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Introduction: Antibiotic effects on gut bacteria have been widely studied, but very 
little is known about the consequences of such treatments on the mycobiota, the 
fungal part of the microbiota and how the length of administration influences both 
microbiota. Here, we examined the effect of antibiotics (ATB) on the composition 
of bacterial and fungal microbiota and how the administration of Saccharomyces 
boulardii CNCM I-745 influences both microbiota.

Methods: In order to get closer to the human microbiota, the mice used in this 
study were subjected to fecal microbiota transfer (FMT) using human feces and 
subsequently called human microbiotaassociated (HMA) mice. These mice were 
then treated with amoxicillinclavulanate antibiotics and supplemented with S. 
boulardii during and after ATB treatment to understand the effect of the yeast 
probiotic on both bacterial and fungal microbiota. Bacterial and fungal microbiota 
analyses were done using 16S and ITS2 rRNA amplicon-based sequencing.

Results: We showed that the administration of S. boulardii during ATB treatment 
had very limited effect on the fungal populations on the long term, once the 
yeast probiotic has been cleared from the gut. Concerning bacterial microbiota, 
S. boulardii administration allowed a better recovery of bacterial populations after 
the end of the ATB treatment period. Additionally, 16S and ITS2 rRNA sequence 
analysis revealed that 7 additional days of S. boulardii administration (17 days in 
total) enhanced the return of the initial bacterial equilibrium.

Discussion: In this study, we provide a comprehensive analysis of how probiotic 
yeast administration can influence the fungal and bacterial microbiota in a model 
of broad-spectrum antibiotherapy.

KEYWORDS

microbiota, mycobiota, antibiotics, Saccharomyces boulardii CNCM I-745, treatment

Background

The gut microbiota has been widely studied for the last two decades, and the 
development of next-generation sequencing (NGS) has allowed the identification of its 
pivotal role in various pathologies in recent years. Indeed, the gut microbiota has been 
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identified as a cofactor in diseases of the digestive tract, such as 
inflammatory bowel disease (IBD) and colorectal cancer (CRC), as 
well as in diseases indirectly related to the gut, such as allergies, 
diabetes, obesity and liver diseases (1–8).

Probiotics are living, active organisms that have beneficial 
effects on the health of the host and can be found in fermented 
foods, dietary supplements, and even drugs (9). They can be used 
to improve gastrointestinal disorders, such as diarrhea (infectious 
and antibiotic-associated), necrotizing enterocolitis, Clostridioides 
difficile infection, IBD (ulcerative colitis and Crohn’s disease) and 
irritable bowel syndrome (IBS) (10, 11). There are several probiotic 
products, most of which belong to the group of lactic acid-
producing bacteria, but very few are yeasts. The few that are 
available belong to the Saccharomyces genus (e.g., S. cerevisiae and 
S. boulardii). However, S. boulardii CNCM I-745 was the first one 
to be  discovered and is widely used throughout the world. 
Discovered a century ago in 1920, S. boulardii has been shown to 
prevent and reduce the occurrence of diarrhea associated with 
antibiotic treatment (12–14). It also exerts protective properties in 
the treatment of Clostridioides difficile and Helicobacter infections 
(15–17). It has also been identified as protective in mouse models 
of IBD and IBS (18, 19).

Antibiotics are used in humans to treat a large number of 
infections with rather high efficacy. However, they also disrupt 
intestinal microorganisms, and dysbiosis can be detected long after 
the end of antibiotic treatment (20). The effects of antibiotics on 
the bacterial microbiota are particularly well described, but very 
little is known about their impact on the fungal microbiota 
(mycobiota).

Kabbani and colleagues studied the effect of the combination of 
Saccharomyces boulardii CNCM I-745 and amoxicillin-clavulanate on 
the gut microbiota in humans and reported a milder effect on 
microbiota shifts in the presence of S. boulardii, including less 
overgrowth of Escherichia and a reduction in antibiotic-associated 
diarrhea (13). However, this study, like the majority of research on the 
gut microbiota, focused solely on the bacterial component, while 
other members of the gut microbiota, such as fungi, viruses and 
archaea, were neglected.

The objectives of this study were to evaluate the effects of an 
antibiotic (amoxicillin-clavulanate – ATB) and the probiotic 
Saccharomyces boulardii CNCM I-745 on the gut fungal and bacterial 
microbiota in HMA mice. We chose the amoxicillin-clavulanate since 
it is one of the most commonly used antibiotics in the primary care 
setting (21). We  also examined the impact of S. boulardii 
administration after the end of ATB treatment. S. boulardii was able 
to attenuate the dysbiosis associated with ATB when administered 
during treatment and maintain a higher diversity when administered 
continuously during and after ATB treatment.

Therefore, this study will help us to understand the effect of 
S. boulardii CNCM I-745 administration during ATB treatment on 

both bacterial and fungal microbiota to improve medical practices in 
the future.

Materials and methods

Mice

Six-week-old female C57BL/6 J mice were purchased from Janvier 
Laboratory (Le Genest, France) and used 1 week after delivery. 
Animals were kept in humidity- and temperature-controlled rooms 
under a 12 h light–dark cycle and had access to a chow diet and water 
ad libitum. Mice were grouped by types of treatment in cages with a 
maximum of 4 mice per cages as follow (Figure 1):

Group (Grp) 1: HMA mice treated with the Vehicle for 16 days, 
n = 8; Grp 2: HMA mice treated with the ATB for 10 days, then Vehicle 
for the following 6 days, n = 8; Grp  3: HMA mice treated with 
S. boulardii for 23 days, then Vehicle for the following 7 days, n = 8; 
Grp 4: HMA mice treated with the ATB and S. boulardii for 10 days, 
then Vehicle for the following 13 days, n = 8; and Grp 5: HMA mice 
treated with the ATB and S. boulardii for 10 days, then S. boulardii for 
the following 13 days, then Vehicle for the following 7 days, n = 8. 
Depending on the question the feces from each group were collected 
at different time points identified in each figure. As Grp  4 and 5 
received the exact same treatment till day 10 (ATB plus S. boulardii), 
the 4 cages of Grp 4 and 5 were identical for our analysis till day 10. 
Considering this, we decided to increase the size of the group treated 
with ATB and S. boulardii at day 10 from 8 to 16 by using all mice 
from Grp 4 and Grp 5 collected in all 4 cages.

Every experiment was repeated two times, so a total of 40 mice 
were used in the results presented in this study but 80 were used for 
the repetition of the experiments. All experiments were performed in 
accordance with the ethics committee “Comité d’Ethique en 
Experimentation Animale” (COMETHEA C2EA – 45, Jouy en Josas, 
France).

Fecal microbiota transfer

Mice received feces from a healthy donor as previously described 
(22). Briefly, feces from humans were collected and immediately 
stored at 4°C in an anaerobiosis generator (Genbox, Biomérieux, 
Capronne, France) to favor the preservation of anaerobic bacteria. 
Samples were processed within 24 h in a Coy chamber. The feces were 
rapidly diluted 100-fold in brain heart infusion (BHI, Becton 
Dickinson, Franklin Lakes, United  States) supplemented with  
0.5 mg/mL L-cysteine (Sigma–Aldrich, St. Louis, MO, United States) 
and 20% skim milk (Becton Dickinson, Franklin Lakes, United States) 
(vol/vol) and stored in aliquots at −80°C. This ready-to-use fecal 
suspension was used for FMT to the mice.

Mice were fasted for 1 h and then subjected to bowel cleansing by 
oral-gastric gavage with PEG (polyethylene glycol, Macrogol 4,000, 
Fortrans, Ipsen Pharma, France). Bowel cleansing with PEG was 
performed only once. 4 hours later, mice received human feces by oral 
gastric gavage (350 μL of resuspended feces prepared as described 
above). Mice were then allowed free access to food and water. FMT 
was repeated once a week for 3 weeks before the antibiotic was given 
by oral gavage without any PEG treatment.

Abbreviations: ANOVA, analysis of variance; ATB, antibiotic; CRC, colorectal cancer; 

FMT, fecal microbiota transfer; Grp, group; HMA, human microbiota-associated; 

IBD, inflammatory bowel disease; IBS, irritable bowel syndrome; LDA, linear 

discriminant analysis; NaCl, sodium chloride; NGS, next-generation sequencing; 

PCoA, principal coordinates analysis; PEG, polyethylene glycol; S. boulardii, 

Saccharomyces boulardii; SEM, standard error of the mean.
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Antibiotic treatments and gavage with 
Saccharomyces boulardii CNCM I-745

Amoxicillin-clavulanate (5,1, 150 mg/kg, Sandoz, Bale, 
Switzerland) was resuspended in NaCl and administered to mice daily 

by intragastric gavage for 10 days. Concentration of the mice ATB 
treatment was determined using the quantity per kilogram prescribed 
to human.

Saccharomyces boulardii CNCM I-745 (Biocodex, Gentilly, 
France) was used in this study. Lyophilized yeast was resuspended in 

A

B C

D E

FIGURE 1

Effect of Saccharomyces boulardii supplementation during antibiotic treatment on the mycobiota. (A) Setup of the entire experiment to decipher the 
effect of the yeast probiotic S. boulardii on the fungal and bacterial microbiota after antibiotic treatment (ATB). Group (Grp) 1: HMA mice treated with 
the Vehicle for 16  days, n  =  8; Grp 2: HMA mice treated with the ATB for 10  days, then Vehicle for the following 6  days, n  =  8; Grp 3: HMA mice treated 
with S. boulardii for 23  days, then Vehicle for the following 7  days, n  =  8; Grp 4: HMA mice treated with the ATB and S. boulardii for 10  days, then Vehicle 
for the following 13  days, n  =  8; and Grp 5: HMA mice treated with the ATB and S. boulardii for 10  days, then S. boulardii for the following 13  days, then 
Vehicle for the following 7  days, n  =  8. (B–E) Human microbiota-associated (HMA) mice treated with the ATB or ATB plus S. boulardii for 10  days: Grp 2 
“ATB” n  =  8; Grp 4 and 5 “ATB  +  S. boulardii” n  =  16 (Grp 4 n  =  8, Grp 5 n  =  8), the experiment was performed 2 times. (B) Experimental design for the 
administration of the ATB and probiotic over 10  days. (C) α–Diversity of the fungal microbiota (ITS2 rRNA) in the fecal microbiota, described by 
observed species and Shannon and Simpson indexes. (D,E) Taxa selected with the differential abundance analysis based on the negative binomial 
distribution (DESeq2) with padj <0.05.
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Vehicle (60 mg/day/mouse) and directly administered by 200 μL 
intragastric gavage during and after the ATB treatment. The control 
group was administered 200 μL of Vehicle daily.

Fecal samples collection

Fecal samples were collected in the morning and frozen for 
microbiota analysis. Mice were individually placed in a sterile 
container to defecate and fecal pellets were collected using sterile tips 
and placed in a sterile 1.5 mL tube for immediate freezing in dry ice. 
All samples were stored at −80°C until use.

Fecal DNA extraction

Fecal total DNA was extracted from weighed content samples as 
previously described, with modifications (23). After nucleic acid 
precipitation with isopropanol, DNA suspensions were incubated 
overnight at 4°C and centrifuged at 20,000 × g for 30 min. The 
supernatants were transferred to a new tube containing 2 μL of RNase 
(RNase A, 10 mg/mL; EN0531; Fermentas, Villebon sur Yvette, 
France) and incubated at 37°C for 30 min. Nucleic acids were 
precipitated by the addition of 1 mL of absolute ethanol and 50 μL of 
3 M sodium acetate and centrifuged at 20,000 × g for 10 min. The DNA 
pellets were washed with 70% ethanol 3 times, dried and resuspended 
in 100 μL of Tris-EDTA (TE) buffer (10 mM Tris–HCl, 1 mM EDTA, 
adjusted pH 8).

The DNA suspensions were stored at −20°C for real-time qPCR 
analysis of the 16S or ITS2 rRNA sequences analyses.

16S and ITS2 rRNA sequencing

Bacterial diversity was determined for each sample by targeting a 
portion of the ribosomal genes. PCR was performed to prepare 
amplicons using V3-V4 oligonucleotides (primers PCR1F_460: 
5′-CTTTCCCTACACGACGCTCTTCCGATCTACGGRAGGCAG 
CAG-3′ and PCR1R_460: 5′-GGAGTTCAGACGTGTGCTCTT 
CCGATCTTACCAGGGTATCTAAT CCT-3′) (24–26). Amplicon 
quality was verified by gel electrophoresis, and samples were sent to 
the @BRIDGe platform for sequencing on an Illumina MiSeq 
(Illumina, San Diego, CA, United States).

A similar approach was used for fungal microbiota using the 
primers ITS2 (sense) 5′-GTGARTCATCGAATCTTT-3′ and 
(antisense) 5′-GATATGCTTAAGTTCAGCGGGT-3′ and the 
optimized and standardized ITS2 rRNA-amplicon-library preparation 
protocol (Metabiote, GenoScreen, Lille, France).

16S and ITS2 rRNA sequence analysis

The 16S rRNA sequences were demultiplexed and quality 
filtered using the QIIME version 2.1.0 software package (27). The 
sequences were then assigned to ASVs (amplicon sequence variant) 
using the DADA2 algorithm (28) with a 97% pairwise identity 
threshold and classified taxonomically using the SILVA reference 

database (version 13.8) for bacteria (29). For the ITS2 rRNA 
sequences, data were processed using the FROGS pipeline (30) for 
sequence quality control, and filtering and affiliation of taxa was 
performed with the UNITE ITS database (version 8_2) (31) using 
the FROGS guidelines for ITS data.1 Rarefaction analysis was 
performed and used to compare the relative abundance of OTUs 
across samples. α-diversity was estimated using the Shannon 
diversity index or the number of observed species. β-diversity was 
measured using the Jaccard distance matrix and was used to build 
principal coordinates analysis (PCoA) plots. Using these tools, 
we  did not observe any cage effect in our different sets of 
experiments. Differential abundance analysis based on the negative 
binomial distribution (DESeq2) algorithm was used to identify taxa 
that were specific to the treatment (32). The raw sequence data were 
deposited in the SRA database from the NCBI under the following 
accession numbers (PRJNA896895).

Statistical analysis

GraphPad Prism version 7 (San Diego, CA, United States) was 
used to perform all analyses and prepare graphs. For all data displayed 
in graphs, the results are expressed as the mean ± SEM (n = 7 to 12 per 
group). For comparisons between two groups, Student’s t test for 
unpaired data was used. For comparisons among more than two 
groups, one-way analysis of variance (ANOVA) and a post hoc Tukey 
or Dunnett test were used. For all statistical tests, differences with a p 
value less than 0.05 were considered statistically significant: *p < 0.05, 
**p < 0.01, ***p < 0.001. Statistical significance of sample grouping for 
β-diversity analysis was performed using Permanova method 
(999 permutations).

Results

The evaluation of the impact of the yeast probiotic on the fungal 
and bacterial microbiota after ATB treatment was assessed using a 
complex setup of in vivo experiments. The complete setup is presented 
in Figure 1A with 5 different groups of 8 mice each. However, for 
analysis purposes we did not analyze all timepoints but we choose to 
focus on specific time points in order to decipher the impact of each 
treatment on both fungal and bacterial microbiota. At these specific 
time points feces from mice of the selected treated groups were 
collected and the microbiota composition analyzed. The fungal and 
bacterial microbiota analyses are separately presented as they were 
impacted in different manners.

Saccharomyces boulardii CNCM I-745 
administration do not affect the fungal 
population on the long term

As the first step of characterization of the yeast probiotic effects 
on the mycobiota on ATB treated mice, we evaluated the effect of 

1 http://frogs.toulouse.inra.fr/
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Saccharomyces boulardii CNCM I-745 administration on the 
mycobiota of mice treated for 10 days with ATB by sequencing the 
ITS2 region of DNA from fecal samples (Figure 1B). We chose to 
study HMA mice to help further understand fungal and bacterial 
interactions within the human gut microbiota. Daily administration 
of yeast biased the study of α- or β-diversity because the constant 
and very high levels of S. boulardii skewed the ITS2 rRNA analyses 
and potentially masked the modifications of other taxa. As expected, 
administration of S. boulardii during ATB treatment increased the 
levels of the Saccharomycetaceae family and reduced the α-diversity 
of the fungal community (Figure 1C) because only one species was 
in high abundance (Figure 1D). Using the DESeq2 R package for 
differential analysis, we identified 6 families that were significantly 
impacted by S. boulardii: (p value adjusted <0.05): Atheliaceae, 
Debaryomycetaceae, Erysiphaceae, Hypocreales, Pleosporaceae and 
Tremellaceae. However, while the higher relative abundance cannot 
be contested for Tremellaceae, the reduced relative abundance could 
be due only to the over-representation of S. boulardii in the total 
sequences. Additional quantitative real time PCR or CFU would 
be necessary for the absolute abundance characterization in order to 
account for actual decrease of fungi families. Nevertheless, 
S. boulardii slightly increased the levels of the Tremellaceae family 
(Figure 1E) and seemed to contained the development of five specific 
families that would need further investigation using 
absolute quantification.

In an attempt to see the effect of S. boulardii administration 
without the cofounding effect of the gavage with S. boulardii 
we compared the fungal microbiota of mice under antibiotic treatment 
with or without supplementation with S. boulardii but 1 week after the 
discontinuation of the S. boulardii administration 
(Supplementary Figure S1A). In this context, α-and β-diversity 
analyses did not show any statistical differences as well as the specific 
analysis using DesEQ2 statistical tools (Supplementary Figure S1B) 
suggesting no long-term effect of the yeast probiotic supplementation 
on the fungal microbiota.

One week after stopping all the treatments, 
the mycobiota returned to equilibrium

Finally, with the aim of describing the evolution of the mycobiota 
when the patient had stopped his medication, we  examined the 
composition of the mycobiota 1 week after all treatments were 
stopped. We  performed ITS rRNA sequencing of mouse feces 
without S. boulardii administration at D16, 1 week after the end of 
antibiotic therapy, and with S. boulardii administration at D30, 1 
week after the end of yeast supplementation (Figure 2A). We were 
then able to analyze α- and β-diversities, as it is known that 
S. boulardii cannot become established in the human gut and is 
cleared within 24 to 48 h (33). Moreover, when administered daily 
to mice and then stopped, the yeast is undetectable after 1 week (34). 
The effect of S. boulardii administration 1 week after the end of 
supplementation showed a slight and nonsignificant increase in 
α-diversity (Shannon index) compared with mice that did not 
receive S. boulardii treatment (Figure 2B). An analysis of β-diversity 
showed no distinct clusters (Figure 2C), meaning that the mycobiota 
composition 1 week after the end of all treatments was similar 
between all groups.

Saccharomyces boulardii significantly 
reduced the levels of several bacterial 
families enhanced by antibiotic treatment

While several studies have described the effects of ATB treatment 
and S. boulardii CNCM I-745 on gut bacterial microbiota composition 
(13), the longitudinal evaluation of S. boulardii administration during 
and after ATB treatment has rarely been reported and not in detail. 
Here, we followed different courses of treatment and analyzed how 
S. boulardii impacts the bacterial microbiota.

ATB treatment induced global changes in the bacterial microbiota, 
with a decrease in many commensal bacterial families, but these 
ecosystem modifications also favored the development of several other 
antibiotic-resistant bacteria favored by the release of many niches 
from sensitive bacteria. Hence, the families Clostridia vadin BB60 
group, Enterobacteriaceae, Enterococcaceae, Monoglobaceae, 
Peptostreptococcaceae and Tannerellaceae were significantly induced 
after ATB treatment (Supplementary Figures S2A,B).

Interestingly, when S. boulardii was administered during ATB 
treatment (Figure 3A), it increased the number of observed species 
(Figure 3B) and the α-diversity (Shannon index) compared with mice 
that only received ATB treatment (Figure 3C). It also induced a global 
new composition of the bacterial microbiota, as illustrated by the clear 
clustering of the groups with or without S. boulardii (Jaccard index, p 
value = 0.001) (Figure 3D). Differential analysis using the DESeq2 tool 
showed that S. boulardii was able to reduce the levels of all the families 
increased by ATB treatment. Specifically, it reduced the levels of the 6 
families significantly increased by ATB treatment: Clostridia vadin 
BB60 group, Enterobacteriaceae, Enterococcaceae, Monoglobaceae, 
Peptostreptococcaceae and Tannerellaceae (Figure 3E). S. boulardii was 
able to increase the abundances of the families Acidaminococcaceae, 
Akkermansiaceae, Atopobiaceae, Christensenellaceae, Lachnospiraceae, 
Marinifilaceae, Muribaculaceae, Oscillospiraceae, Rikenellaceae, 
Ruminococcaceae and Sutterellaceae (Figure 3F). Taken together, these 
data confirm a strong influence of the coadministration of S. boulardii 
CNCM I-745 during ATB treatment on the bacterial ecosystem, with 
the capacity to reduce the imbalance induced by ATB treatment and 
create an alternative bacterial ecosystem with the enhancement of 
other families.

Continuous Saccharomyces boulardii 
administration for two weeks after 
antibiotic treatment favors the expansion 
of commensal bacteria but contains the 
development of antibiotic-resistant 
bacteria

As with the mycobiota, we evaluated the consequences for the 
bacterial community when S. boulardii administration was continued 
for one (Supplementary Figure S3A) or two (Figure 4A) weeks after 
the end of ATB treatment. With regards to the microbiota analysis, 
we  did not identify any clear improvement when S. boulardii 
administration was continued for only 1 week 
(Supplementary Figures S3B–D), except for an additional decrease in 
the families Clostridia vadinBB60 and Tannerellaceae 
(Supplementary Figure S3E). Remarkably, when administered for 2 
weeks after the end of ATB treatment (23 days in total), S. boulardii 
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FIGURE 2

One week after stopping all the treatments, the mycobiota returned to equilibrium. (A–C) HMA mice treated (ATB _ Vehicle) or not (Vehicle) with the 
ATB for 10  days and S. boulardii for 30  days with (ATB  +  S. boulardii _ Vehicle) or without the ATB (S. boulardii _ Vehicle). Grp 1 “Vehicle” n  =  8; Grp 2 
“ATB _Vehicle” n  =  8; Grp 3 “S. boulardii _Vehicle” n  =  8; Grp 5 “ATB  +  S. boulardii_Vehicle” n  =  8, the experiment was performed 2 times. 
(A) Experimental design for the administration of the ATB and probiotic over 30  days. (B) α–Diversity of the fungal microbiota (ITS2 rRNA) in the fecal 
microbiota after ATB and probiotic treatments, described by the Shannon index. (C) β-Diversity. Principal coordinates analysis of Jaccard distances with 
each sample colored according to the treatment. Groups were compared using Permanova method.
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facilitated an increase in the number of observed species (Figure 4B) 
and the α-diversity (Shannon index) (Figure 4C) compared with mice 
that received S. boulardii only during ATB treatment. Similar to that 

after 10 and 16 days, the microbiota were globally different after 
23 days and clustered separately in the β-diversity analysis (Jaccard 
index) (Figure 4D). Again, S. boulardii maintained a decrease in the 

A

D
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B C

FIGURE 3

Effect of Saccharomyces boulardii supplementation during antibiotic treatment on the bacterial microbiota. (A–F) HMA mice treated with the ATB or 
ATB and S. boulardii (ATB  +  S. boulardii) for 10  days. Grp 2 “ATB” n  =  8; Grp 4 and 5 “ATB  +  S. boulardii” n  =  16 (Grp 4 n  =  8, Grp 5 n  =  8), experiment was 
done 2 times. (A) Experimental design for the administration of ATB and probiotics over 10  days. (B,C) α–Diversity of the bacterial microbiota (16S rRNA) 
in the fecal microbiota, described by (B) observed species and (C) Shannon indices. (D) β-Diversity. Principal coordinates analysis of Jaccard distances 
with each sample colored according to the treatment. Groups were compared using Permanova method. (E,F) Taxa selected with the differential 
abundance analysis based on the negative binomial distribution (DESeq2) with padj <0.05 (E) decreased or (F) increased by the probiotic treatment 
unless otherwise indicated (n.s.: no significant differences).
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FIGURE 4

Effect of Saccharomyces boulardii supplementation on the bacterial microbiota for 2 weeks after antibiotic therapy. (A–F) HMA mice treated with the 
ATB and S. boulardii for 10  days and then no treatment for 2 weeks (ATB  +  S. boulardii _Vehicle) or two more weeks of S. boulardii (ATB  +  S. boulardii_ S. 

(Continued)
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levels of Clostridia vadinBB60 group and Tannerellaceae families and 
an increase in the levels of Lachnospiraceae and Oscillospiraceae 
(Figures 4E,F). With respect to the levels of the other families with 
antibiotic-resistant bacteria, Enterobacteriaceae, Enterococcaceae, 
Monoglobaceae, and Peptostreptococcaceae, S. boulardii administration 
only during ATB treatment seemed to be sufficient to maintain the 
low levels of these bacteria.

One week after stopping all treatments, 
Saccharomyces boulardii facilitated the 
restoration of eubiosis

Finally, we examined the composition of the bacterial microbiota 
1 week after the cessation of all treatments (Figure 5A). As expected, 
α-diversity, evaluated by observed species or the Shannon index, was 
reduced by ATB treatment. This reduction was prevented by 
S. boulardii probiotic treatment (Figures 5B,C).

Interestingly, β-diversity analysis showed that the microbiota of 
HMA mice untreated or treated only with S. boulardii 1 week after the 
end of treatment were very similar to each other (Figure 5D), suggesting 
that if S. boulardii had influenced the bacterial microbiota by itself, this 
effect did not last. However, these two clusters were very different from 
the cluster of microbiota exposed to ATB only. Consequently, even after 
1 week without the ATB, the bacterial microbiota was still profoundly 
different from the initial microbiota. Remarkably, if the HMA mice were 
treated with S. boulardii during and after ATB treatment, the newly 
formed microbiota differed clearly not only from the microbiota only 
treated with ATB but also from the starting untreated microbiota, 
suggesting an intermediate state reached with S. boulardii  
administration.

Discussion

Our objective was to study the effects of supplementation with the 
probiotic Saccharomyces boulardii CNCM I-745 during ATB treatment 
on both the bacterial and fungal gut microbiota. Indeed, no study has 
focused on the effect of this probiotic on the mycobiota, whereas it is 
widely used in human health. It was thus necessary to describe more 
precisely the impact of its administration on the fungal populations of 
the gut microbiota.

Our observations were made in vivo after FMT with feces from a 
healthy human donor. The FMT technique transfers a fecal suspension 
from a healthy donor after intestinal cleansing with polyethylene glycol, 
according to the published protocol (22). This technique allowed the 
transfer of part of the human microbiota without using germ-free mice 
that are immunologically immature or antibiotics, which for obvious 
reasons could not be  used in our study on the effect of ATB (22). 
Therefore, this technique allowed us to work with a gut microbiota 
closer to humans than simple conventional mice.

S. boulardii CNCM I-745 is widely used in medicine to prevent and 
reduce the occurrence of diarrhea associated with ATB treatment (14). Its 
impact on the composition of the bacterial gut microbiota during ATB 
therapy has been studied in various contexts in humans (13). In the 
present study, we provide a comprehensive characterization of the change 
in both fungal and bacterial gut microbiota in human microbiota-
associated mice triggered by supplementation with S. boulardii during 
and after ATB therapy with amoxicillin-clavulanate.

The first part of the study investigated the benefit of S. boulardii on 
mycobiota alterations during ATB therapy using fecal ITS rRNA 
sequencing. ITS rRNA data analysis was hampered by the daily oral 
gavage with yeast, which biased the prevalence analysis due to an 
overwhelming quantity of Saccharomyces in one group. However, using 
a differential abundance analysis tool (DESeq2) examining the levels of 
specific families that were modified, we  were able to show that 
S. boulardii, when given during ATB treatment, increased the abundance 
of the Tremellaceae family. The genus Tremella, rich in polysaccharides, 
protein, dietary fiber and vitamin D, has been used for centuries in 
Chinese medicine to treat chest congestion, asthma and constipation; to 
balance blood sugar levels and cholesterol; and to reduce inflammation 
(35). Polysaccharides from this genus have been described as potent anti-
inflammatory molecules (36). While the relative abundance decreases of 
Atheliaceae, Debaryomycetaceae, Erysiphaceae, Hypocreales and 
Pleosporaceae families was clear and probably due to the gavage with 
S. boulardii, the absolute quantification would be needed to conclude on 
the effect on these specific families. Overall, these data suggest that yeast 
supplementation during ATB treatment do modify the fungal population 
but there is a need for alternative technics to completely characterize 
these modifications. One week after the end of all treatments, the 
composition of the mycobiota was similar between all groups. These 
results advocate that the probiotic yeast S. boulardii CNCM I-745 
administration might slightly affect the fungal population but that the 
effects do not last long after the end of probiotic treatment.

The second part of this study investigated the beneficial effect 
of S. boulardii on alterations in the bacterial microbiota during ATB 
therapy using fecal 16S rRNA sequencing. Administration of 
S. boulardii can have a slight impact on the bacterial composition 
of healthy subjects (37). When administered during ATB treatment, 
S. boulardii reduced the levels of the families Clostridia vadin BB60 
group, Enterobacteriaceae, Enterococcaceae, Monoglobaceae, 
Peptostreptococcaceae and Tannerellaceae. These families were 
indeed favored in the gut after ATB treatment due to their antibiotic 
resistance to amoxicillin-clavulanate and the release of niches, 
particularly the Clostridia vadin BB60 group and Enterobacteriaceae 
families, given the high levels in mice on ATB without S. boulardii. 
Among the Enterobacteriaceae family, Escherichia coli, Klebsiella, 
Salmonella and Shigella species are responsible for diarrhea, fever 
and emerging antibiotic resistance (38). Enterococcus faecalis and 
E. faecium can cause systemic infections and result in urinary tract, 
intra-abdominal, pelvic and soft tissue infections (39, 40). 
Peptostreptococcus is associated with CRC risk, as its levels are 

boulardii). Grp 4 “ATB  +  S. boulardii_Vehicle” n  =  8; Grp 5 “ATB  +  S. boulardii S. boulardii” n  =  8, the experiment was performed 2 times. (A) Experimental 
design for the administration of the ATB and probiotic over 23  days. (B,C) α–Diversity of the bacterial microbiota (16S rRNA) in the fecal microbiota, 
described by (B) observed species and (C) Shannon indices. (D) β-Diversity. Principal coordinates analysis of Jaccard distances with each sample 
colored according to the treatment. Groups were compared using Permanova method. (E,F) Taxa selected with the differential abundance analysis 
based on the negative binomial distribution (DESeq2) with padj <0.05 (E) decreased or (F) increased by the probiotic treatment.
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FIGURE 5

One week after stopping all treatments, S. boulardii facilitated the restoration of eubiosis. (A–D) HMA mice treated (ATB _ Vehicle) or not (Vehicle) with 
the ATB for 10  days and S. boulardii for 30  days with (ATB  +  S. boulardii _ Vehicle) or without the ATB (S. boulardii _ Vehicle). Grp 1 “Vehicle” n  =  8; Grp 2 
“ATB_Vehicle” n  =  8; Grp 3 “S. boulardii_Vehicle” n  =  8; Grp 5 “ATB  +  S. boulardii_Vehicle” n  =  8, the experiment was performed 2 times. (A) Experimental 
design for the administration of the ATB and probiotic over 30  days. (B,C) α–Diversity of the bacterial microbiota (16S rRNA) in the fecal microbiota, 
described by (B) observed species and (C) Shannon indices. (D) β-Diversity. Principal coordinates analysis of Jaccard distances with each sample 
colored according to the treatment. Groups were compared using Permanova method.
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significantly higher in CRC patients than in controls (41). On the 
other hand, the probiotic yeast was associated with an increase in the  
levels of Acidaminococcaceae, Akkermansiaceae, Atopobiaceae, 
Christensenellaceae, Lachnospiraceae, Marinifilaceae, 
Muribaculaceae, Oscillospiraceae, Rikenellaceae, Ruminococcaceae 
and Sutterellaceae families compared to mice that did not receive 
S. boulardii during ATB therapy. The probiotic Akkermansia 
muciniphila has been reported to reduce the risks of diabetes and 
obesity (42). The abundance of the Christensenellaceae family, 
inversely related to host body mass index and thus metabolic health, 
has been associated with human longevity and may also play a role 
in obesity and IBD (43). Additionally, with regard to obesity, 
Muribaculaceae appeared to be overrepresented in a group of mice 
fed a high-fat diet (44). The Lachnospiraceae family has been widely 
studied due to its ability to produce short-chain fatty acids and has 
therefore been associated with reduced severity of several diseases, 
such as IBD and CRC. Blautia hansenii in particular has been 
identified as protective in a mouse model of IBD (41, 45). The genus 
Alistipes, belonging to the family Rikenellaceae, is decreased in 
those with liver microbiota-related diseases and IBD and thus may 
play a protective role in the progression of cirrhosis and liver 
fibrosis, as well as colitis and CRC (46). Among the Ruminococcaceae 
family, Faecalibacterium prausnitzii has been particularly studied in 
regards to IBD and has shown anti-inflammatory properties in vitro 
and in vivo (47, 48).

Taken together, these data suggest that the administration of 
S. boulardii CNCM I-745 during ATB treatment helps preserve the 
microbiota from pathogenic bacteria and promotes certain bacteria 
identified as beneficial to host health. When supplementation was 
continued for one to 2 weeks after the end of ATB treatment, the yeast 
continued to maintain a low level of antibiotic-resistant bacteria, almost 
undetectable for the Enterobacteriaceae family, and promote higher levels 
of the family Lachnospiraceae, which is considered beneficial to host 
health. Finally, one week after stopping all treatments, mice that received 
S. boulardii during and after ATB therapy showed an intermediate state, 
promoting a return to eubiosis for the bacterial microbiota. These results 
suggest that S. boulardii should be given during ATB therapy instead of 
immediately after and should be continued after the end of therapy for 
at least 2 weeks. However, it is important to keep in mind that these 
results have been obtained with mice groups of limited size (8 to 12) for 
each time point and some other variations can have been missed or some 
over-evaluated.

In conclusion, it clearly appears that the administration of 
S. boulardii CNCM I-745 during amoxicillin-clavulanate treatment 
has a deep impact on microbial equilibrium. The identification of the 
microorganisms modulated by the yeast probiotic suggests that its use 
during ATB treatment is beneficial in many aspects regarding the 
bacterial microbiota, mostly by promoting beneficial microorganisms 
and keeping the development of deleterious ones at a minimum. In 
addition, prolonging the treatment at the end of ATB therapy extends 
these beneficial effects on the bacterial community.
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