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Visceral leishmaniasis (VL), a vector-borne disease, is caused by an obligate

intramacrophage, kinetoplastid protozoan parasite of the genus Leishmania.

Globally, VL is construed of diversity and complexity concerned with high

fatality in tropics, subtropics, and Mediterranean regions with ∼50,000–90,000

new cases annually. Factors such as the unavailability of licensed vaccine(s),

insubstantialmeasures to control vectors, and unrestrained surge of drug-resistant

parasites and HIV-VL co-infections lead to di�culty in VL treatment and

control. Furthermore, VL treatment, which encompasses several problems

including limited e�cacy, emanation of drug-resistant parasites, exorbitant

therapy, and exigency of hospitalization until the completion of treatment,

further exacerbates disease severity. Therefore, there is an urgent need for

the development of safe and e�cacious therapies to control and eliminate

this devastating disease. In such a scenario, biotherapy/immunotherapy against

VL can become an alternative strategy with limited side e�ects and no or

nominal chance of drug resistance. An extensive understanding of pathogenesis

and immunological events that ensue during VL infection is vital for the

development of immunotherapeutic strategies against VL. Immunotherapy alone

or in combination with standard anti-leishmanial chemotherapeutic agents

(immunochemotherapy) has shown better therapeutic outcomes in preclinical

studies. This review extensively addresses VL treatment with an emphasis on

immunotherapy or immunochemotherapeutic strategies to improve therapeutic

outcomes as an alternative to conventional chemotherapy.
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Introduction

Leishmaniasis is one of the seven most important tropical diseases representing a serious

world health problem on a broad spectrum of clinical manifestations with a potentially

fatal outcome. It is a vector-borne chronic infectious disease attributable to an intracellular

one-celled protozoan parasite of the genus Leishmania. It is systemically transmitted to

humans by the bite of an infected female Phlebotomine sand fly (1). Its incidence has

increased to more than 12 million people in 98 countries around the world, mostly

afflicting developing and under developed countries (higher in rural areas than in urban

areas) (2). The epidemiological burden also depends on the characteristics of the parasite,

ecological characteristics of the transmission site, and the immune response of the host.

In accordance with the World Health Organization (WHO), an estimated 70,000–100,000
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new leishmaniasis cases are reported globally, and over 20,000–

30,000 deaths occur annually (3). A hemoflagellate vector, a female

sand fly of genus Phlebotomus in the Old World and Lutzomyia

in the New World, is responsible for the transmission of this

disease to humans (4). Leishmaniasis has gained more public

consideration owing to the higher incidence of morbidity; “the

London declaration community” on Neglected Tropical Diseases

declared to eliminate leishmaniasis as a public health issue by

2020 (5). Discrete species of Leishmania cause diverse clinical

manifestations ranging in severity from self-healing localized

cutaneous ulcers to fatal multi-organ disease. It broadly manifests

as cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis

(MCL), and visceral leishmaniasis (VL). The outcome of the

disease is unwavering by the interplay of parasite characteristics,

vector biology, and host factors, with immune responses (6).

VL or kala-azar, as it is called in its advanced stages, is a

severe chronic systemic infection caused by Leishmania donovani

(subtropics of South Asia and East Africa; anthroponotic mode

of transmission) and Leishmania infantum (Europe, North Africa,

and Latin America; zoo anthroponotic mode of transmission)

(7). VL is the most severe clinical form of leishmaniasis

characterized by hepatosplenomegaly, high fever, pancytopenia,

and hypergammaglobulinemia, and if left untreated, the disease

may worsen over time to severe progressive cachexia, multi-

organ damage, secondary infections, and ultimately causes death

of the patient (8). VL is ranked second in mortality and fourth

in morbidity among tropical parasitic diseases, with 20,000 to

40,000 deaths annually and over 2,000,000 disability-adjusted life

years (DALYs) lost (6). In conformity with the WHO, perennially

50,000–90,000 new VL cases arise globally, and >95% of new VL

cases are reported in 10 countries: Brazil, China, Ethiopia, India,

Iraq, Kenya, Nepal, Somalia, South Sudan, and Sudan (3). More

characteristically, a conclusive 80% of the global burden of VL was

reported in South Asia (e.g., in the year, 2007, 0.1–0.15 million VL

cases were reported in India alone). The condition is particularly

severe in eastern states of India, including Bihar, Jharkhand, Uttar

Pradesh, and West Bengal (9). A total of 6,70,897 VL cases were

reported officially from 1987 to 2011 from Bihar state exclusively.

Some districts of Bihar state (Muzaffarpur, Purnea, Saharsa, Ararea,

Vaishali, Madhepura, East Champaran, Samastipur, Saran, and

Darbhanga) have confronted worst epidemic since the 1970s with

90% of the case reports (10). Collectively, an integrated elimination

program was started by the government of Bangladesh, India, and

Nepal started in 2005 with the aim to decline the VL case reports

to less than one new case per 10,000 population per year at sub-

district level (block level in India and Nepal and upazila level in

Bangladesh) by 2015 (11).

The treatment and control of VL are limited and rely mainly on

chemotherapy. Existing anti-leishmanial chemotherapeutic agents

(meglumine antimoniate, sodium stibogluconate, pentamidine,

amphotericin B, miltefosine, and liposomal amphotericin B)

encompasses several problems with regard to safety and efficacy.

Nephrotoxicity, pancreatitis, cardiotoxicity, teratogenicity,

emergence of drug-resistant parasites, high cost, and exigency

for hospitalization due to longevous intravenous treatment

present challenges toward patient compliance (12). Hitherto,

several clinical trials have been performed in India to improve

the therapeutic regimens and to ameliorate the efficacy of the

limited armamentarium of existing anti-leishmanials (11). The

limited therapeutic efficacy of human vaccine(s) and inefficient

vector control measures impose perplexity in the treatment

of VL. Moreover, leishmania–HIV (human immunodeficiency

virus) coinfected people have accelerated chances of developing

a full-blown disease with high relapse and lethality. Such cases of

co-infections are particularly reported in Western Europe, India,

Brazil, Ethiopia, and Africa. These co-infections lead to diagnostic

difficulty and therapeutic unresponsiveness to VL treatment

(13). Post-kala-azar dermal leishmaniasis (PKDL) is a neglected

complication of VL, playing a significant role in the inter-epidemic

period as a potential reservoir for the Leishmania parasite. It

usually appears as a macular, maculopapular, or nodular rash on

the face, upper arms, trunks, and bared parts of the body. PKDL is

a deadly, infectious disease that is reported in Africa particularly in

Sudan (50%; L. infantum), and in Asia particularly in India (5–10%;

L. donovani) (14). The emergence of drug-resistant strains of the

Leishmania parasite, severe toxic effects of current anti-leishmanial

therapy, advent of HIV-VL co-infections, PKDL, and absence of

proper vector control measures and vaccine(s) against VL pose

severe problems to VL treatment and control (15). Therefore,

prevention and control of leishmaniasis require a combination of

intervention strategies that would begin with the search for a novel

system to actualize the treatment shorter, safer, efficacious, and

more affordable (16). Drug discovery for such a poverty-ridden

neglected tropical disease was never included as a high priority by

pharmaceutical companies as it is unlikely to yield a good profit on

research and drug development costs.

In this extant, we have extensively addressed the leading-

edge and provocation in therapeutics and ministrations of VL

with emphasis on immunotherapy or immunochemotherapeutic

strategies to improve therapeutic outcomes as an alternative to

prevalent chemotherapy.

Immunobiology of VL: cells and immune
mediators correlated to susceptibility and
resistance

The immunobiology and immunopathology of visceral

infection for various species including humans, canines,

and experimental small animal (rodent) models have been

comprehensively studied, with many points exemplified but

yet some to be explicated. General consent is that despite the

uniqueness of each model, the infection extent and spread

are basically influenced by many factors such as concomitant

pathologies, pathogen–host interaction, geographic location,

and host immune response (17). Other factors, for instance,

genetic differences of the parasite between species and strains,

host genetics, and environmental factors (18), also provocate

the susceptibility or resistance to infection. Parasites have hence

evolved to evade and evert host immune responses. Different

types of immune cells such as macrophages, neutrophils,

natural killer (NK) cells, and dendritic cells (DCs) play an

essential role by sensing parasitic first occurrence via pattern

recognition receptors (PRRs) and complement receptors present

on host cells. Numerous toll-like receptors (TLRs) such as
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TLR2, TLR3, TLR4, TLR7, and TLR9 similarly contribute to the

sensing and recognition of Leishmania parasites. Recognition

and interaction stimulate intracellular signaling pathways that

lead to the occurrence of inflammatory responses and control

parasite multiplication via an innate immune response (19). The

macrophages and DCs are known to play crucial roles in the

initiation, expansion, and maintenance of an assertive immunity

against Leishmania infection. Nonetheless, the intramacrophage

amastigotes, once internalized, alter cell-signaling pathways in

macrophages inhibiting cytokine responses, and this disrupts

the protective capacity of cells. These work by inhibiting

MAP kinases, transactivation of NF-κB by local stimulation

of TGFβ32, and suppression of cytokine signaling (SOCS-3)

(20). VL-infected patients evince an accretion of dysfunctional

T cells due to their incapability to produce a cell-mediated

immune response in defiance of inchoate antigens. This leads to

immunocompromisation of VL patients and is prone to secondary

pathogenic infections (21). Cellular immunity rather than humoral

mediated immunity plays a crucial role in the control of Leishmania

infection. The progression of type-I immune responses against

leishmania is characterized by antigen-presenting cells (APCs) that

stimulate the production of interleukin-12 (IL-12) which in turn

facilitates interferon-γ (IFN-γ ) via Th1T cells. Consequently,

it activates macrophage-mediated microbicidal mechanisms

which function by producing nitric oxide (NO) and reactive

oxygen species (ROS) which efficaciously kill intra-macrophage

amastigotes. An immunosuppressive cytokine, IL-10, deactivates

the detectable levels of Th1 cytokines which might result in the

progression of VL regardless of immune functionality (22). The

coaction of Th1 and Th2 cytokines seems to persist throughout

the infectious phase which advocates significant roles in disease

protection and pathogenesis by various cytokines (23). The

resistance and susceptibility of infection depend on the host’s

immunological status. Enhanced levels of different cytokines of

CD4 T-helper cells such as IFN-γ , IL-12, and IL-2 with a lack

of IL-10 is requisite for the revivification of VL infection (24).

Therefore, enhanced levels of Th2 cytokines result in disease

progression while that of Th1 cytokines arbitrates disease clearance

(1). Specifically, in BALB/c mice, the replication of amastigotes

in the liver marks the first week of infection. Genetically resistant

mice (C57BL/6) have natural resistance-associated macrophage

protein 1 (NRAMP 1) gene (Slc11a1) mainly exhibited on

macrophage surface and involved in macrophage activation that

might function by killing the Leishmania parasite by nitric oxide

(NO)-mediated mechanisms (25). It mainly elevates the expression

of IFN-γ by CD4+ T cells and exacerbates the disease situation

with the scarceness of IFN-γ levels in Leishmania-infected

C57BL/6 (resistant) and BALB/c (susceptible) mouse strains,

respectively (26). A balanced proportion of the cytokine release

from the CD4+ and CD8+ T- ells is a critical factor of immune

function against leishmaniasis infection. In active VL, both CD4

and CD8 cells function cooperatively for clearance of infection

displaying diverse functions and expression of the cytokines.

CD4+ cells are critical for the deterrence of primary infection,

whereas CD8+ cells are role players during the secondary immune

response (9). Over expression of chemokines, chemokine (C-X-C

motif) ligand 9 [CXCL9], and CXCL10 in serum during active

infection counseled that these chemokines accompanied by

IFN-γ play a crucial role in the immunopathogenesis of VL (23)

(Figure 1).

However, the unification of innate and acquired immunity

together with the insufficiency of data on the human immune

response is one of the crucial obstacles currently impeding vaccine

development and application.

Current VL chemotherapy and its
limitations

Certain factors accounted for the selection of specific drugs in

the primary VL zones and therapeutic options including drug risk-

benefit ratio, maintenance of health protection, and the accessibility

of anti-leishmanial medication in the view of public wellbeing

and the epidemiological aspects of vector, parasite, and domestic

reservoir of VL (zooanthroponotic and anthroponotic) (27). In the

Indian subcontinent, VL is anthroponotic and a major challenge

is widespread resistance to antimonials, particularly in Bihar,

which is the hyper endemic zone of VL. In Southern Europe

and America, VL is zooanthroponotic, and dogs are reservoirs,

and is a serious issue toward the control of the infection (28).

Due to the non-availability of an effective vaccine against VL,

control of VL exclusively relies on chemotherapy. The therapeutic

options available for the treatment of VL are summarized in

Table 1.

Pentavalent antimonials
Antimony (Stibium) is a semi-metallic element having

atomic number 51 that belongs to the vanadium family

(Group VA) of the periodic table and has been used in

therapeutics since antiquity. An Indian scientist named Dr.

Upendranath Brahmachari for the first time in 1920 actualized

an antimony-containing substance, that is, urea stibamine, for

VL treatment. Later, sodium stibogluconate (Pentostam) and

meglumine antimoniate (Glucantime) as synthetic injectable

pentavalent antimonials were introduced as primary therapy

for CL and VL treatments. It is commonly documented that

pentavalent antimonials (SbV) work as a prodrug that is converted

into toxic and active trivalent antimonials (SbIII) (reduced

form) in the intracellular environment of macrophages, where

amastigotes reside and multiply (30). Leishmania donovani DNA

topoisomerase-I is inhibited by pentavalent antimonial drugs (31).

Daily intramuscular injection (20 mg/kg for 28–30 days) has

been used as the standard treatment for VL in most parts of the

globe. The most frequent side effects of pentavalent antimonials

are cardiovascular issues (QTc interval prolongation, ventricular

tachycardia, ventricular fibrillation, and torsades de pointes)

amongst which QTc interval prolongation (> 0.5 s) signals may

lead to the onset of severe and fatal cardiac arrhythmias, arthralgia,

pancreatitis, and nephrotoxicity. Pancreatitis is more common

with antimonials in HIV-VL co-infected patients and further

increases the mortality rate (32). Antimonials (Pentostam or

Glucantime) are no longer recommended for clinical use for Indian

VL patients due to the rampant rise of drug-resistant parasites.

Initially, in 1980s, pentavalent antimonials were administered
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FIGURE 1

Immune modulation in visceral leishmaniasis. Macrophages, neutrophils, natural killer (NK) cells, and dendritic cells (DCs) play an essential role by

sensing parasitic first occurrence via pattern recognition receptors (PRRs) and complement receptors present on host cells. Recognition and

interaction stimulate intracellular signaling pathways that lead to the occurrence of inflammatory responses and control parasite multiplication.

Leishmania-infected macrophages and dendritic cells activate Th1 cell di�erentiation and generate inflammatory cytokines especially IL-12, IFN-γ ,

reactive oxygen, and nitric oxide species supporting intra-cellular parasite clearance and enhanced levels of Th2 cytokines resulting in disease

progression.

TABLE 1 WHO recommended treatment regimens for VL, in the Indian subcontinent and its mode of action, advantages, and limitations (11, 29).

S.No. Treatment Mode of action Advantages and limitations

1. Liposomal amphotericin B (AmBisome)

[3–5 mg/kg/day, (i.v.) for 3–5 days (total dose of 15

mg/kg) or 10 mg/kg, (i.v.) as a single dose]

Target specific drug delivery to macrophages

(spleen, liver, and bone)

Advantage: Highly efficacious and safe

Limitation: High cost of therapy

2. Amphotericin B deoxycholate (AmB)

[0.75–1.0 mg/kg/day, (i.v.) daily or on alternate

days for 15–20 doses]

Interacts with ergosterol, existing in the cell

membrane of leishmania parasite

Advantage: Highly effective in Indian

subcontinent, where antimonial

resistance emerged

Limitation: Hypokalemia, myocarditis

and nephrotoxicity

3. Miltefosine

[2.5 mg/kg/day; (p.o.) for children (2–11 years); for

people aged 12 years and < 25 kg body weight, 50

mg/day; 25–50 kg body weight, 100 mg/day; > 50 kg

body weight, 150 mg/day; for 28 days]

Alteration of alkyl lipid metabolism and

phospholipid biosynthesis of leishmania

parasite

Advantage: Orally active anti-leishmanial drug

Limitation: Fetal abnormalities in

pregnant women

4. Paromomycin

[15 mg/kg/day (i.m.) for 21 days]

Inhibits protein synthesis by interacting 30s

ribosomal subunit of parasite

Advantage: Efficacious in drug combinations

Limitation: Nephrotoxicity and ototoxicity

5. Pentavalent antimonials

[20 mg/kg/day for 30 days (i.m.)/(i.v.)]

Sbv is converted into toxic SbIII form and

induce oxidative stress to intra-cellular

amastigotes

Advantage: Low cost and easily accessible

Limitation: Drug resistance has reported in VL

endemic areas
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at a much lower dosage (10 mg/kg) for a short span of 6–10

days, which showed resistance in Indian KA patients. However,

in the later years, as reported by Mohapatra (33), the high

dosage of 20 mg/kg for a longer duration showed no success

in treatment.

Amphotericin B
Amphotericin B deoxycholate (AmB), a polyene class of anti-

fungal antibiotic has been recommended as a first-line drug for

the treatment of VL in the Indian subcontinent for more than

four decades. AmB has shown high therapeutic efficiency in Indian

KA patients, especially in North Bihar, a VL hyper endemic

region (34). Ergosterol, a component in the Leishmanial parasitic

cell membrane, is the primary target of AmB. It can bind and

sequester ergosterol, leading to the formation of pores in the

cell membrane of the parasite (35). AmB has shown improved

therapeutic efficiency (∼100%) at the dose of 0.75–1 mg/kg, i.v.,

infusions for 15–20 doses every day or on alternate days; however,

most of the KA-infected patients experience infusion-related

problems such as fever, thrombophlebitis, chills, hypokalaemia,

nephrotoxicity, and myocarditis. These adverse effects require

continuous monitoring and hospitalization, thereby increasing

the cost of therapy (36). Lipid-based carrier systems for AmB

delivery have been developed to overcome the toxic adverse

effects of conventional AmB. Liposomal AmB (AmBisome) was

introduced with a unique safety profile. Single dose AmBisome

(10 mg/kg) was found to be adequate to efficaciously treat VL

with an improved safety profile and has now been recommended

as a drug of choice to treat VL in the Indian subcontinent

(37, 38). As per the recommendations of the WHO’s expert

committee on the control of leishmaniasis, AmBisome was declared

as a first-line treatment drug for VL in India, Bangladesh, and

Nepal (39).

Pentamidine
Pentamidine, chemically known as 4-[5-4-

carbamimidoylphenoxy] pentoxyl benzenecarboximidamide, is an

orphan drug approved for the treatment of Pneumocystis carinii,

a serious fungal opportunistic infection in immunocompromised

patients in the United States (40). The anti-protozoal effects

of pentamidine isethionate, an aromatic diamidine, were

reported against Trypanosoma cruzi in 1938. Soon after,

reports of antimonial drug resistance, pentamidine, were

recommended as a second-line anti-leishmanial drug in KA-

infected patients (41). Pentamidine isethionate is recommended

as secondary prophylaxis in addition to anti-retroviral drugs

to inhibit relapse in HIV-VL co-infected immunocompromised

patients (42). Pentamidine selectively binds to kinetoplastid

DNA (kDNA) of Leishmania donovani resulting in the

inhibition of parasite replication (43). Pain or formation

of abscess at the site of injection, renal insufficiency, and

allergic reactions, including Stevens–Johnson syndrome,

cardiotoxicity, and metabolic disorders, are the common

adverse effects of intravenous pentamidine isethionate

injections (44).

Paromomycin
Paromomycin (formerly known as aminosidine) is an

aminoglycoside antibiotic with a unique spectrum of anti-

leishmanial activity. Paromomycin interacts with the ribosomes of

mitochondria and induces respiratory dysfunction in Leishmania

parasites. Paromomycin binds to the 30S subunit of ribosomes

which causes the inhibition of protein synthesis (45). Paromomycin

(11 mg/kg/day for 3 weeks, i.m. route) was recommended as a

first-line treatment for VL in the Indian subcontinent (46–

48). However, paromomycin was found to effect the renal

(nephrotoxicity), vestibular, and auditory organs (ototoxicity) in

VL-infected patients (49).

Miltefosine
Miltefosine (hexadecylphosphocholine, HePC), an alkyl

phospholipid compound, is the first approved oral therapeutic

agent registered for combating VL. Initially, it was used as

an anti-neoplastic agent originally designed for breast cancer

and other solid tumors. Miltefosine was licensed as an oral

anti-leishmanial drug in the Indian subcontinent in 2002

(50). Miltefosine functions by disrupting lipid metabolism via

inhibition of phosphatidylcholine synthesis, thereby affecting

cell-signaling pathways and membrane synthesis of the Leishmania

parasite. Miltefosine mainly interacts with the acidocalcisome

and stimulates the sphingosine-dependent plasma membrane

calcium channels of the Leishmania parasite (51). Miltefosine (2.5

mg/kg/day for 28 days, p.o.) has been recommended for CL- and

VL-infected patients with good cure rates (52). Miltefosine is not

recommended for pregnant women due to its teratogenicity (fetal

abnormalities) (50).

Sitamaquine
Sitamaquine (WR-6026) is an orally active 8-aminoquinoline

analog developed by Walter Reed Army Institute Research in

collaboration with GlaxoSmithKline. Sitamaquine has shown

improved efficacy against L. donovani-infected patients in Kenya

and the Indian subcontinent in phase 2B clinical trials (53).

Sitamaquine acts by entering the parasite through diffusion in

a sterol-dependent and energy-independent electrical gradient

manner (54). Renal toxicity and methemoglobinemia are very

common side effects with higher doses of sitamaquine in

VL-infected patients. Furthermore, the decision of its clinical

development is hindered because of its safety concerns (55).

WHO recommended combination treatment regimens for VL,

in the Indian subcontinent (29).

1. Combination of AmBisome (5 mg/kg (i.v.) as a single dose) +

Miltefosine (2.5 mg/kg/day; (p.o.) for children (2–11 years); for

people aged >12 years and < 25 kg body weight, 50 mg/day;

25–50 kg body weight, 100 mg/day; > 50 kg body weight, 150

mg/day) for 7 days.

2. Combination of AmBisome (5 mg/kg (i.v.) as a single dose) +

Paromomycin (15 mg/kg/day (i.m.)) for 10 days.

3. Combination of Miltefosine (2.5 mg/kg/day; (p.o.) for children

(2–11 years); for people aged >12 years and < 25 kg body

weight, 50 mg/day; 25–50 kg body weight, 100 mg/day; > 50 kg
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body weight, 150 mg/day) for 10 days + Paromomycin 15

mg/kg/day (i.m.) for 10 days.

Immunotherapy and
immunochemotherapy: promising
strategies for VL treatment

Efficient chemotherapy is the alternative for the treatment

of VL due to inefficacious vector preventive techniques available

for humans so far. Nonetheless, the emergence of drug-resistant

parasite strains, drug unresponsiveness, discrepancy in medical

responses due to geographical distribution, and disease relapse

to the conventional anti-leishmanial therapeutic strategies enforce

the concerted efforts for the search of developing new therapies

and treatment regimens which can be given orally (56). In

such a situation, immunotherapy alone or in combination with

conventional chemotherapy can become a viable alternative in the

treatment and control of VL. The molecular pathways that lead to

the development of parasites are inhibited using biological response

modifiers to prevent leishmanial-associated immunosuppression.

Thus, this immunotherapy approach has proven its novelty offering

advantages of nominal toxicity and cost-effectiveness that could

further ameliorate disease progression (9). To attain prophylactic

and/or therapeutic success, a biological molecule that has a

therapeutic potential to modulate the immunological status of the

host is the need of the hour. Presently, immunotherapy strategies

have been employed for the successful treatment of several

diseases including cancers, allergy-mediated diseases, and some

viral infections (hepatitis) (19). Immunotherapy in combination

with conventional chemotherapy displays rapid parasite clearance,

thereby augmenting the efficacy of treatment (57). Immunotherapy

can clear intracellular amastigotes by modulating immunological

mechanisms involving the activation of macrophages and cell-

mediated immune responses in VL infection (58). For hindering

VL infections, Th1-type cytokine responses are to be selectively

induced. This approach could successfully augment molecular

interactions of immune cells and released cytokines, such as Th1

cytokines, IFN-gamma, and IL-12 levels, and downregulate IL-

10 and IL-14, thereby preventing the enhancement of disease

severity leading to treatment and simultaneously offering a unique

diagnostic approach for VL (59). VL developed as a substantial

opportunistic infection in immunocompromised patients with

HIV infection (HIV-VL co-infections) in African regions, the

Indian subcontinent, and Western Europe and has also shown

unresponsiveness to conventional chemotherapeutics. In HIV-

VL co-infections, the treatment outcome with monotherapy

is poor (60). The conventional approach of anti-leishmanial

chemotherapy can be defeasible subject to a high degree of

infection and therapeutic situation. To overcome such a stage,

the incorporation of an immunomodulator with prevailing

chemotherapies can be promising as this combination will

stimulate cell-mediated immune response and can result in

successful outcomes (Figure 2).

The host immunological state in VL is a key factor that

significantly affects infection susceptibility and resistance. The

Th1-type cytokines in the CD4 T-helper cells are increased and

activated by the microbicidal process mediated by macrophages.

As a result, nitric oxide (NO) and reactive oxygen species

(ROS) are produced, both of which are extremely efficient for

eliminating intramacrophage amastigotes. The increased levels

of Th2-type cytokines that can deactivate macrophages to

prevent the generation of NO and ROS boost amastigotes’

intracellular development.

The neutrophils, macrophages, dendritic cells, and natural

killer cells work together to mediate the innate immune

response in leishmaniasis. The female sand fly takes a blood

meal to start the life cycle of the Leishmania parasite. The

metacyclic promastigotes subsequently enter the bloodstream

and are phagocytosed by neutrophils at the infection site. A

greater number of neutrophils migrate to the infection site

as a result of the neutrophils phagocytosing the parasite and

secreting IL-8. Chemotaxis of macrophages to the infection

site is caused by the apoptosis of infected neutrophils and

the subsequent release of the macrophage chemokine MIP-

1. The parasites’ binding to C3b speeds up phagocytosis, and

promastigotes are transformed into the amastigote form. The

phagocytosed parasites can survive in apoptotic neutrophils and

grow in macrophages, causing the spread of the disease. To induce

the Th1 response necessary for parasite eradication in infected

parasites, Leishmania parasites block the production of IL-12 in

macrophages, which promotes parasite proliferation. Dendritic

cells are prevented from presenting the T lymphocytes with the

parasite-specific antigens by the suppression of interleukin (IL)-

12 secretions. By enhancing the production of arginase, which

inhibits NO generation, Leishmania parasites also promote the

activation of ornithine from arginine. The conventionally activated

macrophages produce pro-inflammatory microbicidal and tissue-

damaging cytokines, while the alternatively activated macrophages

are anti-inflammatory and regulate inflammation and tissue repair.

The signals produced by the microenvironment are necessary for

macrophage polarization into M1 and M2. LPS, IFN, TNF, and

GM-CSF are the main causes of M1 macrophage polarization,

which also activates the complement system and draws in immune

cells. M1 macrophages can differentiate into M2 and vice versa,

M2 macrophages repolarize more quickly than M1 macrophages,

and M1 macrophages can develop into M2 and vice versa. By

polarizing macrophages into the M2 subset and reducing dendritic

cells, the Leishmania parasite impairs antigen presentation and

establishes an environment that is immunosuppressive to sustain

its survival (61). Furthermore, chemokines including MIP-1,

cytokines, and complement proteins induce monocytes to the

site of infection, facilitating parasite replication. IL-12, which is

essential for the development of CD4+ T cells into protective

Th1 cells for the expression of co-stimulatory molecules CD40,

CD80, and CD86, is primarily produced by dendritic cells

as the disease progresses. A higher parasite load results from

blocking CD40–CD40L interaction because it reduces IL-12 and

IFN-γ productions. In addition, NK cell suppression reduced

IFN production and markedly increased the parasite load (13,

62). Numerous studies have shown that immunotherapy is a

successful anti-leishmanial treatment. Activation of macrophages

was increased by a single dose of an IL-27 or IL-10 monoclonal

antibody, which improved parasite killing (56%). The synthesis

of the anti-inflammatory IL-17 is adversely regulated by IL-27
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FIGURE 2

Immunobiology during pathogenesis in visceral leishmaniasis: Leishmania parasite invades macrophages and activates CD4T cells to release Th1-

(IL-12, IFN-γ, and nitric oxide) and Th2 (IL-10 and TGF-β)-type cytokine responses. VL pathogenesis is mediated through the augmented expression

of Th2-type cytokines, and VL clearance is arbitrated through the increased Th1 cytokine responses.

inhibition, which worsens the condition (63). It has been

discovered that IFN-induced macrophage killing of Leishmania

is inhibited by the macrophage deactivation cytokines IL-4 and

IL-10, which promote the development of VL. Additionally, TGF

antibody neutralization increases IFN-γ production, which in

turn increases IL-2-associated macrophage activation, nitric oxide

generation, and proliferation of cytotoxic T lymphocytes, curing

VL independently of TH2-type cytokines (IL-4). Additionally, IL-

10 inhibition promotes VL regression (64). A pleiotropic cytokine

called IL-6 regulates dendritic cell activity during infection with

L. donovani. IFN-γ and tumor necrosis factor can be used to

activate macrophages, but IL-6 directly impairs their ability to do

so. It also promotes the repression of Th2-type responses and

inhibits the development of Th1 cells. An achievable therapeutic

target is the immunosuppressive, macrophage-deactivating nature.

L. donovani infection in the liver has been linked to cytokine

antagonist therapy with IL-6, IL-10, and IL-27. In contrast, IL-

10, IL-6, and IL-27 receptor signaling directly affects L. donovani

liver infection and, when absent, enhances Th1-type responses,

speeding up parasite elimination (65). As inflammation reaches a

particular level, the cytokine IL-22, a member of the IL-10 family,

causes non-immune cells such as epithelial cells and fibroblasts

to proliferate and migrate, aiding in tissue protection. Strong

IL-17 and IL-22 induction by L. donovani leads to additional

tissue healing that aids in immunosurveillance and suggests their

complementary roles in host defense against the parasite (66).

The immunotherapy and immunochemotherapeutic approaches

against visceral leishmaniasis is highlighted in Table 2.

Cytokine therapy for VL

Small, soluble proteins known as cytokines play a critical role

in the control of innate immunity. They are primarily produced

by mononuclear phagocytes such as macrophages and dendritic

cells (78). Th2-type cytokines are expressed more frequently in VL,

which regulates the course of the disease, and Th1 cytokines are

produced at higher levels, which intervene to resolve the infection

(1). The identification of cytokines that preferentially activate Th1-

type cytokine responses may be useful in the treatment of VL. Anti-

IL-10 antibodies are being investigated for use in monotherapy

(immunotherapy) or in conjunction with conventional anti-

leishmanials. Immunostimulatory cytokines (GM-CSF, IFN-γ , and

IL-12) as well as antibodies that target suppressive or deactivating

cytokines are also being investigated (immunochemotherapy).
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TABLE 2 Immunotherapy and immunochemotherapeutic approaches against visceral leishmaniasis.

S.No Immunotherapeutic
agent/immunomodulators

Chemotherapeutic agent E�ciency/clinical outcomes

1. IFN-γ (107 U/mg, once daily/30 days; s.c.) Sodium stibogluconate (20 mg/kg/day for 30

days)

87% cure rate in Human VL; IFN-γ immunotherapy

shortens the duration of conventional chemotherapy (67)

2. IFN-γ (1.9× 107 U/mg; i.p.) Mannosylated liposomes encapsulating

doxorubicin B

Safe and effectively cures murine VL with augmented Th1

cytokine responses (68)

3. LeishF3+GLA-SE - Safe and elicited a robust antigen-specific CD4 Th1 immune

responses in human and murine VL (69)

4. rh GM-CSF (150 mcg; s.c. twice weekly for 12

consecutive weeks)

Amphotericin B (4 mg/kg per day, i.v.) Safe and efficacious in HIV-VL co-infected patients (70)

5. rh GM-CSF (5 g/kg daily for 10 days, s.c.) Glucantime (10-20 mg/kg daily for 20 days,

i.v.)

Reverse neutropenia and reduces secondary infections in

human VL (71)

6. rm IL-12 (2.7× 106 U/mg) Amphotericn B (5 mg/kg, i.v.) rm IL-12 potentiates Amphotericin B efficacy in murine VL

(72)

7. rLdT-E (recombinant chimeric

triosephosphate isomerase and enolase)

- Improves cellular and humoral immunity in L.

donovani-infected hamsters (73)

8. Octyl-β-D-galactofuranose (Galf) - Augments Th1 responses and diminishes parasite burden in

murine VL (74)

9. Picroliv (10 mg/kg, 12 days, p.o.) Ketoconazole (50 mg/kg, 5 days, po)+

miltefosine (5 mg/kg, 5 days, po)

82% efficacy and improves cell mediated immunity in

Leishmania-infected hamsters (75)

10. L. braziliensis antigens+ saponin+

monophosphoryl lipid-A

Miltefosine Augmented CD4+ T cells in splenocytes producing IFN-γ

and TNF-α and a reduction of IL-10 and anti-Leishmania

circulating IgG in hamsters (76)

11. recombinant cysteine proteinase from

Leishmania, rldccys1

Miltefosine (46 mg/kg) or allopurinol (460

mg/kg)

Significant decrease of parasite load in infected hamsters (77)

Granulocyte-macrophage colony-stimulating
factor

Granulocyte-macrophage colony-stimulating factor (GM-CSF)

is an immuno-regulatory glycoprotein cytokine that stimulates

hematopoiesis by inducing the differentiation and proliferation of

committed progenitor cells of the myeloid lineage in the bone

marrow (79). In addition to playing a crucial role in the control

of innate and adaptive immunity, GM-CSF activates macrophages

to improve phagocytosis, antigen presentation, chemotaxis, and

cell adhesion (80). By using an in vitro colony-stimulating factor

activity assay, Burgess et al. for the first time extracted and

purified GM-CSF from mouse lung conditioned medium, which

stimulates the proliferation of granulocytes, macrophages, or

both, in bone marrow progenitor cells (81). Infectious disorders

such as leishmaniasis, malaria, and tuberculosis have all been

successfully treated with immunotherapy using recombinant GM-

CSF (1). In VL, GM-CSF causes granulocytopenia to improve as

well as blood monocyte mobilization and macrophage activation,

both of which may help maintain an infection-fighting immune

system. Recombinant mouse GM-CSF (rm GM-CSF) therapy

efficiently eliminated the infection in experimental VL, but anti-

rm GM-CSF antibody therapy made the visceral infection worse

(82). Recombinant human GM-CSF (rh GM-CSF) treatment

effectively eliminated intracellular amastigotes in L. donovani-

infected macrophages in an LPS-independent manner, and the

amount of time required to stimulate macrophages to produce

leishmanicidal effects is very short (36 h for rh GM-CSF and 48–

72 h for rh IFN-γ to activate macrophages) (83). Combining rh

GM-CSF and M-CSF with rh IFN-γ is a highly effective way

to increase the control of intracellular parasites. In patients with

VL infection, immunochemotherapy with rh GM-CSF (5 g/kg

daily for 10 days) and Glucantime (10–20 mg/kg daily for 20

days) can reverse neutropenia and decrease subsequent infections

(71). Patients with HIV and VL can successfully treat the visceral

infection with increased safety using immunotherapy with rh GM-

CSF (150 mcg, s.c. route, twice weekly for 12 consecutive weeks)

and liposomal amphotericin B (4 mg/kg/day for 5 consecutive days,

then on day 10, 17, 14, 31, and 38) (70).

Interferon-gamma
Interferon-gamma (IFN-γ ) (molecular weight 20–25 kDa) is

a sole type II IFN, IFN-γ is a pleiotropic soluble glycoprotein

cytokine, crucial for persuading and modulating the innate and

adaptive immune response. It induces the host defense mechanism

and is hence used in immunotherapy against several pathogenic

infectious diseases including malaria, tuberculosis, fungal diseases,

leishmaniasis, and toxoplasmosis (84). The integral source for the

formulation of IFN-γ is T-lymphocytes (helper T cells, cytotoxic T

cells, and natural killer cells) which develop strength for parasitic

infections by fortifying macrophages. IFN-γ augments the intra-

cellular amastigote-killing impact to secrete Th1-type cytokines by

aiding in the development of macrophages. Augmented expression

of Th1-type cytokines is embroiled in eliminating the infection in

the first place while Th2-type cytokines mediate VL pathology (85).

For instance, treatment with L. donovani antigens (triosephosphate

isomerase and enolase) clears the liver and splenic parasite burden

with enhanced IFN-γ levels in Syrian golden hamsters (73).
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CGD4+ T cells were found to be critical for and the key basis

of the IFNγ generation in Leishmania parasite-stimulated whole

blood (WB) cultures. Endogenously generated IFN-γ in active

VL patients helps in the control of intracellular parasite growth,

and the inhibition of IFN-γ secretion in ex-vivo splenic aspirate

cultures exacerbates the disease progression (86). CD4+ T cells

stimulate the formation of augmented levels of IFN-γ which

not only assists in controlling the Leishmania parasite but also

deteriorates the disease condition by creating a deficiency of

IFN-γ in L. major-infected resistant (C57BL/6) and susceptible

(BALB/c) mouse strains, respectively (26). Immunotherapy with

IFN-γ alone has shown anti-leishmanial protective effects in

Indian VL-infected patients. In a pilot study, for 20 days, 9

VL-infected patients were treated with rh IFN-γ where patients

showed diminished parasites in their splenic aspirates indicating

the therapeutic efficiency of IFN-γ (87). Immunochemotherapy

with rh IFN-γ in addition to pentavalent antimonials treated the

formerly untreated Indian VL patients and proved to be beneficial

in minimizing the length of standard chemotherapy (67). Immuno-

nano-chemotherapy with rm IFN-γ and mannosylated liposome-

incorporated doxorubicin effectively cures the experiment murine

VL and this synergetic combined therapy clears the intracellular

parasites by inducing nitric oxide synthase, modulates the T-

cell expressions from a Th2 to Th1 pattern, and reveals

long-lasting resistance (68).

Interleukin-12
Interleukin-12 (IL-12) is a heterodimeric pluripotent cytokine

with a molecular weight of 70 kDa, comprising two subunits

namely IL-12p35 (35 kDa) and IL-12p40 (40 kDa) linked by a

covalent bond. Antigen-presenting cells (APCs) such as monocytes

macrophages, neutrophils, and dendritic cells are the main source

for the generation of IL-12. IFN-γ production, the generation

of Th1-type cytokines, the activation of natural killer (NK) cells,

and the differentiation of naive CD4+ cells from Th1 cells

are all influenced by IL-12 (88). Immunotherapy of infectious

diseases congruous with IL-12 can be considered where a Th1

response is necessary. IFN-γ and Th1-type cytokines with much

more improvisation would help in controlling (bacterial, viral,

or protozoan) pathogenic infectious diseases (89). Augmented

levels of IL-12 p40 and IFN-γ were expressed, independently

in peripheral blood mononuclear cells (PBMC) from treated VL

patients in response to in vitro activation with Leishmania parasites,

and treatment with exogenous rh IL-10 abrogates the IL-12 p40

levels. Consequently, treatment of active VL patient PBMC with

IL-12 or anti-IL-10 modulates the response toward a Th1-type

response with the release of IFN-γ and suggests that IL-12may play

a crucial role in the modulation of cellular immune responses in

human VL (90). Immunotherapy with rm IL-12 efficiently reduced

the established systemic intracellular infection in experimental

murine VL in IFN-γ mediated mechanism (91). In experimental

VL, IL-12 initiates control over Leishmania infection through the

activation of Th1-type cytokine response, stimulation and release

of IFN-γ , and formation of granuloma. L. donovani-challenged IL-

12p35 gene KO mice allowed uncontrolled liver infection which

failed to respond to pentavalent antimonials (which requires T

cells and IFN-γ activation). Immunochemotherapy using rm IL-

12 synergistically to pentavalent antimonial in normal mice was

IFN-gamma dependent; nevertheless, IL-12 also augmented the

responsiveness to antimonials in IFN-γ KO mice. Therefore, IL-

12 plays a key role in regulating the host immune responses in

both IFN-γ -dependent and independent manner that improvises

the anti-leishmanial activity of antimonials (92). Co-administration

of plasmid encoding for both p35 and p40 subunits of IL-12 and

leishmanial recombinant open reading frame F (rORFF) protein

provide immunity against experimental VL with an augmented

proliferative response of splenocytes and ensuing secretion of Th1

cytokine IFN-γ . Interestingly, IL-12 DNA played a crucial role

in regulating the humoral-mediated responses toward the IgG2a

isotype signifying its use as a viable vaccine adjuvant against

VL (93). Immunostimulatory compounds such as Octyl-β-D-

galactofuranose (Galf) clear intracellular parasites in Leishmania-

infected human monocyte-derived macrophages and murine

models with augmented IL-12 expression (74).

IL-10 receptor blocker as an alternative approach
against VL therapeutics

IL-10 is 18 kDa pleiotropic anti-inflammatory cytokine,

predominantly generated by alternatively activated macrophages,

DCs, natural killer cells, both Th1 and Th2 cells, B cells,

CD4+CD25+ forkhead box protein 3 (Foxp3+) Treg cells,

and keratinocytes. IFN-γ and IL-2 produced in Th2 cells

are majorly inhibited by IL-10 which then effectively inhibits

proliferation and cytokine responses in T cells. This also leads

to the arbitration of both immunological insensitivity and the

suppression of immune reactions (94). Moreover, IL-10 also

functions to impede macrophage-facilitated stimulation of T cells

which occurs by the decreased expression of class II major

histocompatibility complex (MHC) and co-stimulatory molecules

on the macrophage surface. This impedes both innate and T-

cell-facilitated immunity (95). IL-10 levels markedly augmented

in L. donovani-infected macrophages by inhibiting the release of

nitric oxide, superoxide (O−
2 ), and TNF-α. Treatment with anti-

IL-10 monoclonal antibodies reduces intracellular amastigotes. IL-

10 favors the intramacrophage survival of the Leishmania parasite

through selective impairment of Ca2+-dependent protein kinase

C-mediated signal transduction (96). A peculiar difference could

be seen in symptomatic and asymptomatic VL patients where IL-

10 levels show enhanced serum secretions in the former cases.

IL-10 essentially functions to protect the tissues from a collateral

impairment that occurs due to extreme inflammation. In active

VL, CD8+ T cells could also play a significant function in the

progression of the disease as these are associated with elevated

IL-10 inception (97). Neutralization of IL-10 cytokine induces

enhanced Leishmania parasite clearance in splenic aspirates of

VL-infected patients with augmented levels of IFN-γ and TNF-

α. This brings light toward another approach to target IL-10 in

VL immunotherapy (98). Immunotherapy with anti-interleukin

(IL)-10 receptor (IL-10R) monoclonal antibody (mAb) reduces

the liver parasite burden in L. donovani-infected mice through

the enhanced expression of IL-12 protein 40, IFN-γ inducible

nitric oxide synthase (iNOS) (99). Human clinical trials have
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been perceived with the combination of AmBisome and anti-IL-

10 mAb which anticipates to prompt synergistic effects in VL-

infected patients. The threat of drug resistance and conceivably

attaining a chemotherapeutic dose-sparing effectmay be conquered

through the outcomes in better therapeutic efficiency and treatment

adherence (9).

Dendritic cell-based immunotherapy
Dendritic cells (DC), originally described by Steinman

and Cohn, are professional antigen-presenting cells (APCs),

that specifically stimulate naive T-cell activation and effector

differentiation. These are mainly considered messengers between

adaptive and innate immune systems. DC-based immunotherapies

have been successfully employed in the treatment of cancers by

manipulating the immune system to attain cancer control and,

preferably, cure cancer. The flexibility of cancer immunotherapy

was first revealed by Coley, who used a mixture of bacterial toxins

to treat sarcomas (100). The traditional therapies being inefficient

stipulates an alternative productive approach that can combat

parasitic infections and can impart protection against immunity.

DC manipulation serves the purpose. Earlier reports have shown

that DC-based immunotherapy can prompt protection against

different infectious pathogenic microbes, including bacteria, virus,

and protozoan parasites. DCs sense microbes via TLR or C-type

lectin receptors (101). Uptake of the Leishmania parasite by DCs

requires parasite-reactive immunoglobulin (Ig) G and is mediated

through FcγRI and FcγRIII, critical for the optimal development of

protective immunity against infection (102). DC subsets contribute

extensive polarizing effects on T helper cell differentiation and

DC subset 1, exerting Th1 polarization by IL-12 secretion and

activation of signal transducer and activator of transcription 4

(STAT4). DCs play a vital role in initial anti-leishmanial T-cell

response and in promoting differentiation into memory T cells

to accomplish long-lasting adaptive immunity (103). DCs are also

the critical source of early IL-12 generation following Leishmania

infection. IL-12 secretion by DC is transient, peaking at 24 h of

post-infection and reaching the levels observed in uninfected mice

by 72 h. DC-T-cell clusters offer a microenvironment for initial

NK cell activation, which releases IFN-γ , through a pathway that

is reliant on IL-2 and IL-12, crucial for the development of host-

protective T-cell responses against the Leishmania parasite (104).

DC-SIGN (DC-specific ICAM-3-grabbing non-integrin), a C-type

lectin receptor expressed on tissue monocyte-derived DCs bind

with distinctive Leishmania species, has been shown to encourage

parasite survival. Therefore, DC-SIGN receptor can be considered

a therapeutic target for VL (105). Dendritic cells (DCs) evolved

from bone marrow (BM) or bone marrow-derived dendritic cells

(BM-DCs) resulting in increased parasitic activity in association

with L. infantum histone H1 in BALB/c mice. The decrease in

the cells produced by 1L 10 and an increase in IFN-γ producing

cells (parasite-specific) are noticed. Moreover, the increased value

of the ratio IgG2a/IgG1 concludes the presence of immune

responses of Th1. These immuno-stimulatory effects of Leishmania

histone H1 can help in developing a vaccine against VL infections

acting as a competitor protein (106). Immunochemotherapy

with soluble L. donovani Ag (SLDA)-pulsed syngeneic BMDC

and pentavalent antimonials successfully treated experimental

murine VL (107).

Toll-like receptors
Toll-like receptors (TLRs) are trans-membrane proteins

expressed as a membrane or cytosolic receptor on monocytes,

neutrophils macrophages, dendritic cells, B lymphocytes, and

T lymphocytes. The TLR signaling pathway is one of the

first defense systems against invasive pathogenic microbes. TLR

family consists of 11 members (TLR1–TLR11), with specificity

to the innate immunity cells by pathogen-associated molecular

patterns (PAMPs) and toll interleukin1 (IL-1) receptor (TIR) of

numerous infectious pathogenic microorganisms (108). TLRs play

a crucial role in the activation of macrophages and the control

of intracellular parasitic infections. During Leishmania infection,

TLR1, TLR2, TLR3, and TLR4 expressions were upregulated

and stimulated tumor necrosis factor alpha (TNF-α) release by

human primary macrophages which are vital for the elimination

and control of intracellular parasites (109). Prevention of TLR-

4 activation by Leishmania inhibitor of serine peptidase 2 in

murine macrophages favors survival and growth of the Leishmania

parasite (110).

During Leishmania infection, the involvement of TLR9, TLR4,

and TLR2 is critical for causing a pro-inflammatory cytokine

response. TLR-9 deficient mice have shown more susceptibility to

Leishmania infection. Miltefosine treatment significantly induces

both TLR4 and TLR9 in L. donovani-infected macrophages

which might account for eliciting a potent antileishmanial pro-

inflammatory response with augmented levels of IFN-γ , IL-12,

and iNOS2 accompanied by a consequent reduction in IL-10 and

TGF-β levels (111). Electrospray encapsulation of resiquimod,

polymeric microparticles–TLR agonist, has shown protection in

experimental VL (112). Release of IFN-γ , NO, and ROS via TLR7/8

agonists stimulated by macrophages may be proved to be helpful

in the clearance of parasites. Liposomal formulation of resiquimod

(a TLR 7/8 agonist) has been known to significantly reduce the

parasitic burden in the liver, spleen, and bone marrow in addition

to enhanced levels of IFN-γ in L. donovani-infected BALB/c mice

(113). TLR-4 agonist (glucopyranosyl lipid A (GLA-SE) and LEISH-

F3 showed protection in L. donovani and L. infantum infected

murine models (69).

Vaccines

The conventional therapeutics for VL are accompanied by

severe toxic adverse effects, including drug resistance against

parasites and exorbitant cost. Vaccine-based therapies could

provide a better alternative to the current therapeutics which

may overcome the shortcomings of present-day anti-leishmanials

and could be effectively efficacious in eliminating VL. Efforts

are ongoing by researchers to find a suitable vaccine (s) to

control VL (114). The development of a safe and effective vaccine

mainly depends on the identification of antigens and their delivery

platforms that could provoke T-cell responses (115). Generally,
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the vaccine against leishmaniasis can be categorized as first-

generation vaccines (whole-killed parasites), second-generation

vaccines (recombinant proteins), and third-generation vaccines.

The currently available experimental vaccines for the control and

elimination of VL are summarized in Table 3.

First-generation vaccine candidates for visceral
leishmaniasis

Whole-killed, fractionated antigens, and attenuated Leishmania

parasites are the three main important components of first-

generation vaccines. The first-generation vaccines are simple and

easy to create in developing countries at low cost nevertheless,

registration of vaccines fabricated from cultured parasites creates

a major hurdle (126). For instance, the Leish vaccine comprises

promastigotes of the L. amazonensis strain with BCG as an adjuvant

that elicited excellent protective immunity in the canine VL model

and was used for prophylactic treatment. This first-generation

vaccine initially activates the innate immune system followed by

cell-mediated immunity with the stimulation of a mixed cytokine

profile with interferon-γ and IL-4 (116). Furthermore, γ -irradiated

(radio-attenuated) L. donovani parasites were used as a vaccine

candidate for VL. Intramuscular injection of radio-irradiated L.

donovani parasites (2 doses once in 15 days) to Balb/c mice

elicits strong Th1 immune responses and diminishes Th2 cytokine

responses conferring protection to VL. This vaccine restores

memory T cells which resulted in the clearing of intra-cellular

amastigotes by phosphoinositide-dependent kinase 1 (PDK1),

phosphoinositide 3 kinase (PI3K), and p38 mitogen-activated

protein kinase (p38MAPK) signaling pathways leading to increased

release of nitric oxide (117). The production of whole-killed

vaccines is theoretically simple, less expensive, and helps in the

prevention and control of VL endemic zones in middle- and

low-income countries. Nevertheless, standardization of vaccine

generated from in vitro cultured parasites is challenging, and killed

parasites does not resemble a clinical infection and has created

problems in commercial vaccine development efforts. Safety and

stability are the main concerns for first-generation vaccines, which

require further investigation (20).

Second-generation vaccine candidates for
visceral leishmaniasis

Recombinant purified proteins, which are generated through

genetic engineering, are named “second generation vaccines”.

On contrary, recombinant proteins with adjuvants or expression

in heterologous microbial vectors are used as second-generation

vaccines against leishmaniasis. Scalable and cost-effective

production approaches can be achieved by recombinant

technology and implicit a more viable alternative for mass

vaccination campaigns; however, stability is a major concern

(127). Fucose-Mannose ligand (FML), the fucose and mannose

containing glycoprotein-enriched portion isolated from L.

donovani promastigotes, strongly inhibited both promastigote

and amastigote forms of L. donovani. Furthermore, FML is a

potent immunogen in rodents and rabbits, present on the surface

of the parasite throughout their life cycle. Therefore, it is used

in the serodiagnosis of human and canine VL (128). Recently,

the immunotherapy with FML of L. donovani promastigotes

formulated with saponin as an adjuvant has shown protection

in L. donovani-infected BALB/c mice with enhanced IgG1,

IgG2a, and IgG2b antibodies, a delayed-type hypersensitivity

(DTH) response and decreased serum IL-10 levels (118). The

first commercially licensed vaccine, Leishman, comprised FML

fractions in saponin adjuvant against canine leishmaniasis.

Administration of this vaccine has been shown to decrease the

parasite burden and clinical disease of long-term L. donovani

infection with enhanced CD4+ T-cell response and lowered

serum antibody levels (119). A recombinant adenoviral vector

comprising L. donovani antigens, hydrophilic acylated surface

protein B (HASPB), and Kinetoplasmid membrane protein-11

(KMP11), administered in a single dose to the mice previously

infected with L. donovani considerably decreased liver parasite

burden. This novel vaccination strategy resulted in improved DTH

with enhanced antigen-specific CD4+ and CD8+ T-cell responses

(120). At present, numerous vaccine prospects, for instance,

Leish-F1, F2, and F3, are in clinical trials developed by Infectious

Disease Research Laboratory against leishmaniasis. Leish-F1, a

human recombinant vaccine could confer a specific degree of

protective immunity against Leishmania infection (116).

Third-generation vaccine candidates for visceral
leishmaniasis

DNA vaccination is a novel technology, which uses genetically

engineered DNA to elicit an immunological response. The

immunogenic protein-expressing genes are cloned into a suitable

vector and vaccinated to murine models through the i.d. (or) i.m.

route causing strong Th1 immune responses, ensuing in robust

cytotoxic T-cell immunity. Several molecules (A2, KMP-11, ORFF,

P36LACK, and KMP-11 PPG) delivered through the DNA vaccine

platform to preclinical animal models induce strong antibody and

cellular immunity (129). Leishmania KMP-11 DNA construct has

the potential to elicit immunity in stibogluconate-sensitive and

resistant strains in the Syrian golden hamster model. KMP-11 can

activate CD8+ T cells followed by the release of interferon-γ (121).

A recombinant adenoviral vector comprising L. donovani antigens,

hydrophilic acylated surface protein B (HASPB), and KMP11,

administered in a single dose to the mice previously infected with L.

donovani considerably decreased liver parasite burden. This novel

vaccination strategy resulted in improved DTH with enhanced

antigen specific CD4+ and CD8+ T-cell responses (120).

Nanovaccines for visceral leishmaniasis
Nanoparticle delivery of vaccines can boost humoral and

cellular immune responses in the host. Nanoparticles facilitate the

improved antigen uptake by immune cells such as dendritic cells

macrophages, nasal-associated lymphoid tissue (NALT), and gut-

associated lymphoid tissue (GALT), initiating an effective antigen

processing and presentation. This also makes a vaccine more

effective to target specific immune cell surface receptors to elicit

strong protective immune responses. Nanomaterials can help co-

deliver antigen and adjuvant in one cargo to target antigen-

presenting cells (130, 131). Leishmania-infected BALB/c mice

when treated with a combination of poly (D,L-lactide-coglycolide)
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TABLE 3 Experimental vaccines for the control and elimination of VL.

S. no. Vaccine Host E�cacy/clinical outcome

1. Leishvaccine

[L. amazonensis promastigotes with BCG as an adjuvant]

Canine Activates innate and cell mediated immunity. Protective

against canine VL and used as prophylaxis (116)

2. Radio-attenuated vaccine

[L. donovani promastigotes]

Balb/c mice Elicits strong Th1 immune responses and diminishes

Th2 cytokine responses confers protection to murine VL

(117)

3. Fucose-Mannose Ligand (FML) vaccine

[Fucose and mannose containing glycoprotein-enriched

portion isolated from L. donovani promastigotes and

saponin as an adjuvant]

Balb/c mice Augmented IgG1, IgG2a and IgG2b antibodies, DTH

response and decreased serum IL-10 levels (118)

4. Leishmune

[FML fractions in saponin adjuvant]

Canine Decrease the parasite burden with enhanced CD4+

T-cell response (119)

5. HASPB and KMP-11 vaccine [Adenoviral vector comprising

L. donovani antigens, HASPB and Kinetoplastid

membrane protein-11]

Balb/c mice Reduces liver parasite burden and enhanced antigen

specific CD4+ and CD8+ T-cell responses (120)

6. Leishmania KMP-11 DNA construct

[L. donovani KMP-11 DNA construct]

Syrian golden hamster To elicit immunity in stibogluconate sensitive and

resistant strains. KMP-11 can activate CD8+ T cells

followed by the release of interferon-γ (121)

7. Poly (D,L-lactide-coglycolide) nanovaccine

[Nanoparticles loaded with soluble Leishmania antigens and

monophosphoryl lipid A]

Balb/c mice Protection against murine VL (122)

8. Liposomal nanovaccine

[Nanoparticles encapsulating soluble leishmania antigens

(SLA) along with monophosphoryl lipid-trehalose

dicorynomycolate (MPL-TDM)]

Balb/c mice Augmented protection and cellular immune responses

in murine VL (123)

9. Cationic liposomal nanovaccine

[Cationic liposomes encapsulating non-coding plasmid

DNA bearing immunostimulatory sequences along with

leishmanial antigens]

Balb/c mice Protection against murine VL (124)

10. PLGA nanovaccine

[PLGA nanoparticles co encapsulated with

lipophosphoglycan with soluble and autoclaved

leishmania antigen]

Balb/c mice Enhance cellular immune responses in murine VL with

increased levels of nitric oxide and IFN-γ (125)

nanoparticles loaded with soluble Leishmania antigens in addition

to TNFα mimicking peptide or monophosphoryl lipid A actuate

the protection against the disease (122). Vaccination of Balb/c mice

with liposomal formulations of soluble Leishmania antigens (SLA)

along with monophosphoryl lipid-trehalose dicorynomycolate

(MPL-TDM) showed enhanced protection with strong cellular

immune responses (123). Cationic liposomes encapsulating non-

coding plasmid DNA bearing immunostimulatory sequences along

with leishmanial antigens showed protection in experimental

murine VL (124). PLGA nanoparticles co-encapsulated with

lipophosphoglycan with soluble and autoclaved leishmania antigen

were shown to enhance cellular immune responses in murine VL

model with augmented levels of nitric oxide and IFN-γ (125).

Combination therapy: interplay of
immunochemotherapy

Detailed understanding of host immune response aids in the

implementation of a synergistic chemoimmunotherapeutic regime

which could exacerbate inflammatory responses leading to direct

parasiticidal effects. By inducing the factors that downregulate

macrophage-derived nitric oxide function and deactivating

macrophage-killing effector functions via enhancement of IL-10

Leishmania parasites, this therapy hijacks the host immunity

by impairment of Th1 differentiation. A combinatorial host-

directed chemoimmunotherapy where aiming immune responses

in coalition with the chemotherapeutic agent could enhance

Th1 response and the corresponding anti-leishmanial activity.

An additive effect has been observed in combination with

chemotherapy with significant improvement in the clinical

condition of patients with severe side effects (132). Combinative

therapy of IL-12 in association with an anti-CD40 antibody

enhanced the effectuality of a substandard dose of AmB against

L. donovani. Inhibition of cytotoxic T lymphocyte Ag-4 (CTLA-

4) which acts as a negative regulator in the T-cell activation

mechanism, enhanced the number of cells producing IFN-γ

and IL-4 in both spleen as well as liver of L. donovani-infected

mice. Co-consortium of anti-CD40 and anti-CTLA-4 with

antimonials synergistically enhanced antileishmanial activity

(133). Furthermore, IL-4 production stimulates dendritic cells to

produce IL-12 mediating a beneficial Th1 response while IL-10

modulates dendritic cells’ production of essential reactive nitrogen

intermediates (134). Previous studies have reported the synergistic

effect of anti-IL-10 with antimony substantiating its potential for
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immunochemotherapy (135). Antimony-based chemotherapy in

coalition with dendritic cell-specific immunotherapy potentiated

the antileishmanial activity by an additive effect of enhanced IFN-γ

signaling and the ability to potentiate the production of reactive

oxygen species leading to induction of programmed cell death in

Leishmania parasite (107).

Currently, enhanced efficacy mainly relies on the action

of type-1 and type-2 cytokines (IL-2, IL-4, IL-12, IFN-γ , and

TNF-α), activation of reactive oxygen species and nitric oxide

(NO) production in macrophages, and CD4+ and CD8+ T-cell

subsets when infected macrophages are co-treated with pentavalent

antimonials (136). Additionally, combinatorial therapy of AmB

with IL-12 and anti-IL-10 receptor boosts Th1 implications

and hence clearance of L. donovani (137). Miltefosine upsurges

the production of IFN-γ , TNF-α, and IL-12, which increased

phagocytosis in macrophages with augmented NO production

favoring a protective immune response (134). Miltefosine along

with immunomodulator picropliv and ketoconazole effectively

treated the Leishmania donovani-infected hamsters with improved

cell-mediated immune responses (75). Miltefosine in combination

with L. braziliensis antigens, saponin, and monophosphoryl

lipid-A enhances CD4+ T cells in splenocytes producing IFN-

γ and TNF-α and a reduction of IL-10 and anti-Leishmania

circulating IgG in hamsters (76). A combination of miltefosine

and recombinant cysteine proteinase from Leishmania, rldccys1,

significantly reduced the parasite load in infected hamsters

(77). Notably, IL-2 reduced L. donovani parasite burdens by

50% while IL-12 treatment reduced parasitic burdens by 47%

and IFN-γ decreased them by 40%. Combination therapy

of IFN-γ in addition to IL-12 enhanced the efficacy of a

suboptimal dose of AmB against L. donovani. IL-10 and IL-27

are both suitable antileishmanial targets for neutralization in L.

donovani-infected liver. In conclusion, both immunotherapy and

immunochemotherapy could boost the efficacy of drugs (62, 132).

Future prospective of immunotherapy and
immunochemotherapy in VL elimination

Leishmaniasis is a severely neglected tropical disease with

high mortality and morbidity rates especially in underdeveloped

regions. The potential chemotherapeutic agents suffer from

certain pitfalls such as parenteral administration, poor patient

compliance, high dose, toxic side effects, and development of

resistance (138). Regulation of certain co-stimulatory molecules,

chemokines or chemokine receptor agonists, and costimulatory

and cell signaling pathways has been known to reduce parasitic

burden in Leishmania infection models. Therefore, focusing on

the mechanism of host immune evasion by the parasite offers

potential targets for immunotherapy. Such strategies aiming

at enhancing the efficacy of chemotherapeutic agents with

specific immunomodulators could serve as promising targets for

immunochemotherapy (139). Moreover, immunochemotherapy

can elicit an immune response clearing infection more efficaciously

and providing more comeback trial possibility of recovery in

patients. The current immuno-chemotherapies have shown

a synergistic effect with antimonials which are known to

show resistance in the Indian population. Therefore, future

studies should be directed at the use of current first-line

drugs such as AmB, and warrants further investigations as

an immunochemotherapeutic. New research opportunities

could advance the development of novel drug delivery systems

encapsulating potential immunomodulators with and without

drugs leading to the propagation of protective immunity (140).

Nonetheless, the substantial cost of immunotherapy clearly

necessitates the significance of new drug discovery platforms

and pharmacological studies which are not only stable at

tropical temperatures but can be administered in a patient-

complaint manner. Although licensed vaccines are present,

the scope for improvement remains undeterred which in

future could lead to the development of safe and affordable

vaccines (141).

Current limitations of immunotherapy

A single dose of IL-27 or IL-10 monoclonal antibody

enhanced macrophage activation, leading to an enhanced parasitic

killing (56%). However, combination treatment with both anti-

IL-27 and anti-IL-10 did not augment the immunotherapeutic

antileishmanial effects (63). Combinations of immunomodulators

reduce the parasite burden and at the same time accelerate self-

cure. Although, much of the area is still straggling due to the

absence of robust clinical studies (64). Furthermore, antibody

neutralization of TGF-β augments IFN-γ production and hence

enhances Th1-associated (IL-2) macrophage activation, nitric oxide

production, and cytotoxic T lymphocyte proliferation, leading

to the cure of VL independently of Th2-type cytokines (IL-

4) (142). Furthermore, this hypothesis needs to be explored

further to be used as a distinct possibility for VL treatment.

Inhibition of IL-27 imposes negative regulates on IL-17 production

which leads to disease exacerbation. Additionally, the inhibition

of IL-10 contributes to the regression of VL (62). Treatment

with IFN alone was only marginally effective, and conversely,

it was more effective in combination with chemotherapy in VL

patients (142). The current immunochemotherapy has shown a

synergistic effect with antimonials which are known to show

resistance in the Indian population. Treatment with antimonials

alone did not show any difference among Indian patients.

However, few patients were cured when treated with the most

efficient immunochemotherapy. Therefore, future studies should

be directed at the use of first-line drugs such as AmB, and

warrants further investigations as an immunochemotherapeutic

agent (140). A rudimentary understanding of detailed pathways

and precise mechanisms underlying pathogenesis is still unclear.

Translating experimental results into treatment strategies serves as

a major hurdle due to the difference in immunohistopathologies

of experimental models from humans. Furthermore, even though

immunotherapy has given promising antileishmanial results

without any severe toxic side effects, the immunomodulators

might exacerbate an impervious immune response and pose

a higher risk of sensitization along with the development of

allergic reactions. Finally, the prophylactic investigation into these

treatment strategies remains unresolved (143).
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Conclusion

The conventional and cost-effective therapeutic options for

VL suffer from several limitations encompassing from being

toxic to having adverse drug reactions (ADRs). Furthermore,

the use of an effective lipid-based formulation (AmBisome) is

confined mainly due to its high cost and instability in tropical

conditions. To surmount these limitations, one best alternative

approach could be an extensive understanding of pathogenesis

and immunological events that ensue during VL infection, vital

for the development of immunotherapeutic strategies against

VL. Immunotherapy alone or its combination with conventional

anti-leishmanial chemotherapeutic elixir (immunochemotherapy)

could warrant an effective therapeutic option in future. However,

such attempts need an explicit outlook toward the standardization

procedures, and in vivo animal models could further help to

understand the immunological footing and confer the possibility

to translate it to clinical settings.
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