AUTHOR=Sun Jingzhang , Yang Bang-Hung , Li Chien-Ying , Du Yu , Liu Yi-Hwa , Wu Tung-Hsin , Mok Greta S. P. TITLE=Fast myocardial perfusion SPECT denoising using an attention-guided generative adversarial network JOURNAL=Frontiers in Medicine VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2023.1083413 DOI=10.3389/fmed.2023.1083413 ISSN=2296-858X ABSTRACT=Purpose

Deep learning-based denoising is promising for myocardial perfusion (MP) SPECT. However, conventional convolutional neural network (CNN)-based methods use fixed-sized convolutional kernels to convolute one region within the receptive field at a time, which would be ineffective for learning the feature dependencies across large regions. The attention mechanism (Att) is able to learn the relationships between the local receptive field and other voxels in the image. In this study, we propose a 3D attention-guided generative adversarial network (AttGAN) for denoising fast MP-SPECT images.

Methods

Fifty patients who underwent 1184 MBq 99mTc-sestamibi stress SPECT/CT scan were retrospectively recruited. Sixty projections were acquired over 180° and the acquisition time was 10 s/view for the full time (FT) mode. Fast MP-SPECT projection images (1 s to 7 s) were generated from the FT list mode data. We further incorporated binary patient defect information (0 = without defect, 1 = with defect) into AttGAN (AttGAN-def). AttGAN, AttGAN-def, cGAN, and Unet were implemented using Tensorflow with the Adam optimizer running up to 400 epochs. FT and fast MP-SPECT projection pairs of 35 patients were used for training the networks for each acquisition time, while 5 and 10 patients were applied for validation and testing. Five-fold cross-validation was performed and data for all 50 patients were tested. Voxel-based error indices, joint histogram, linear regression, and perfusion defect size (PDS) were analyzed.

Results

All quantitative indices of AttGAN-based networks are superior to cGAN and Unet on all acquisition time images. AttGAN-def further improves AttGAN performance. The mean absolute error of PDS by AttcGAN-def was 1.60 on acquisition time of 1 s/prj, as compared to 2.36, 2.76, and 3.02 by AttGAN, cGAN, and Unet.

Conclusion

Denoising based on AttGAN is superior to conventional CNN-based networks for MP-SPECT.