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The largest solid organ of the male genitalia, the prostate gland, is comprised

of a variety of cells such as prostate epithelial cells, smooth muscle cells,

fibroblasts, and endothelial cells. Prostate diseases, especially prostate cancer and

prostatitis, are often accompanied by acute/chronic inflammatory responses or

even cell death. Pyroptosis, a cell death distinct from necrosis and apoptosis,

which mediate inflammation may be closely associated with the development of

prostate disease. Pyroptosis is characterized by inflammasome activation via pattern

recognition receptors (PRR) upon recognition of external stimuli, which is manifested

downstream by translocation of gasdermin (GSDM) protein to the membrane to form

pores and release of inflammatory factors interleukin (IL)-1β and IL-18, a process

that is Caspase-dependent. Over the past number of years, many studies have

investigated the role of inflammation in prostate disease and have suggested that

pyroptosis may be an important driver. Understanding the precise mechanism is

of major consequence for the development of targeted therapeutic strategies. This

review summarizes the molecular mechanisms, regulation, and cellular effects of

pyroptosis briefly and then discuss the current pyroptosis studies in prostate disease

research and the inspiration for us.
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Highlights

- Pyroptosis, a cell death distinct from necrosis and apoptosis, which mediates inflammation
may be closely associated with the development of prostate disease.

- More and more studies have shown that pyroptosis may play an important role in prostate
diseases, such as prostate cancer, benign prostatic hyperplasia, and prostatitis.

- Understanding the role of pyroptosis in prostate disease has important guiding significance
for the design of treatment strategies.
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1. Introduction

The prostate is the largest unpaired substantial organ of the male
genital appendages, consisting of glandular tissue, smooth muscle,
and connective tissue. The prostatic portion of the urethra is threaded
through its substance. Its secretions are the major component of
semen and have a nutritional and sperm-activating effect. When the
tissue structure of the prostate gland becomes abnormal, it is referred
to as a prostate disorder, which means that diseases such as prostate
cancer, benign prostatic hyperplasia (BPH), and prostatitis may have
occurred. However, maintaining the normal structure and function
of the prostate requires a balance between cell formation and death in
the prostate tissue (including prostate epithelial cells, smooth muscle
cells, fibroblasts, and endothelial cells) (1).

Under physiological conditions, cells in an organism live in
an orderly cellular society according to definite rules. Cell death
starts when cells are subjected to some strong external stimulus
or when their own mechanisms develop some kind of irreparable
problem. Common forms of cell death include necrosis, apoptosis,
and pyroptosis (2). Upon stimulation of cells, perforation of the
plasma membrane is mediated by GSDM family proteins and
accompanied by the release of inflammatory molecules, that is
pyroptosis, a procedure distinct from apoptosis or necrosis (3).
Morphologically, the pyroptosis cells showed agglutination of nuclei,
positive in situ deoxyribonucleic acid (DNA) fragment labeling, and
positive membrane association protein staining. The cytoskeleton
proteins are degraded, and the membranes show 1-2 nm oligomeric
protein pores and progressive dissolution of the plasma membrane.
Its intracellular pro-inflammatory small molecules are effluxed and
cause a strong inflammatory response (4). Notably, compared to
necrosis, the plasma membrane of pyroptosis cells gradually dissolves
and the contents are released more slowly (3). When apoptosis
occurs, the DNA is fragmented and the plasma membrane remains
intact without leakage of contents (5). Given the unique mechanism
of pyroptosis, its role in prostate disease has been gaining attention.
This review provides a current overview of the evidence and
functional role of pyroptosis in prostate disease and discusses the
molecular pathways involved in the treatment of prostate disease.

2. Overview of pyroptosis

In 1992, Zychlinsky et al. first observed the phenomenon of
pyroptosis in macrophages, which was caused by infection with
Shigella flexneri (6). In 2001, Cookson et al. coined the name of
pyroptosis (7). In recent years, with increasing research, it has been
confirmed that both pathogenic infection and endogenous damage
can induce pyroptosis. Depending on the Caspases, pyroptosis
can be divided into classical and non-classical pathways, with the
commonality that both perforate the cell membrane by regulating the
cleavage of gasdermin-D (GSDMD) at specific sites (Figure 1).

2.1. Molecular mechanisms about the
classical pyroptosis

2.1.1. Caspases-1 mediate the classical pyroptosis
Caspase-1 exists in the cytoplasm as an inactive zymogen

with a relative molecular mass of about 47,000 daltons and

is a human-mouse shared cell death-associated protein.
Upon stimulation by pathogen-associated molecular patterns
(PAMPs)/damage-associated molecular patterns (DAMPs), the
intracytoplasmic PRR is activated to initiate an oligomerization
reaction that selectively binds pro-caspase-1 to apoptosis-associated
particulate proteins. At this point, pro-caspase-1 hydrolyze and
releases p20 and p10 subunits, which polymerize into biologically
active tetramers, resulting in the formation of specific inflammatory
complexes, namely inflammasome (8). The aspartate residues on
GSDMD are cleaved by Caspase-1 to form active amino N terminus
and carboxyl C terminus, of which the lipid-selective N terminus
can specifically bind lipid components on the cell membrane and
oligomerize to form a ring-like hollow structure with a diameter of
10–21 nm (9). This structure disrupts the osmotic pressure balance
inside and outside the membrane, and the cell then lyses and dies.
Meanwhile, Caspase-1 cleaves pro-IL-1β and pro-IL-18 to form
mature IL-1β and IL-18. After cell membrane perforation, IL-1β

and IL-18 are secreted extracellularly via pore proteins to induce
inflammatory responses, activate the pyroptosis pathway of other
cells, produce chemotactic effects, and cause other immune cells to
target chemotaxis and amplify inflammatory effects (10).

2.1.2. Inflammasome associated with the classical
pyroptosis

Inflammasomes are intracellular complexes involved in intrinsic
immunity and usually consist of three parts: receptor proteins,
adapter proteins, and effector proteins, which differ in their final
structure depending on the protein substrate. Upon recognition of
a specific PAMP or DAMP, the intracytoplasmic PRR activates and
initiates the inflammasome assembly process, recruiting the adapter
apoptosis-associated speck-like protein containing (ASC). Generally,
ASC contains two structural domains, pyridine (PYD) and caspase
recruitment domain (CARD), while some inflammasomes do not
possess PYD (11). ASC activates Caspases via CARD, which further
activates the inflammatory response downstream. To distinguish
different inflammasomes, they can be classified into nucleotide-
binding oligomerization domain (NOD) like receptor (NLR) family
and absent in melanoma-2 like receptor (ALR) family, etc. according
to the receptor proteins (12).

2.1.2.1. NLR family

NLR family, including nucleotide-binding domain leucine-
rich repeats protein (NLRP)1, NLRP3, NAIP-NLRC4, NLRP6 and
NLRP9b, which all initiate the pathway of pyroptosis (13). NLRP1
is the earliest identified inflammatory vesicle and is widely present
in human and murine macrophages, differing structurally in that
murine NLRP1 has three homologous structures (NLRP1a-1c) and
generally lacks PYD (14). NLRP1 specifically recognizes Bacillus
anthracis, Shigella flexneri, fungi, Toxoplasma gondii, and Val-
boroPro, a non-selective inhibitor of post-proline-cleaving serine
proteases, and activates Caspase-1 to initiate the pyroptosis (14–16).
The NAIP structure of the NAIP-NLRC4 inflammasome recognizes a
variety of PAMPs, including needle-like proteins, flagellin, and rod-
shaped proteins of Toxoplasma gondii (17, 18). Upon recognition
of specific PAMPs, intracellular NLRC4 is activated and recruits
ASC, which activates Caspase-1 and initiates the classical pathway of
pyroptosis. In addition, NLRP6 and NLRP9b are equally capable of
recognizing specific patterns to initiate classical pyroptosis, but they
are mainly expressed in intestinal epithelial cells (19, 20).
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FIGURE 1

The molecular mechanism of pyroptosis. The classical pyroptosis is produced under the stimulation of a variety of external factors, such as bacteria,
viruses, and toxins, which can activate the inflammasome. Activated inflammasome induces cleavage of pro-caspase-1 to form Caspase-1.
Subsequently, Caspase-1 cleaves GSDMD to produce the N-fragment of GSDMD, which aggregates to generate plasma membrane pore, resulting in
rupture of the cell membrane. Also, Caspase-1 promotes the maturation and secretion of IL-1β and IL-18. In addition, external stimuli can activate
Caspase-4/5/11, Caspase-3, and Caspase-8, mediating the non-classical pyroptosis. They all eventually lead to perforation of the plasma membrane.

2.1.2.2. AIM2 inflammasome

Absent in melanoma-2 (AIM2) inflammasome is mainly
composed of the N-terminal PYD domain and C-terminal HIN
domain. It forms an AIM2 oligomer after binding to double-
stranded DNA. AIM2 inflammasome, as a DNA sensor of innate
immunity, can specifically identify and detect mutated or misplaced
DNA molecules. AIM2 can not only directly detect DNA damage
within the nucleus (21), but also recognize foreign cytoplasmic
DNA (22). AIM2 aggregates the ligand ASC under PYD PYD
interaction, which leads to the formation of the fibrous superstructure
of ASC protein, and further occurs the aggregation of Caspase-
1 and shear ripening of IL-1β (23). AIM2 inflammasome can be
activated by damaged double-stranded DNA, causing the release
of inflammatory factors and GSDMD mediated pyroptosis (24).
While cytoplasmic dsDNA/AIM2-associated pyroptosis leads to
macrophage dysfunction (25). Although pyroptosis is an important
link in many diseases, the AIM2 inflammasome as a trigger of
pyroptosis has not attracted enough attention.

2.1.2.3. Pyrin inflammasome

Pyrin is an atypical NLR protein encoded by the MEFV gene,
consisting of a PYD, two B-boxes, and a coiled-coil structural
domain (26). Pyrin binds ASC, a ligand-protein for inflammasome

(27), and Pyrin overexpression forms an ASC-dependent, caspase-
1-activating complex (28), suggesting that Pyrin may form an
inflammasome. The current study shows that the inactivation of
RhoA leads to dephosphorylation of Pyrin, releasing the bound
14-3-3 protein, which activates the downstream inflammasome
pathway and promotes the release of IL-1β (29). Activation of Pyrin
inflammasome provides a substrate ready to mediate pyroptosis, but
the precise mechanism remains unclear.

2.2. Molecular mechanisms about the
non-classical pyroptosis

2.2.1. Caspases-4/5 and Caspases-11 mediate the
non-classical pyroptosis

Human-derived Caspases-4/5 and murine-derived Caspases-11
are homologous isomers with highly similar protein structures and
essentially the same physiological functions. Unlike Caspases-1,
in addition to specific inflammasome, pro-caspases-4/5 and pro-
caspases-11 are able to directly recognize lipopolysaccharide (LPS),
oxidized-1-palmitoyl-2-arachidonyl-sn-glycerol-3-phosphocholine
(Ox-PAPC) signaling, which activates and induces pyroptosis.
Upon stimulation by inflammasome, Caspases-11 activates and
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specifically binds intracellular lipoproteins, acting on GSDMD to
release the N-terminal and C-terminal ends, causing perforation of
the cell membrane (30). Meanwhile, activated Caspases-11 activates
Pannexin 1 (Panx 1) channels in the membrane, induces adenosine-
triphosphate (ATP) secretion from the cells, and activates purinergic
ligand-gated ion channel 7 (P2 × 7) molecules, which activate
downstream pro-caspases-1, thus initiating the classical pyroptosis
and releasing IL-1β and IL-18.

2.2.2. Other caspase family members and
pyroptosis

Nowadays, Caspase-3 and Caspase-8 have also been shown to be
closely associated with pyroptosis. In general, Caspase-3 is usually
produced by the apoptotic pathway initiated by mitochondrial
inducible factors and is considered to be an important link in
apoptosis. Caspase-3 can induce a pyroptosis-like process in tumor
cells that are otherwise in the process of apoptosis via gasdermin-
E (GSDME), a homologous protein of GSDMD (31). Although
Caspase-3 is able to mediate the pyroptosis-like process via GSDME,
cell death in this process is atypical compared to pyroptosis.

Caspase-8 is the initiator of exogenous apoptosis and inhibits
receptor-interacting protein kinase 3 (RIPK3) and mixed lineage
kinase domain-like protein (MLKL)-mediated necrosis. Some recent
evidence suggests that Caspase-8 can cleave GSDMD and thus
mediate pyroptosis (32–34). In addition, Caspase-8 can promote
pyroptosis by acting as a scaffolding protein that drives inflammatory
factor production and activates Caspase-1 (35). Of note, the
involvement of Caspase-8 in pyroptosis occurs simultaneously with
apoptosis, and together they inhibit necrosis and reduce cell damage.

2.3. NLRP3 inflammasome

NLRP3 inflammasome is a multiprotein complex that comprises
the nod-like receptor protein NLRP3, the adapter ASC, and the
effector pro-caspase-1. The NLRP3 is connected by three homologous
domains, which are leucine-rich repeat at the C-terminal, nucleoside
triphosphatase domain at the center, and pyrin domain at the
N-terminal. Intracellular NLRP3 content is extremely low at the
tranquillization status. Once activated, the NLRP3 inflammasomes
act as platforms to trigger Caspase-1, facilitate cytokine release, and
induce pyroptosis (36).

The classical NLRP3 inflammasome working procedure is
completed by priming and activation (37), which are two parallel
and independent steps (Figure 2). The transcription factor nuclear
factor-kappa B (NF-κB) plays a vital role in priming the NLRP3
inflammasome. Under priming stimuli, some receptors such as toll-
like receptors (TLRs), NLRs, or cytokine receptors activate NF-κB,
which upregulates the expression of NLRP3 and pro-IL-1β (38,
39). Interestingly, the priming stimuli did not affect the expression
of ASC, pro-caspase-1, and pro-IL-18 (38). Thus, it provides the
required protein for the activation of the NLRP3 inflammasome.

There are mainly four patterns have been observed in activating
the NLRP3 inflammasome. The first model holds that bacterial toxins
and particulate matter trigger the formation of membrane pores
that accelerate K+ efflux, which induces the assembly and activation
of the NLRP3 inflammasome (40). The second model is that
NLRP3 agonists are engulfed by cells, resulting in lysosomal rupture,
releasing cysteine cathepsins, and inducing NLRP3 inflammasome

assembly and activation (41). The third mode is that a range
of situations of host ’danger’, such as infection and metabolic
dysregulation followed by reactive oxygen species (ROS)-generating
mitochondria can activate the NLRP3 inflammasome (42). Besides,
the calcium-sensing receptor (CASR) also plays an irreplaceable role
in activating the NLRP3 inflammasome via increasing intracellular
Ca (2+) and decreasing cellular cyclic AMP (cAMP) (43). In addition
to the above four modes, the role of chloride ion efflux (44), metabolic
changes (45), and trans-Golgi disassembly in the activation of NLRP3
inflammasome cannot be ignored. At present, our understanding of
the NLRP3 inflammasome activation pathway is not systematic and
comprehensive, and there are still many models to be found.

3. Pyroptosis in prostate disease

3.1. Prostate cancer

Prostate cancer (PCa) is a malignant tumor that occurs in
the epithelium of the prostate gland and is one of the most
common malignant tumors of the male reproductive system. The
International Agency for Research on Cancer reported that the new
cases and deaths of PCa worldwide in 2020 were 1.414 million and
0.375 million, respectively (46). This undoubtedly places a heavy
burden on individuals, families and society. Therefore, there is
an urgent need to conduct in-depth studies on the pathogenesis
of PCa in order to provide effective therapeutic strategies for its
targeted treatment. Current evidence suggests that pyroptosis may
provide new insights into the understanding of PCa pathogenesis.
Hu et al. analyzed the prognostic value of pyroptosis-related genes
in PCa patients using biomedical databases and identified several
pyroptosis-related genes that can predict the prognosis of PCa
(47). The tumor microenvironment (TME) has been shown to
play a key role in tumorigenesis, immune progression, escape
and metastasis. Wang et al. further validated the relationship
between the pyroptosis subtype and TME of PCa (48). Pyroptosis,
as an inflammatory programmed cell death, is involved in the
host protective immunity (49), which may lead to alterations of
the immune microenvironment. A comprehensive and in-depth
understanding of the TME by pyroptosis in PCa is needed. Zhang
et al. identified several pyroptosis-related genes that may impact the
prognosis of PCa patients by altering the TME (50), but the precise
mechanism has yet to be uncovered. These findings indicate that
pyroptosis is closely related to the development of PCa.

Abnormal alterations in various signaling pathways that regulate
proliferation, migration, and apoptosis play key roles in tumor
development. The main pathways that have been identified in
studies of pyroptosis in PCa include Caspase-1, Caspase-4/5/11
and Caspase-3 pathways. The Caspase-1 pathway is a classical
signaling pathway that is activated by inflammasome signaling and
promotes pyroptosis in PCa. PCa and paraneoplastic tissues are
accompanied by a large inflammatory response and inflammatory cell
infiltration (51), and the inflammatory TME is likely important in
promoting tumor cell growth. Cytokines released by inflammatory
cells can promote tumor growth. The inflammatory response also
activates transforming growth factor-β (TGF-β), thereby inhibiting
Caspase-1 expression and IL-1β maturation and release (52). This
allows tumor cells to be spared from pyroptosis and continue
to grow. NLRP12, an inflammasome associated with pyroptosis,
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FIGURE 2

Structure and activation of NLRP3 inflammasome, as core proteins in the NLRs family, are important members of the body’s intrinsic immune system,
and their abnormal activation is closely related to various chronic inflammatory conditions. NLRP3 inflammasome consists of three parts: receptor,
adapter, and effector, namely NOD-like receptor protein 3, junction molecule apoptosis-associated protein ASC, and cysteine aspartate protease. In
particular, the receptor NLRP3 is articulated by three homologous structural domains: the C-terminal leucine-rich repeat (LRR), the central nucleoside
triphosphatase domain (NACTH), and the N-terminal pyrindomain (PYD). In the resting state, NLRP3 expression in cells is at very low levels, and upon
binding to signals mediating NLRP3 inflammasome initiation, activates NLRP3 inflammasome thereby participating in the inflammatory response.

promotes the development of PCa by regulating Caspase-1 and
downstream IL-1β and IL-18 (53). NF-κB and signal transducers and
activators of transcription 1 (STAT1) can also induce pyroptosis by
regulating Caspase-1 or GSDMD protein expression, accompanied
by a large release of inflammatory factors, which acts as a tumor
growth suppressor (54). LPS are involved in the proliferation,
invasion and metastasis of PCa cells. Intracellular LPS activates
the Caspase-4/5/11 pathway and induces pyroptosis, which in turn
inhibits tumor growth. In PCa cells, alterations in the endoplasmic
reticulum structure promote LPS synthesis, leading to changes in
Caspase-4 expression, which can induce programmed cell death (55).
A retrospective study found that Caspase-5 mRNA expression was
significantly higher in PCa patients, suggesting that the involvement
of Caspase-5 in pyroptosis may be associated with the risk of PCa
development (56). Caspase-3 expression was significantly decreased
in PCa tissues (57). Plasmacytoma variant translocation 1 (PVT1),
a long non-coding RNA, is also involved in the development of
PCa, and knockdown of PVT1 resulted in significantly upregulated
Caspase-3 expression in mouse PCa tissues. Chemotherapeutic drugs
can exert anti-tumor effects by cleaving GSDME in PCa tissues
through Caspase-3, which triggers pyroptosis (5). A recent study
also showed that C10, a novel 3′,5′-diprenylated chalcone, activates
Caspase-3 by inducing the protein kinase Cδ (PKCd)/c-Jun N-
termital kinase (JNK) pathway, which in turn triggers cleavage
of GSDME to execute pyroptosis in PCa cells (58). However, the
mechanism of Caspase-3-mediated pyroptosis in PCa needs to be
further elucidated.

3.2. Prostatitis

Prostatitis is one of the most common and confusing diseases
in Urology and Andrology. Although prostatitis is not a direct life-
threatening disease, it seriously affects the quality of life of patients.
At the same time, its large patient population and high medical
costs place a huge economic burden on public health (59). Prostatitis
is an inflammatory disease that is linked to both infectious and
non-infectious factors. Pyroptosis has turned out to be present in a
variety of infectious and sterile diseases (60–64). The pyroptotic cells

are able to promote the development of an inflammatory response
by secreting the necessary cellular components and inflammatory
mediators. Thus, pyroptosis may be a key contributor to cell death
during prostatitis.

Activation of the NLRP3 inflammasome is the leading inducer
of pyroptosis-mediated cell death. Lu et al. used a hormone-
imbalance-induced chronic non-bacterial prostatitis (CNP) rat
model and found that NLRP3 inflammasome activation triggers a
series of inflammatory responses in the prostate glands of CNP
rats. Interestingly, these effects may be attenuated by rapamycin-
induced autophagy (65). Chen and colleagues showed that the NLRP3
inflammasome may regulate CNP cell autophagy by modulating
the IL-6/STAT3 pathway (66). Whether the NLRP3 inflammasome
causes pyroptosis remains to be further determined. While in the
experimental autoimmune prostatitis (EAP) mouse model, apart
from the attenuating effect of the NLRP3 inhibitor MCC950
(67), melatonin also inhibited the NLRP3 inflammasome signaling
pathway by activating Sirt1, which reduced prostate inflammation
and pelvic pain (68). Zang et al. found elevated expression of NLRP3,
Caspase-1 and ASC in CNP rats, and Qianliexin capsule (QLX)
suppressed the high expression of these proteins (69). Another
study showed that the levels of Caspase-1 and Pyrin domain
containing proteins 1 and 3 (NALP1 and NALP3) were increased in
local carrageenan-induced prostate inflammation (70). Wang et al.
detected high expression of heat shock protein 70 (HSP70) in thulium
laser resected prostate (TmLRP) tissue in a beagle model. The
expressions of ROS, NLRP3, Caspase-1 and IL-18 were significantly
increased in human myeloid leukemia mononuclear cells (THP-1)
under the stimulation of HSP70 and were reduced by the ROS
inhibitor N-acetyl-l-cysteine (NAC). The expressions of IL-1β and IL-
18 were inhibited by NLRP3 or Caspase-1 inhibitors. This suggests
that activation of the ROS-NLRP3 signaling pathway induces sterile
inflammation in the post-prostatectomy wound (71). This seems to
be suggesting that this process may also occur in the prostate tissue.
However, these studies only showed that the drivers of pyroptosis-
mediated cell death were expressed in the prostate glands and
mediate the inflammatory response. Further experimental detection
of cell morphological changes and associated pathways is required to
demonstrate the onset of pyroptosis.
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In vitro stimulation of a prostate epithelial cell line (RWPE-
1) by Trichomonas vaginalis induced the expressions of NLRP3,
ASC, Caspase-1, and IL-1β, while silencing of NLRP3 and Caspase-
1 attenuated T. vaginalis-induced IL-1β secretion (72). The study
demonstrated that NLRP3 inflammasome activation occurs in
RWPE-1 cells and promotes the release of inflammatory factors
in PAMPs-induced prostatitis. Several studies have reported that
Propionibacterium acnes, a slow-growing Gram-positive anaerobic
bacillus is frequently detected in prostate tissue and is associated
with acute and chronic prostate inflammation (73–75). Sahdo and
collaborators found that Caspase-1 was abundantly expressed in
neutrophils under stimulation of P. acnes, whereas only a moderate
activation was seen in monocytes (76). These studies provide some
evidence that the development of prostatitis may be associated
with pyroptosis. Which cells undergo a pyroptosis program during
prostatitis and the regulatory relationships between cells remain to
be elucidated, however.

3.3. Benign prostatic hyperplasia

Benign prostatic hyperplasia (BPH) is a pathological change
in which the prostate stroma and/or glands are enlarged (77).
BPH is the most common cause of voiding disorders in middle-
aged and older men, manifested by histological hyperplasia of the
interstitial and glandular components of the prostate, anatomical
enlargement of the prostate, clinical symptoms dominated by
lower urinary tract symptoms, and urodynamic obstruction of
the bladder outlet (78). The exact molecular mechanism of BPH
is not well understood, and both excessive cell proliferation and
restricted programmed cell death processes may cause an increase
in cell numbers.

Although there is little direct evidence of pyroptosis in BPH,
pyroptosis-mediated inflammation may play a role in this process.
The role of activation of the inflammasome as the initial step of
pyroptosis in BPH cannot be ignored. Inflammasome expression,
such as AIM2, was significantly elevated in BPH tissue compared
with normal prostate tissue (79). Activation of inflammasome
assembly leads to the production and secretion of the pro-
inflammatory cytokines IL-1β and IL-18, thereby perpetuating the
inflammatory state associated with BPH (80, 81). Prostate epithelial
cells that die from pyroptosis release pro-inflammatory stimuli,
which can induce chronic inflammation and BPH. Subsequently,
epithelial cells and surrounding stromal cells in BPH tissue
undergo compensatory growth in response to the inflammatory
stimulus (82, 83). Jiang and colleagues found that peroxiredoxin
3 (PRDX3) was highly expressed in prostatic epithelial cells
of BPH patients and BPH-representative cell lines (84). Upon
reduction of PRDX3 expression in BPH-1 cells, Caspase-1 and
cleaved Caspase-1 expression were subsequently increased and
decreased, respectively, indicating impaired activation of Caspase-
1. Lactate dehydrogenase (LDH) is released from pyroptotic cells;
inhibition of PRDX3 in BPH-1 cells resulted in a decrease
of LDH released into the culture medium. Therefore, PRDX3
in BPH may promote pyroptosis. While the available evidence
suggests that the role of pyroptosis in BPH may not be obvious,
maintaining a balance of proliferating and dying cells in the
prostate by regulating pyroptosis may provide a new approach
for BPH therapy.

4. Conclusion and perspectives

Cell death under physiological conditions (e.g., proper autophagy
and apoptosis) is necessary to maintain tissue renewal, whereas
under pathological conditions (e.g., autophagy, necroptosis, and
pyroptosis) predispose to disease development and progression.
Prostate diseases include PCa, prostatitis and BPH, all of which are
serious threats to men’s health (85–87). A key feature of all three
prostate diseases is the fact that they are all affected by inflammation.
Downstream of pyroptosis is the inflammatory cascade response.
Therefore, elucidating the role played by pyroptosis in different
prostate diseases, which help to deepen our understanding of
different prostate diseases.

It is the versatile roles of pyroptosis that dictate a variety
of drug designs for different prostate diseases. Considering that
pyroptosis is a double-edged sword in PCa, it is more complicated
in designing drugs. Only by pinpointing the cancer cells in the
prostate and prompting their pyroptosis can the therapeutic effect
be better achieved. Therefore, there is an urgent need to address
the problem of drugs targeting cancer cells in the prostate to
induce pyroptosis. Nanoparticulate drug delivery systems (Nano-
DDSs) have the potential to solve this problem with more
targeted accumulation, slow release, the sustained onset of action,
increased efficacy, and reduced toxicity than traditional drugs (88,
89). Hu et al. designed As2O3 nanoparticles for the treatment
of hepatocellular carcinoma, which increased the expression of
GSDME-N, promoted greater LDH release, and induced cancer
cell pyroptosis compared to the free drug (90). Wand and co-
workers via using a bioorthogonal chemical system found that
desilylation catalyzed by phenylalanine trifluoroborate (Phe-BF3)
could release an active GSDMD from a nanoparticle conjugate,
which selectively into tumor cells in mice, thereby mediating
pyroptosis to act against tumor cells (91). In the future, we can
take full advantage of some biomaterials and combine them with
the molecular mechanism of pyroptosis to design more targeted and
lethal drugs for PCa therapy.

In prostatitis, anti-inflammation is one of the most
influential forms of treatment (92). It is known that pyroptosis
has a pro-inflammatory effect and anti-pyroptosis treatment
in prostatitis may block the inflammatory response. Many
Chinese herbs have shown beneficial anti-inflammatory effects
in the treatment of prostatitis (93–95), but their mechanisms
of action are not well understood. Therefore, whether they
have an anti-pyroptosis function deserves further study.
For BPH, a balance between cell proliferation and death is
required. Therefore, it is difficult to design a treatment plan by
pyroptosis. It is necessary to understand the role of pyroptosis in
prostate disease.

In summary, the more comprehensive the understanding of the
mechanisms of pyroptosis in prostate disease, the more accurate
the diagnosis and prognosis of prostate disease. Moreover, a more
comprehensive understanding of pyroptosis could provide more
targeted and effective intervention strategies for prostate disease.
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