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Ferroptosis is a type of regulated cell death caused by iron overload and lipid

peroxidation, and its core is an imbalance of redox reactions. Recent studies

showed that ferroptosis played a dual role in liver diseases, that was, as a

therapeutic target and a pathogenic factor. Therefore, herein, we summarized the

role of ferroptosis in liver diseases, reviewed the part of available targets, such

as drugs, small molecules, and nanomaterials, that acted on ferroptosis in liver

diseases, and discussed the current challenges and prospects.
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Introduction

Liver disease is a general term for inflammatory and non-inflammatory diseases of the

liver, including hepatitis, cirrhosis, steatosis, liver cancer, and others. It is a common and

extremely harmful disease that adversely affects human health. Currently, the treatment of

end-stage liver disease mainly consists of liver transplantation and symptomatic treatment.

Although the quality of life of patients has been greatly improved, the survival rate is

still unsatisfactory. Therefore, it is necessary to find more effective treatment strategies for

liver diseases.

Ferroptosis is a type of regulated cell death caused by iron overload and lipid

peroxidation, which is distinct from pyroptosis, necrosis, and apoptosis. It is involved

in various metabolic pathways, including iron, glutathione (GSH), and coenzyme Q

metabolism (1). And studies have shown that ferroptosis is associated with the occurrence

and development of liver diseases, including cancer, liver fibrosis, and ischemia-reperfusion

injury (IRI) (1) (Figure 1). The nuclear factor erythroid 2-related factor 2 (Nrf2)- glutathione

peroxidase 4 (GPx4) axis was involved in carbon tetrachloride (CCl4)-mediated acute

liver injury in mice (2). Furthermore, the acyl-CoA synthetase long chain family member

4 (ACSL4)-mediated ferroptosis showed a tumor-promoting role in the progression of

hepatocellular carcinoma (HCC) from liver injury and a tumor-suppressing role in HCC

treatment (3). However, there are still few clinical applications of ferroptosis targets in liver

diseases. Therefore, an in-depth understanding of the ferroptosis mechanism will promote

the development of therapeutics for ferroptosis in liver diseases. The molecular mechanisms

related to ferroptosis have been reviewed by other studies. Thus, herein, we review the role

of ferroptosis in liver diseases and summarize the part of available therapeutic targets for

ferroptosis in liver diseases.
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FIGURE 1

The role of ferroptosis in liver diseases (Some image elements came from Figdraw with permissions).

The role of ferroptosis in liver diseases

Ferroptosis and liver injury

Acute liver injury without any underlying liver diseases

includes drug-induced liver injury, IRI, and liver injury caused by

acute viral infection. Liver injury caused by acetaminophen (APAP)

is a common drug-induced liver injury, and IR-induced liver injury

mainly includes insufficient perfusion injury of the liver caused by

liver transplantation and cardiovascular diseases. A study showed

that ferroptosis initiated APAP-induced liver injury, and ferroptosis

inhibitors, such as ferrostatin-1 and iron chelator deferoxamine,

alleviated APAP-induced liver injury (4). In addition, ferroptosis

involved in IRI-induced liver injury, and HECT, UBA and WWE

domain containing E3 ubiquitin protein ligase 1 (HUWE1)

could antagonize abnormal iron accumulation and ferroptosis to

alleviate IRI-induced liver injury (5). Further research showed that

ferroptosis-related liver injury employed a variety of regulatory

mechanisms, such as exosomes. Mesenchymal stem cells attenuated

ferroptosis in acute liver injury by promoting the stability of

SLC7A11 via exosomes (6). Moreover, exosome-delivered miR-

124-3p and miR-29a-3p from heme oxygenase-1-modified bone

marrow mesenchymal stem cells inhibited ferroptosis to alleviate

IRI in steatotic grafts (7, 8). Although research on liver injury and

ferroptosis has shown promising results, it is mainly at the level

of animal models, and there is a long way to go before clinical

translation. In addition, studies showed that certain necrosis

inhibitors, such as necrostatin-1 (nec1) could also partially inhibit

ferroptosis. Therefore, the interaction between ferroptosis and

other types of cell death needs to be further explored to better

guide ferroptosis treatment strategies. Moreover, inflammatory

cells involved in acute liver injury, and ferroptosis have been

shown to affect the function of inflammatory cells. For example,

the kinase complex mTORC2 promoted longevity of virus-specific

memory CD4+ T cells by inhibiting ferroptosis (9) and ferroptosis

could affect the ability of macrophages to kill intracellular bacteria

(10). Thus, whether and how hepatocytes and inflammatory

cells ferroptosis affect each other during liver injury requires

further research.

Chronic liver injury refers to long-term and chronic damage

to liver function caused by multiple factors, and it is mainly

seen in chronic viral hepatitis, long-term heavy drinking, and

fatty liver. Hepatic stellate cells (HSCs) were rich in iron, which

provided the basis for ferroptosis regulation in cirrhosis (11).

The study also showed that ferroptosis was closely related to

liver cirrhosis. Therefore, elastin and sorafenib treatment could

alleviate liver fibrosis in mice by inducing ferroptosis. In addition,

sorafenib, a well-known ferroptosis inducer, attenuated liver injury

and extracellular matrix accumulation in CCl4-induced fibrotic

livers by reducing SLC7A11 and GPX4 proteins (12). Ferroptosis

affects multiple pathways in liver cirrhosis and is regulated

in multiple ways. For instance, ferroptosis could regulate the

autophagy signaling pathway in HSCs and dihydroartemisinin

attenuated liver fibrosis via m6A methylation-involved ferroptosis

in HSCs (13). The researchers also investigated ferroptosis in

cirrhosis that develops from viral hepatitis. Chen et al. found

that chronic hepatitis B virus and/or hepatitis C virus (HCV)

infection altered iron metabolism and related genes in the liver

(14), and ferroptosis could affect HCV replication and therapeutic

efficacy (15). Moreover, hepatitis B virus X protein (HBx) could

alleviate the cell death of HSCs by inhibiting ferroptosis, thereby

promoting the progression of liver cirrhosis (16). In addition,
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TABLE 1 The part of available ferroptosis inducers and inhibitors in liver disease.

E�ector/reagent Proposed mechanism Liver disease model Reference(s)

Ferroptosis inducers

Ethyl carbamate Inhibiting GSH synthesis and suppressing Nrf2 activation Liver cells (29)

Celastrol Targeting peroxiredoxins and HO-1 Liver fibrosis (30)

Sorafenib HIF-1α/SLC7A11 pathway Liver fibrosis; HCC (12)

Wogonoside SOCS1/P53/SLC7A11 pathway Liver fibrosis (31)

Ellagic acid Impairing the SNARE complexes formation Liver fibrosis (32)

Dihydroartemisinin Regulating the m6A of BECN1 mRNA Liver fibrosis (13)

Acrylamide Antioxidant imbalance of the XCT-GSH-GPX4 signaling

and mitochondrial dysfunction

Liver fibrosis (33)

BECN1 xCT/GPX4 axis Liver fibrosis (34)

HBV X protein (HBx) EZH2 mediated SLC7A11 suppression Acute liver failure (35)

TRIM26 SLC7A11 Ubiquitination Liver fibrosis (36)

Celastrol Targeting peroxiredoxins and HO-1 Liver fibrosis (30)

Corosolic acid Upregulating HERPUD1 HCC (37)

PCDHB14 Downregulating the expression of SLC7A11 HCC (38)

Lenvatinib Fibroblast growth factor receptor-4 inhibition HCC (39)

A multifunctional vanadium-iron-oxide

nanoparticle

Increasing reactive oxygen species (ROS) HCC (40)

COMMD10 Inhibits HIF1α/ ceruloplasmin (CP) loop HCC (41)

Ketamine lncRNA PVT1/miR-214-3p/GPX4 HCC (42)

Dihydroartemisinin Upregulation of CHAC1 expression HCC (43)

Promoting the formation of PEBP1/15-LO (44)

O-GlcNAcylation YAP/TFRC pathway HCC (45)

Quiescin sulfhydryl oxidase 1 Driving EGFR endosomal trafficking and inhibiting NRF2

activation

HCC (46)

Acid-degradable tumor targeted

nanosheets Cu-Hemin-PEG-Lactose

acid

(Cu-Hemin-PEG-LA)

Consuming intracellular glutathione (GSH) content and

increasing the expression of heme oxygenase 1 (HMOX1)

protein

HCC (47)

iRGD with sorafenib-loaded iron-based

metal-organic framework

(MIL-101(Fe)@sor NPs)

Decreasing GPX-4 expression level HCC (48)

Cascaded copper-based metal-organic

framework (MOF)

Modulating glutathione and cyclooxygenase-2 HCC (49)

Erastin NEAT1/miR-362-3p/MIOX axis HCC (50)

RSL3 GPX4 HCC (51)

Aspirin Restricting NF-κB p65-activated SLC7A11 transcription HCC (52)

Auranofin TXNRD1 HCC (53)

Ferroptosis inhibitors

miR-23a-3p ETS1/miR-23a-3p/ACSL4 HCC (21)

C8orf76 Up-regulating SLC7A11 HCC (54)

miR-124-3p Inhibiting prostate six transmembrane epithelial antigen 3

(STEAP3)

Schemia-reperfusion injury in steatotic

grafts

(8)

miR-29a-3p Downregulating the expression of Ireb2 Steatotic liver ischemia-reperfusion

injury

(7)

miR-222 Downregulating the expression of TFRC Liver fibrosis (55)

(Continued)
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TABLE 1 (Continued)

E�ector/reagent Proposed mechanism Liver disease model Reference(s)

Bicyclo Nrf2-GPx4 axis Acute liver injury (2)

Maresin1 Nrf2/HO-1/GPX4 Acute liver injury (56)

Fucoidan Decreased divalent metal transporter 1 (DMT1) and

ferroportin1 (FPN1) expression

Liver injury in rats exposed to alcohol (57)

MCTR1 Promoting NRF2 expression Hepatic ischemia-reperfusion injury (58)

Astaxanthin Nrf2/HO-1 Pathway Acetaminophen-induced liver injury (59)

3,4-dihydroxyphenylethyl alcohol

glycoside

Inhibiting the expression of ERK, HO-1, NLRP3, Caspase1

(p20) and Gasdermin-D and upregulating the expression of

GPX4

Acetaminophen-induced acute liver

failure in mice

(60)

PPARα Directly inducing Gpx4 expression by binding to a PPRE

element within intron 3

Iron overload in mouse liver (61)

Fibroblast growth factor 21 Inducing HO-1 inhibition and NRF2 activation Liver injury and fibrosis (62)

Dehydroabietic acid Keap1/Nrf2-ARE signaling pathway Non-alcoholic fatty liver disease (63)

Niujiaodihuang detoxify decoction Enhancing glutathione synthesis Acute liver failure (64)

G6PD Targeting cytochrome P450 oxidoreductase HCC (65)

α-Enolase 1 (ENO1) Degrading the mRNA of iron regulatory protein 1 HCC (66)

AdipoR1 Nrf2/xCT Pathway HCC (67)

ZNF498 Attenuating the p53 Ser46 phosphorylation HCC (68)

ABCC5 Stabilizing SLC7A11 protein HCC (69)

Rosigliazone ACSL4 Hepatitis; liver Injury; NAFLD; NASH (70–74)

α-tocopherol Oxidation

Deferoxamine Free iron

Debenone, CoQ10 CoQ10

Selenium Selenoproteins

Fer-1 Free radical Hemochromatosis, thalassemia;

NAFLD; NASH

(75–78)

MitoTEMPO

Enoyl coenzyme A hydratase 1 Erk signaling pathway Non-alcoholic steatohepatitis (79)

Thymosin beta 4 Up-regulating GPX4 Non-alcoholic fatty liver (80)

steatosis and steatohepatitis have been confirmed to be related to

ferroptosis, and ferroptosis inhibitors could alleviate liver injury

(17), however, the underlying molecular mechanisms are not

completely known. Therefore, further research is needed to reveal

the role of ferroptosis in steatosis and steatohepatitis. In summary,

although several potential ferroptosis targets, such as P53 and

ELAVL1, have been identified, the associated studies used only

cellular and animal models and the relevant molecular mechanisms

are not completely clear. Therefore, further research efforts

are needed.

Ferroptosis and HCC

HCC is one of the important causes of tumor-related deaths,

and ferroptosis has been recognized as a tumor suppressor.

Therefore, researchers investigated the induction of ferroptosis in

HCC cells. Sorafenib is currently used as the first-line drug for

the treatment of advanced HCC, and studies have shown that it

could induce ferroptosis of HCC cells and thereby inhibit their

proliferation (18). And the efficacy of sorafenib was affected by

intracellular genetic status; for example, Rb-negative hepatoma

cells were more sensitive to sorafenib-induced ferroptosis (19).

Additionally, ferroptosis induced by sorafenib could be reversed by

ferroptosis inhibitors, such as ferrostatin-1 and activation of p62-

Keap1-Nrf2 axis (20, 21). Moreover, sorafenib-induced increase

in metallothionein-1G (MT-1G) promoted the resistance of HCC

cells to sorafenib (22). This suggests that secondary resistance

to sorafenib and gene expression of HCC cells might affect the

therapeutic effect of sorafenib; therefore, mechanisms underlying

the resistance to sorafenib need to be further elucidated. In

addition, ferroptosis-inducing nanoparticles, extracellular lactate

levels, and antipsychotic drug haloperidol also participated in

inducing ferroptosis of HCC cells (23–25). Taken together, seeking
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more effective ferroptosis therapeutic targets and strategies is

beneficial for HCC.

The available targets for ferroptosis in liver
diseases

The present therapeutic strategies for ferroptosis mainly

include genes, RNAs, proteins, small-molecule compounds and

nanomaterials. Ferroptosis related nanomaterials consisted of both

iron-based and non-iron-based nanomaterials, and they induced

ferroptosis by scavenging GSH and inducing the degradation of

GPx4 (26). Currently, targets for ferroptosis are mainly divided

into ferroptosis inducers and inhibitors. There are four types of

ferroptosis-inducing compounds, including those: inhibiting the

cysteine (Cys)/glutamate (Glu) reverse exchange (Xc−) system,

directly or indirectly inactivating GPX4, causing iron overload and

activating heme oxygenase 1 (HMOX1) (27). At present, ferroptosis

was often regarded as a detrimental factor in certain liver diseases,

ferroptosis-inducing agents were mainly used to treat HCC and

liver fibrosis (28). Table 1 lists the part of available ferroptosis

inducers in liver diseases.

Ferroptosis inhibitors work by reducing iron overload and

peroxidation levels and scavenging peroxidation products (81).

Of these, the prominent ones are iron chelators that reduce

iron overloads, such as deferoxamine and deferiprone. A small

number of iron chelators are used in the clinic or clinical trials.

And the library of novel deferoxamine compounds is created

and updated regularly (40). Table 1 lists the part of available

ferroptosis inhibitors in liver diseases. Furthermore, nec1 inhibited

necrosis and ferroptosis in primary renal tubular and mouse heart

transplantation models (82), but its use in liver disease is not

reported. So far, the role of ferroptosis inhibitors in liver diseases

hasmainly been reported in animalmodels, and there are only a few

reports about its clinical application. Therefore, additional research

is needed to provide evidence for targeted ferroptosis in liver

diseases. And although nanomaterials targeting ferroptosis have

improved their targeting properties through special modifications

such as biofilm and PUFA modification (83), their safety for in vivo

application has not been effectively demonstrated.

Discussion

Ferroptosis plays an important role in the occurrence,

development, and treatment of liver diseases. Researchers have

screened and identified several ferroptosis inducers and inhibitors

using animal experiments and small molecule compound libraries.

However, evidence regarding the distribution, metabolism,

excretion and use of these targets is lacking. Secondly, the role of

these targets in the progression of chronic liver disease to HCC

may be variable, and the underlying mechanisms are unknown.

Additionally, how can targets be adjusted at different stages of liver

diseases is not clear. Thirdly, the targeting of these agents needs

to be improved. Studies have shown that these targets promote

or inhibit ferroptosis of inflammation cells and thus affect their

immune function. At present, there is little relevant evidence and

the underlying mechanism needs to be elucidated. Finally, current

nanomedicine technologies enable highly specific targeting of

these agents, and nanomaterial-related ferroptosis promoters and

inhibitors have been studied in cancers. There is a long way to go

before we can effectively target ferroptosis to treat liver diseases,

but we believe that combining efforts from over the world will help

us realize the therapeutic strategy.
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