded to the key statistical
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TABLE 1 Accuracy comparison between ECG and PPG signals in terms of time domain and frequency domain parameters.

Time domain Frequency domain

HR
(BPM)

Mean
(ms)

SDNN
(ms)

LF
(ms2)

HF
(ms2)

LF/HF

ECG Avg. 91
11.09

657.66
92.20

106.62
19.43

717.91
141.34

714.23
114.15

1.01
0.06

SD

PPG Avg. 93.43
19.65

661.33
146.36

103.22
15.90

749.03
180.45

727.72
141.92

1.03
0.13

SD

ACC (%) 97.33 99.44 96.81 95.67 98.11 98.02

ACC, accuracy; avg., average; BPM, beats per minute; ECG, electrocardiography; HR, heart rate; ms, milliseconds; PPG, photoplethysmography; SDNN, standard deviation of the NN intervals.

characteristics of the beat-to-beat intervals measured from the ECG
or PPG signals. On the contrary, the frequency domain parameters
consisted of LF, HF, and LF/HF ratio. As shown inTable 1, the mean
value results of the PPG signals were highly correlated with those
of the ECG signals while the PPG-based HRV data typically had
higher SD values. According to the accuracy values computed from
the HRV parameters based on PPG and ECG, each PPG-based HRV
parameter can reach a higher accuracy value than 95%.

With the validated PPG smartband, a wearable measurement
system periodically triggers hourly HRV measurements over a 24-h
period for 7 days to allow observation of long-term CRF trends.
Based on other studies (18), the system used in this study was
designed to obtain 3-min HRV measurements to obtain the heart
rate and two frequency domain parameters (i.e., LF and HF), which
corresponded to the sympathetic and parasympathetic activities of
the participants.

The procedure to analyze the CRF is presented in Figure 1. The
timed sensor data include HRV parameters with their timestamps.
The HRV parameters can be classified into different phases
according to their timestamps. We considered two phases, the
active and sleep phases, because these phases correspond to daytime
and nighttime measurements, respectively. Since these phases
could vary from day to day, an investigator recorded daily activities
during the research period. Furthermore, the HRV parameters for
each stage were statistically calculated. Based on the data collected
from wearable devices, three HRV metrics were selected, namely,
the average LF/HF ratio in the sleep phase, the LF/HF disorder ratio
in the sleep phase, and the LF/HF disorder ratio in the active phase,
to monitor the CRF. For a participant P, the LF/HF disorder ratio
in the sleep phase is defined as follows:

LHDSleep
P =

Number of LF
HF > 1 in the sleep phase

Total number of LF
HFmeasurements in the sleep phase

(1)

FIGURE 1

Cancer-related fatigue analysis procedure.

CRF may be due to symptom discomfort or poor nighttime
sleep, and the LF/HF disorder ratio in the sleep phase was
used to track the association between sleep quality and CRF
Higher LHDSleep

p (LHDS) value indicating the target participant
experienced a shorter duration of deep sleep. The LF/HF disorder
ratio in the active phase of a participant P is defined as follows:

LHDAct
P =

Number of LF
HF < 1 in the active phase

Total number of LF
HFmeasurements in the active phase

(2)
CRF may be due to daytime fatigue or inactivity, and the LF/HF

disorder ratio in the active phase was primarily used to track the
contribution of the daytime rest to the fatigue condition, Higher
LHDAct

P (LHDA) value representing excessive daytime sleepiness
observed in the daytime.

2.2. Participants

The study was approved by the Joint Institutional Review
Board of Taipei Medical University (File No. N201910036). The
study was conducted using a convenient sampling method in the
thoracic clinic and thoracic ward of Taipei Medical University
Hospital. The researchers described the study to the patients with
lung cancer who received chemotherapy or targeted chemotherapy
and obtained informed consent from them. The inclusion criteria
were (1) age ≥20 years and (2) the ability to wear the PPG
watch device. Patients with weak consciousness and who could
not respond to the questionnaires were excluded. A total of 60
patients were included. The data collected included demographic
data from patients, LF/HF ratios, and BFI scores. The patients wore
the wearable devices for seven consecutive days, enabling HRV
measurements once every hour.

2.3. Sampling procedures

The aims and objectives of the study were explained to
the participants, and written informed consent was obtained
before the investigation. The participants were asked to complete
the BFI, Taiwanese version (19) and started to wear the PPG
watch devices immediately after completing the questionnaire. The
participants wore the PPG watch device continuously for 7 days,
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apart from when they bathed. The participants were reminded
through telephone to ensure that they wore the device throughout
the research period. After the full 7 days of data were collected,
participants returned the devices at their next visit or by mail.

2.4. Statistical analysis

IBM SPSS software (version 23.0, IBM Corporation) was used
for statistical analyzes. Descriptive statistics, including percentages,
means, and standard deviations (SD), were used to present the
general characteristics of the data. The three classifications of
fatigue are mild (1–3 points), moderate (4–7 points), or severe (8–
10 points), and this cutoff point can be used to quickly screen for
fatigue (6). With BFI = 4, the cutoff line for the three indicators
of heart rate variability can be divided. The independent sample
t-test was used to estimate the contributions of BFI to three HRV
metrics, namely, LHDA, LHDS, and the average LF/HF ratio in
the sleep phase for a participant (LHp, LHP). Consequently, we
analyzed the results of the t-test to identify cutoff points between
the BFI-measured CRF categories for HRV metrics. The weighted
majority algorithm (WMA) is a method of training a linear classifier

TABLE 2 Descriptive statistics (N = 60).

Variable n % Mean

Age (year) 65.9± 9.5

Sex

Female 34 56.7

Male 26 43.3

Primary diagnosis

Lung adenocarcinoma 54 90.0

Lung squamous or small cell carcinoma 6 10.0

Stage

I + II 6 10.0

III 6 10.0

IV 48 80.0

Treatment

Target (EGFR–TKI) 39 65

Chemotherapy 21 35

Cardiovascular drugs

No 31 51.7

Yes 29 48.3

Hypnotics

No 51 85.0

Yes 9 15.0

ECOG

0 26 43.3

1 30 50.0

2 4 6.7

ECOG, Eastern cooperative oncology group performance status; EGFR–TKIs, epidermal
growth factor receptor–tyrosine kinase inhibitors.

(20). The algorithm adjusts the weights of the input features to
identify a linear combination of them that can correctly categorize
the examples given a set of input/output examples. We further
developed the HRV-based linear classification models with cutoff
points were further developed to classify different levels of fatigue.

3. Results

3.1. Patient characteristics

The descriptive statistics of the 60 patients are summarized
in Table 2. The mean age of the patients was 65.9 (SD 9.5)
years and most of them were women. Most of the patients
had a primary diagnosis of lung adenocarcinoma (90%) and
were at an advanced stage of cancer (IV; 80%). Target therapy
with epidermal growth factor receptor–tyrosine kinase inhibitors
(EGFR–TKI) was used most frequently (65%). In addition, 51.7%
of patients were treated with cardiovascular drugs. Most of the
patients did not receive hypnotics (85%), and most experienced
some form of discomfort, but were almost fully ambulant
during the research period (Eastern Cooperative Oncology Group
Performance Status = 1).

3.2. Correlation between BFI and HRV

In this section, the association between subjective BFI
scores and objective HRV data is analyzed. Patients with
a subjective fatigue of four or higher will be classified as
moderately fatigued for their corresponding heart rate variability
values. Figure 2 presents data distribution of LHDS classified
by BFI boundary line. As shown in Figure 2, the moderate
CRF category generally has a larger value of LHDS, while
the cases belonging to mild category are grouped in a range
of smaller values of LHDS. Figures 3–4 show the data
distribution for other two HRV metrics, namely, average LF/HF
ratio in the sleep phase for a participant P and LHDA,
respectively.

Based on the data presented in Figures 2–4, the independent
samples’ t-test was conducted to identify the correlation between
HRV metrics and BFI categories. Table 3 lists the p-values for the
three HRV parameters, with BFI values considered as classification
boundaries. In the case of BFI = 4, the p-value for LHDS was less
than a conservative level of significance (0.05) and the p-values for
LHP and LHDA were less than a moderate level of significance
(0.01). This indicates that the HRV dataset with BFI ≥4 could be
differentiated from that with BFI <4. The general classifications
of the CRF determined by multivariate factors analysis are mild
(BFI = 1–3) and moderate (BFI = 4–6) (5). Therefore, the HRV
data allowed for a mild and moderate CRF classification like that
for the gold standard. Table 4 presents the mean and standard
deviation (SD) of HRV metrics for mild and moderate categories as
a boundary line of BFI = 4 is considered. For both LHDS and LHP
LHP, patients with moderate CRF have a higher mean value than
patients with mild CRF. On the contrary, mild CRF have a larger
mean value of LHDA than moderate CRF ones.
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FIGURE 2

Plot of data distribution between BFI and (LF/HF) disorder ratio in sleep phase; circles represent cases with mild fatigue (BFI < 4), and triangles
represent cases with moderate fatigue (BFI ≥ 4). The dotted line illustrates a boundary line with cutoff point, LHDS = 0.5.

FIGURE 3

Plot of data distribution between BFI and average (LF/HF) ratio in sleep phase; circles represent cases with mild fatigue (BFI < 4), and triangles
represent cases with moderate fatigue (BFI ≥ 4). The dotted line illustrates a boundary line with cutoff point, LHP = 1.9.

3.3. Cutoff point analysis for HRV metric

As the statistical results reported in Table 3 indicate that HRV
metrics can classify mild and moderate CRF categories; therefore, it
is essential to identify the cutoff point between CRF categories for
each of the three HRV metrics. When searching for the cutoff point,
the independent sample t-test was performed on two sets of BFI
divided by a predetermined value of HRV metrics. Although the
p-value was statistically lower than a specified point (e.g., 0.05), the
associated HRV value can be regarded as a potential candidate for
the cutoff point. Additionally, the accuracy of the classification was
considered to examine the effectiveness of the classification. This
process was repeated for all individual values of HRV metrics. Here,
Ni is denoted as the amount of data belonging to the category, i,
and NPji is denoted as the number of data classified as the category,

i, by HRV metric j. In this study, the category set is {mild, mod},
where “mod” stands for “moderate,” and the HRV metrics set is
{LHDS, LHP, LHDA}. Furthermore, the classification accuracy for
HRV metrics, j, can be calculated.

Aj
i =

NPji
Ni

(3)

Based on the above equation, we further define a classification
coefficient (CC) to evaluate the overall classification performance
for two CRF categories.

CC(j,m) =

[(Aj
mild (m)+ Aj

mod (m)

2

)
+ (4)

(
1−

∣∣∣Aj
mild (m)− Aj

mod (m)
∣∣∣) ]× 1

2
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FIGURE 4

Plot of data distribution between BFI and (LF/HF) disorder ratio in active phase; circles represent cases with mild fatigue (BFI < 4), and triangles
represent cases with moderate fatigue (BFI ≥ 4). The dotted line illustrates a boundary line with cutoff point, LHDA = 0.2.

Where m is the predetermined value of HRV metrics. In
equation (4), the first term calculates an accuracy average of two
categories, while the second term estimates the magnitude of the
accuracy difference between categories. These two items are then
added and normalized by a value of 2. Consequently, the value
of CC ranges from 0 to 1. A larger CC indicates that the sum
of the classification accuracies of the two classes is larger and the
difference is smaller. For the given HRV metrics, j, a cutoff point
candidate, m, can be obtained by maximizing the classification
coefficient:

arg max CC
(
j,m

)
(5)

Figure 5 shows p-values and CC results for varied LF/HF
disorder ratios in sleep phase. The LHDS values under
consideration ranged from 0.1 to 0.9 in a step of 0.1. As shown
in Figure 5, it is observed that (1) p-values are below 0.05 for

TABLE 3 The p-values for the three HRV parameters under various BFI
boundaries.

HRV metrics BFI LHDSleep
P LHP LHDAct

P

2 0.071* 0.062* 0.220

3 0.195 0.221 0.364

4 0.008** 0.065* 0.055*

5 0.469 0.976 0.329

*p < 0.10; **p < 0.05.

TABLE 4 Mean and standard deviation for three HRV parameters in a
case of BFI = 4.

HRV metrics LHDSleep
P LHP LHDAct

P

Category Mean Mod. Mean Mod. Mean Mod.

Mean 0.36 0.64 1.65 2.30 0.27 0.14

SD 0.07 0.11 0.77 1.21 0.03 0.01

LHDS ≥0.4; (2) as the value of LHDS increases, the classification
accuracy of moderate category decreases and that of mild category
increases; and (3) the CC curve shows a peak value at LHDS = 0.5.
According to the observations discussed in the items (1) and (3) of
this list, the cutoff point of LHDS between mild and moderate CRF
categories is 0.5. Figure 6 presents the p-value and CC results for
varied average LF/HF in sleep phase. In Figure 6, the maximum
CC value occurs at LHP LHp = 1.7, and the slightly lower values
attained as the value of LHP LHP are 1.8 and 1.9. Since only the
p-value at LHP LHP = 1.9 is below 0.05, the cutoff point of LHPLHP
is 1.9 to achieve low p-value and high classification coefficient.
Figure 7 presents the p-value and CC results for varied LF/HF
disorder ratios in the active phase. Based on the observations like
those shown in Figure 6, the cutoff point of LHDA is 0.2.

3.4. Classification model selection

Although the HRV metrics for the CRF classification are
determined in Section “3.3. Cutoff point analysis for HRV metric,”
the problem persists to select the best classification model built
using a combination of HRV metrics. In this paper, the linear
classification model is considered to evaluate the CRF classification
performance. For each of the three HRV metrics, the linear models
are given as follows:

Ĝ =

{
Moderate, if LHDSleep

P ≥ 0.5,

Mild, LHDSleep
P < 0.5.

(6)

Ĝ =

{
Moderate, if LHP ≥ 1.9,

Mild, LHP < 1.9.
(7)

Ĝ =

{
Moderate, if LHDact

P ≥ 0.2,

Mild, LHDact
P < 0.2.

(8)
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FIGURE 5

Classification ratio and p-value obtained from t-test between mild and moderate categories for varied (LF/HF) disorder ratio in sleep phase.
“Acc” stands for classification accuracy.

FIGURE 6

Classification ratio and p-value obtained from t-test between mild and moderate categories for varied average (LF/HF) ratio in sleeping phase.
“Acc” stands for classification accuracy.

The classification results of linear models expressed in
equations (6–8) can be observed in Figures 2–4, respectively.
As shown in Figures 2–4, the category boundary defined by the
HRV-based cutoff point is depicted as a dotted line to classify
the mild and moderate CRF categories. According to equations
(6–8), the classification result of each model is associated with
a binary variable, Ĉj

i. The binary variable, Ĉj
i, is set to 1 while

the test case is classified as category, i, for HRV metrics, j, and
set to 0 otherwise. In addition to the linear classification models
based on single HRV metrics, it is possible to derive a model
with three HRV metrics to enhance the robustness of classification.
For a combination of three single-metric methods, the linear

model based on the weighted voting strategy can be expressed as
follows:

Ĝ = i, if
∑
j

(
wj × ĈJ

i

)
>

∑
j wj

s
(9)

where S is the number of HRV metrics and wj stands for the
weight of HRV metrics, j. Note that since all weights are set to 1,
the model expressed in equation (9) employs majority voting to
predict a classification decision. That is, model shown in equation
(9) predicts category, i, while more than one model among those
shown in equations (6–8) classify the target case as category, i. In
model expressed in equation (9), a higher weight indicates a higher
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FIGURE 7

Classification ratio and p-value obtained from t-test between mild and moderate categories for varied (LF/HF) disorder ratio in the active phase.
“Acc” stands for classification accuracy.

priority for the corresponding HRV metrics. From all combinations
of three weights (i.e., 3! = 6), the best configuration to achieve
the highest classification accuracies for both categories is given as
follows:

Ĝ = i, if
∑
j

(
wj × ĈJ

i

)
>

∑
j wj

S
(10)

where S is the number of HRV metrics and wj stands for the
weight of HRV metrics, j. Note that since all weights are set
to 1, model shown in equation (9) employs majority voting
to predict a classification decision. That is, model expressed in
equation (9) predicts category, i, while more than one model
among those expressed in equations (6–8) classify the target
case as category, i. In model provided in equation (9), a
higher weight indicates a higher priority for the corresponding
HRV metrics. From all combinations of three weights (i.e.,
3! = 6), the best configuration to achieve the highest classification
accuracies for both categories is {wLHDAct

P
, w

LHDSleep
P

, wLHP } in the

decreased priority order.
Table 5 gives the classification performance comparison

between the models provided in equations (6–9). For models based
on single HRV metrics, the linear model expressed in equation
(7) can achieve the highest accuracy (0.73) for the mild CRF
category, and the model shown in equation (8) has the highest
accuracy (0.88) in the moderate category. On the contrary, model
shown in equation (6) achieves the classification accuracies beyond
0.7 for both categories and has the highest CC value of 0.85.
Consequently, model expressed in equation (6) can be selected as
a good single-metrics classification model due to its performance
balance between two categories. For model shown in equations
(9), the weighted voting of three single-metric models outperforms
all single-metrics models expressed in equations (6–8) in terms of
classification accuracy. The values of weight set {wLHDAct

P
, w

LHDSleep
P

,

wLHP } are currently configured as {3, 2, 1}. To conclude, three
HRV metrics with their respective cutoff points are effective in
differentiating moderate CRF category from mild one, while the

linear model based on weighted voting can be further constructed
to obtain the best CRF classification results.

4. Discussion

An analysis of HRV data for the 60 patients with lung cancer
enrolled in this study revealed that the LF/HF in the active phase
and in sleep can be classified as indicating mild and moderate
fatigue levels with BFI = 4, which supports the current fatigue
classification criteria. Furthermore, in this study, using the cutoff
point results obtained using the statistical analysis method, a
linear classifier to differentiate fatigue into mild and moderate
levels is developed. The analytical results revealed a total correct
classification rate of 81% and that the two-phase LF/HF parameters
can be considered fair indicators to assess the severity of CRF
during cancer treatment.

In our previous pilot study, we found a moderate positive
correlation between the average LF/HF ratio and the BFI in the
sleep phase (ρ = 0.86). In addition, we define the LF/HF disorder
ratio in sleep and active phases (17). That is, we reported that
HF increased in the fatigued state and LF increased in the awake
state (12). The LF/HF ratios are typically approximately 1 in the
non-REM state and are even lower in higher non-REM stages. For

TABLE 5 Classification results for each combination of three HRV
metrics.

Metrics (Model) Accuracy Classification
coefficient

Mild Moderate

LHDSleep
P , equation (6) 0.71 0.75 0.85

LHP , equation (7) 0.73 0.63 0.79

LHDAct
P , equation (8) 0.63 0.88 0.75

LHDSleep
P , LHP, LHDAct

P ,
equation (9)

0.73 0.88 0.83
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comparison, the LF/HF ratio increases in REM state (21). During
sleep, the LF/HF disorder ratio increases as the BFI increases (17).
In this study, we verified the associations between the LF/HF
disorder ratio, the average LF/HF ratio, and the BFI.

During sleep, an increase in metabolic rate (22), an increase
in cortisol levels (23), an increase in HRV of LF, and a decrease
in HF indicate physiological hyperarousal (24). Furthermore,
these phenomena may indicate that an individual experiences
insomnia and feels tired during subsequent daytime periods. This
is associated with activation of the stress system, the sympathetic-
adrenomedullary system, and the hypothalamic–pituitary–adrenal
(HPA) axis. During nocturnal sleep, normal people experience a
decrease in the LF/HF ratio or have an LF/HF ratio lower than
1, reflecting a decrease in sympathetic nerve activity. This enables
people to achieve better sleep (25). However, an LF/HF ratio that
is not significant in the 24-h activity and sleep stages indicates a
disturbance in the circadian balance of the ANS. In this study, the
gold standard cutoff point for BFI to classify fatigue levels with a
BFI of less than four points into mild and moderate fatigue groups
has been used. The average LF/HF ratio for the corresponding sleep
stage was 1.9 (i.e., an LF/HF ratio greater than 1.9 was considered
moderate fatigue; Figure 3). The LF/HF disorder ratio was 0.5,
indicating that patients with an LF/HF disorder ratio greater than
0.5 were in a state of moderate fatigue (Figure 2).

Apart from during nocturnal sleep, the LF/HF ratio can
increase or exceed 1 during daytime activity in the normal
population. This reflects increased sympathetic activity and people
being more active. An LF/HF disorder ratio of less than 1 during
the active phase indicates less activity. When the fatigue is greater
than 4, a relative active-phase LF/HF disorder ratio greater than 0.2
is considered to indicate moderate fatigue.

Cancer-related fatigue is a common and often long-lasting
symptom for many cancer survivors. Patients with cancer and
survivors of cancer generally describe their fatigue as more
severe, pervasive, and debilitating than their normal fatigue
caused by lack of sleep or overexertion (26). A possible cause
of increased inflammation in fatigued cancer survivors may be
the ANS. The ANS is a key regulator of the immune system,
including the inflammatory cytokine network. Inflammation
is a local protective response to microbial invasion or injury.
Inflammation must be and should be precisely regulated
because insufficient or excessive inflammatory responses can
lead to morbidity and a shortened lifespan. The nervous system
reflexively modulates inflammatory responses as they occur
like how it controls heart rate and other vital functions (27).
A previous study had demonstrated an association between
elevated inflammatory markers and fatigue during and after
treatment (28). Generally, activation of sympathetic branches
of the ANS can lead to increased inflammation, and activation
of parasympathetic branches of the ANS can lead to decreased
inflammation (29, 30). However, these effects may be complex
and highly correlated (31). The parasympathetic nervous system
stimulation (through the vagus nerve) leads to reduced production
of proinflammatory cytokines through the release of the
neurotransmitter acetylcholine (27, 32). Furthermore, HRV
parameters are highly correlated with elevated C-reactive protein, a
marker of inflammation (14). Increased activity in the sympathetic
branches or decreased activity in the parasympathetic branches
may play a role in inflammation and symptoms associated

with CRF. A study documented cross-sectional associations
between higher parasympathetic activity (measured by HRV)
and lower levels of inflammation (33). The importance of the
parasympathetic nervous system was also supported by a study
that investigated the association between autonomic activity and
fatigue in non-cancer samples (34). Research also demonstrated
that individuals with chronic fatigue syndrome have a reduced
HRV compared to healthy controls (35) like women who report
stress-related fatigue (10). Fagundes et al. (36) discovered that
lower resting HRV was associated with higher levels of fatigue.
Studies have also demonstrated that HRV is significantly lower
in patients with cancer than in the healthy population (37) and
that decreased HRV was associated with significantly shorter
survival in patients with cancer (38). Furthermore, CRF may
negatively affect quality of life and indicate shorter survival
(39, 40).

Previous clinical measurements of HRV have been obtained
from stationary devices in a denoised environment (such as a
physiological laboratory with good environmental noise isolation).
Hence, only a limited active period of data (usually 5 min
onward) can be collected during such measurements. Furthermore,
the combined influence of the sympathetic and parasympathetic
nerves can be determined through the LF and HF bands (41).
In this study, a 24-h HRV collection using a PPG device was
conducted to distinguish between active and sleep phases to
further distinguish the mixed effects of the sympathetic and
parasympathetic nerves. In general, dysregulation of the autonomic
nervous system usually refers to a dysregulation or decrease in HRV
during the active phase. That is, researchers have reported that
increased parasympathetic nerve activity during the active phase
indicates a higher level of fatigue.

The 30-s sit-to-stand (30-STS) test is another potential
assessment tool that can complement patient fatigue beyond self-
report (42). It assesses functional fitness by evaluating the number
of repetitions completed and has been used to measure lower
extremity endurance in cancer survivors (43). However, the 30-STS
cannot be assessed in cancer patients who are unable to stand for
measurement. On the contrary, wrist-based PPG tools do not have
this limitation.

The main contributions of this study include our use of the
statistical analysis method for identification and our application
of the classification method to categorize mild and moderate
fatigue levels using objective HRV metrics. The LF/HF disorder
ratio (LF/HF >1) of the sleep phase and the average LF/HF
ratio of the sleep phase were positively associated with subjective
BFI results, and the LF/HF disorder ratio (LF/HF <1) of the
active phase was negatively associated with BFI. Furthermore,
HRV data could be used to divide patients into mild and
moderate fatigue levels according to BFI = 4. Therefore, the
linear classifier obtained from the combination of cutoff points
with respect to three HRV indicators was able to effectively
categorize mild and moderate fatigue levels. The wrist-based
PPG tool can be used to actively record and track fatigue
in cancer patients. In the future, it will be integrated with
social media to alert and suggest fatigue levels and suggest
patients to plan different exercises depending on the level
of fatigue. In addition, it will provide objective information
in addition to subjective data during cancer treatments, such
as chemotherapy.
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5. Limitations

This study had three main limitations. First, the sample size
for moderate fatigue levels was relatively small, and the absence
of severe fatigue cases indicates that more samples are required to
strengthen the generalizability of our findings. Second, due to the
small sample size, we did not adjust for HRV caused by different
treatments. Third, sweating when wearing the PPG device may
have caused discomfort for some patients and others may have
worried about potentially damaging the device during activities
that involved water. Therefore, some data may have been lost if
patients removed their PPG watch devices at other times than when
bathing. This way of calculating fatigue is an innovative approach.
An objective test was created along with the application of the most
widely used subjective fatigue scale. The WMA helps clarify and
classify mild and moderate fatigue levels. Future research involving
all fatigue categories, particularly severe fatigue, is required to
investigate the validity of HRV-based fatigue classifications.

6. Conclusion

This is the first study to use a linear fatigue classifier (involving
the LF/HF ratio, active-phase disorder rate, and sleep phase
disorder rate) for objective fatigue classification. This classifier
could effectively classify the severity of fatigue in patients with lung
cancer, with a cutoff point between mild and moderate levels like
that of the BFI scores (i.e., BFI = 4). This indicates that HRV can be
used for objective assessments of CRF. We propose that objective
fatigue monitoring using HRV is required in addition to subjective
assessments of CRF. This is particularly true for the fatigue-related
nursing intervention; objective fatigue monitoring is required to
understand the effects of the intervention.
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