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Purpose: Deep learning-based denoising is promising for myocardial perfusion (MP)

SPECT. However, conventional convolutional neural network (CNN)-based methods

use fixed-sized convolutional kernels to convolute one region within the receptive

field at a time, which would be ineffective for learning the feature dependencies

across large regions. The attention mechanism (Att) is able to learn the relationships

between the local receptive field and other voxels in the image. In this study, we

propose a 3D attention-guided generative adversarial network (AttGAN) for denoising

fast MP-SPECT images.

Methods: Fifty patients who underwent 1184 MBq 99mTc-sestamibi stress SPECT/CT

scan were retrospectively recruited. Sixty projections were acquired over 180◦ and

the acquisition time was 10 s/view for the full time (FT) mode. Fast MP-SPECT

projection images (1 s to 7 s) were generated from the FT list mode data. We further

incorporated binary patient defect information (0 = without defect, 1 = with defect)

into AttGAN (AttGAN-def). AttGAN, AttGAN-def, cGAN, and Unet were implemented

using Tensorflow with the Adam optimizer running up to 400 epochs. FT and fast

MP-SPECT projection pairs of 35 patients were used for training the networks for

each acquisition time, while 5 and 10 patients were applied for validation and testing.

Five-fold cross-validation was performed and data for all 50 patients were tested.

Voxel-based error indices, joint histogram, linear regression, and perfusion defect

size (PDS) were analyzed.
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Results: All quantitative indices of AttGAN-based networks are superior to

cGAN and Unet on all acquisition time images. AttGAN-def further improves

AttGAN performance. The mean absolute error of PDS by AttcGAN-def was

1.60 on acquisition time of 1 s/prj, as compared to 2.36, 2.76, and 3.02 by

AttGAN, cGAN, and Unet.

Conclusion: Denoising based on AttGAN is superior to conventional CNN-based

networks for MP-SPECT.

KEYWORDS

denoising, attention-guided, deep learning, myocardial perfusion, fast SPECT

1. Introduction

Myocardial perfusion single photon emission computed
tomography (MP-SPECT) is a standard method for the quantitative
diagnosis of coronary artery disease (CAD) (1). However, the
acquisition time for the conventional NaI-based MP-SPECT is
relatively long (15-20 min) (2), leading to potential motion artifacts,
e.g., upward creep (3), patient’s discomfort, lower patient throughput
(4), and mismatch artifacts between the sequential MP-SPECT
and CT (5, 6). New scanner geometries with parallel-hole (7) or
multi-pinhole collimations (8, 9) for MP-SPECT are proposed for
better photons detection efficiency and reduced scan time (2-8 min)
(10, 11). Advanced reconstruction algorithms (12) also facilitate the
possibility of reducing acquisition time without degrading image
quality. However, the acquisition time for MP-SPECT is still much
longer than CT in general (4). Therefore, it is necessary to pursue
fast MP-SPECT, without compromising the image quality and
diagnostic accuracy.

Image noise is a substantial problem for fast MP-SPECT due
to the limited detected counts and the fact that it degrades the
image quality, hampering clinical diagnosis and quantification results
(9). Recently, deep learning (DL) methods are promising to reduce
the noise for MP-SPECT images. Ramon et al. (13) proposed 3D
convolutional neural networks (CNN) to denoise the reconstructed
MP-SPECT images with reduced injected dose. Liu et al. used a
3D Unet trained on a noise-to-noise strategy for denoising full
dose MP-SPECT reconstructed images and showed improved results
as compared to the use of traditional filter (14). They further
evaluated the performance of DL-based denoising according to the
area under the curve (AUC) of the total perfusion deficit (TPD)
scores results (15). Aghakhan et al. (16) used a 2D conditional
generative adversarial network (cGAN) for denoising the reduced
dose MP-SPECT images from 1/8 to 1/2 dose levels in the projection
domain. Shiri et al. (17) proposed a 2D residual CNN (ResNet) to
estimate full time (FT) MP-SPECT projection images. Previously, our
group implemented a 3D cGAN to denoise fast and low dose MP-
SPECT reconstruction (18) and projection (19) images. Our results
showed that denoising on the projection domain is superior to the
reconstruction domain (19).

However, conventional CNN-based methods use fixed-sized
convolutional kernels to convolute one local region within the
receptive field at a time, which would be ineffective for learning
the feature dependencies across large regions (20). The feature
dependencies across large regions can only be learned when the

feature maps are down-sampled into a relatively small matrix size
after passing through several convolutional layers (21). The attention
mechanism has shown to be effective in capturing the long-range
dependencies of structural information across large regions (20).
It has been implemented for CT segmentation (22) and low dose
CT denoising (23). In this study, we propose an attention-based
cGAN (AttGAN) in denoising fast MP-SPECT projection images
and compare its performance with Unet-based and cGAN-based
denoising. We further incorporate the patient defect information into
the network to improve the AttGAN performance.

2. Materials and methods

2.1. Patient dataset

Fifty anonymized patients who underwent routine stress
SPECT/CT scan ∼30 minutes post 99mTc-sestamibi injection on a
clinical SPECT/CT system (NM/CT 870 CZT, GE Healthcare, USA)
were retrospectively enrolled in this study under local ethics approval
(IRB number 2022-11-002CC, Table 1). Among them, 18 were read
as having at least a cardiac defect, which had perfusion abnormalities,
according to their medical records from SPECT images and clinical
histories. Before the SPECT acquisition, a helical CT scan (120 kVp,
smart mA (10-150 mA), 0.375 cm slice thickness) was acquired in
the heart region for attenuation correction in SPECT reconstruction.
The CT reconstruction matrix size was 512 × 512 × variable axial
coverage, with a voxel size of 0.9765 mm. Patients were injected
with 1,184 MBq 99mTc-sestamibi, and 60 projections were acquired
through 180◦ from the right anterior oblique to the left posterior
oblique positions with a matrix size of 64 × 64. The primary
photopeak energy window was centered at 140.5 keV with a 20%
width and the scatter window was centered at 120 keV with a 10%
width.

The original acquisition time was 10 s/view. We also obtained
various fast MP-SPECT projection images by reducing the projection
acquisition time to be 7, 5, 3, 2, and 1 s based on the list mode data
of the FT images, respectively. All clinical data were reconstructed by
the 3D ordered subset expectation maximization (OS-EM) algorithm
with 5 iterations and 4 subsets, with CT-based attenuation and dual
energy window scatter corrections. The reconstruction matrix size
was 64 × 64 × 19 with a voxel size of 0.6096 cm. A 3D post-
reconstruction Gaussian filter with a standard deviation of 0.6 voxel
was applied on the FT images for data analysis.
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TABLE 1 Demographic information for the patient study.

Female Male Total

Gender 13 (26%) 37 (74%) 50 (100%)

Age (years) 69.2± 9.73
(56-90)

64.9± 11.24
(42-83)

66.0± 10.94
(42-90)

BMI (kg/m2) 24.5± 3.13
(21.09-30.47)

25.0± 2.65
(17.91-30.11)

25.0± 2.92
(17.92-31.60)

Perfusion defect
size (PDS, %)

3.23± 2.20
(0-7)

4.46± 5.57
(0-29)

4.14± 4.92
(0-29)

Cardiac defect 2 (4%) 16 (32%) 18 (36%)

CAD risk factors

Hypertension 6 (12%) 20 (40%) 26 (52%)

Dyslipidaemia 8 (16%) 21 (42%) 29 (58%)

Diabetes 2 (4%) 14 (28%) 16 (32%)

Smoker 0 (0%) 8 (16%) 8 (16%)

Family history of
CAD

4 (8%) 9 (18%) 13 (26%)

Mean± SD and range are presented for age, BMI, and PDS.

2.2. Attention-guided generative
adversarial network (AttGAN)

The architecture of the AttGAN used in this study is shown
in Figure 1 (20). Similar to cGAN, AttGAN is comprised of
two subnetworks: a generator (Figure 1A) and a discriminator
(Figure 1B). The generator, which was conditioned with fast MP-
SPECT projection images, transformed the fast MP-SPECT images
into estimated FT MP-SPECT projection images. The estimated
images were later paired with the original fast MP-SPECT projection
images as an estimated sample pair. The fast MP-SPECT projection
images were also paired with the corresponding FT MP-SPECT
projection images as a real sample pair. The discriminator learned to
differentiate between the estimated sample pairs and the real sample
pairs.

The Unet-based generator (24) had subunits of encoding,
bottleneck, and decoding layers. Each encoding layer was comprised
of convolution (3 × 3 × 3), batch normalization (BN) (25), rectified
linear unit (ReLU) activation, and dropout with a rate of 50%,
followed by max-pooling to down-sample feature maps between

FIGURE 2

The projection datasets used in this study: (A) original projection, (B)
projection incorporating the patient defect information. The defect
information block (red) was encoded by binary values (0 = without
defect/1 = with defect).

FIGURE 3

(A) The 3D VOI used for voxel-based error calculation. (B) Sample
ROIs drawn from a polar plot for IR calculation on a selected patient.
(ROI1 was for defect while ROI2 was for a uniform normal region).

layers. The decoding layers mirrored the encoding layers, except
the up-sample layers replaced the down-sample layers, and skip
connection between the encoding and decoding layers was added.
The discriminator was a CNN-based network used in our previous
study (19).

The attention modules, which were used for calculating the
relationships of each voxel to all other pixels within a feature map,
were incorporated together with the skip-connection between the
encoding layers and decoding layers in the generator (Figure 1C)
(20). The feature maps x from the previous encoding layer g
and current decoding layer f were transformed by a convolution
(1 × 1 × 1) respectively, where g (x) = Wgx and f (x) = Wf x.

FIGURE 1

The AttGAN architecture used in this study. (A) Generator; (B) discriminator; (C) attention module.
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Wg and Wf were trainable parameters. The feature maps of decoding
layer f (x) were then down-sampled to be consistent with the size of
g (x). We performed an inner product of the two vectors g (x) and
f (x) to obtain the feature dependencies between every two voxels:

αi,j = f (xi)
T
· g
(
xj
)

The αi,j further went through ReLU activation, convolution
(1 × 1 × 1), and softmax function to normalize and reshape the
feature maps to become ri,j. Finally, we multiplied ri,j with the feature
maps x from the previous encoding layer g to obtain the attention
coefficients Att:

Att =
N∑

i = 1

xi · ri,j

The L1 loss (26) and the adversarial loss LADV were used for
training the generator g. The discriminator was trained by a cross-
entropy loss LD (19). The final objective function of AttGAN was:

LAttGAN = argminGmaxD(LADV (G,D)+λL1 (G) )

where λ is set to be 100 to adjust the weight of VL1 (G) (26). The
AttGAN was trained by minimizing the loss. The Unet and cGAN
structures were the same according to our previous studies (18, 19).

2.3. Data preprocessing

All the intensity values of MP-SPECT projection images were
normalized to a range of 0–1 for training. In addition, we further
incorporated the binary patient defect information, i.e., with (1) or
without defect (0) from patients’ own medical records, by embedding
four 64 × 64 slices with the same binary values into the projection
images (Figure 2).

2.4. Network implementation

The AttGAN incorporating patient defect information (AttGAN-
def), AttGAN, cGAN, and Unet were implemented using Tensorflow
which ran on a NVIDIA GeForce RTX 2080Ti GPU. The Adam
optimizer was applied to optimize this proposed model based on an
initial learning rate of 0.0001 and trained to 400 epochs.

We performed a 5-fold cross-validation on the clinical datasets
to evaluate four DL approaches for various fast SPECT acquisitions.
Specifically, for each fold of evaluation, FT and fast SPECT projection
images of 35, 5, and 10 patients were selected for training, validation,
and testing, respectively. This process was repeated 5 times and all

FIGURE 4

Sample images of a normal male patient (age = 67, BMI = 25.4) before and after DL-based denoising for five shorter acquisition times. The images are
shown in (A) short axis images, (B) difference images as compared to FT SPECT, (C) polar plots, and (D) 17-segment plots.
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fifty patient datasets were tested and averaged for the final results.
The denoised projections were further reconstructed using the same
OS-EM algorithm with 5 iterations and 4 subsets with attenuation
and scatter correction. No post-reconstruction filter was applied on
the reconstructed images generated from the denoised projections for
further analysis.

The hyper-parameters, e.g., number of layers and filters within
each layer, were determined based on a training-validation procedure
for AttGAN. Specifically, the number of layers varied as 2, 3, 4 and
5, while the number of filters within each layer varied as 8, 16, 24, 32
and 40. The hyper-parameters for cGAN and Unet were determined
in our previous study (18, 19). The training time for AttGAN-def,
AttGAN, cGAN, and Unet was 2.2, 2.2, 2.0, and 1.9 hr, respectively.

2.5. Data analysis

The voxel-based error of the denoised images was assessed by
the normalized mean square error (NMSE), structural similarity

index (SSIM), peak signal-to-noise ratio (PSNR), joint histogram,
and linear regression measured on a 3D volume-of-interest (VOI,
18× 18× 18, Figure 3A) which covered the whole heart. The filtered
FT reconstructed MP-SPECT images were used as the reference.

NMSE =
∑N

k = 1 (ID−IFT)
2∑N

k = 1 IFT
2

SSIM =
(2µDµFT+C1) (2σD,FT+C2)(
µ2

D+µ2
FT+C1

)
(σ2

D+σ2
FT+C2)

PSNR = 10 · log10 (
MAXFT
√

MSE
)

where ID represents the voxel values in denoised reconstructed
images, IFT is the voxel values on the filtered FT reconstructed
images, N (5832) is the number of voxels in the VOI, µD and
µFT are the mean values of the denoised and reference images, σD
and σFT are the standard deviations of the denoised and reference
images respectively, and σD, FT is the cross-covariance between the

FIGURE 5

Sample images of another male patient (age = 77, BMI = 24.2) with an abnormal perfusion in the LAD and LCX territory before and after DL-based
denoising for five shorter acquisition times. The images are shown in (A) short axis images, (B) difference images, (C) polar plots, and (D) 17-segment
plots.
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two images. The constants C1 and C2 are set to be 0.01 and 0.02,
respectively (17). MAXFT indicates the maximum possible pixel value
of the reference images while MSE indicates the mean squared error
between the denoised and reference images.

Two regions-of-interest (ROI1 and ROI2) were drawn on the
defect region and a uniform normal region on the polar plots based
on visual assessment (Figure 3B) and were adjusted for each patient,
respectively. The same ROIs were applied for all denoised images for
the same patient. The intensity ratio (IR) was calculated from the
mean value of the defect ROI (ROI1) divided by the mean value of
the uniform ROI (ROI2). The absolute error of IR between FT images
and different denoised images was computed.

A clinical relevant index, the perfusion defect size (PDS, %LV),
i.e., an index similar to the total perfusion deficit, was measured by
the Wackers-Liu CQTM (WLCQ) software (Voxelon Inc, Watertown,
CT) (27). The absolute error of PDS between FT and different

denoised images was computed. The Bland–Altman plots were also
computed to quantify the agreement of PDS. For the statistical
analysis, a two-tailed paired t-test with Bonferroni correction (SPSS,
IBM Corporation, Armonk, NY, USA) was performed between
AttGAN-def and other denoising methods at different acquisition
time/view for NMSE, PSNR, SSIM, PDS, and IR. A p-value of less
than 0.05 was considered as statistically significant.

3. Results

3.1. Reconstructed images, polar plots,
and 17-segment analysis

Figure 4 shows the short axis fast MP-SPECT images, their
corresponding difference images as compared with filtered FT SPECT

FIGURE 6

Quantitative comparison of NMSE, PSNR, SSIM, PDS, and IR on 50 testing datasets for fast SPECT and different denoised images for five shorter
acquisition times. Error bars indicate the standard deviation. The filtered FT SPECT images were used as reference. *p<0.05, **p<0.01, ***p<0.001.
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images, polar plots as well as 17-segment plots processed using
different DL denoising methods for a normal male patient. Figure 5
shows the same results for a male patient with a defect in the left
anterior descending (LAD) and left circumflex artery (LCX) region.
It can be observed that all the DL-denoised fast SPECT images
are similar to the filtered FT SPECT images based on a visual
assessment, with the noise level notably suppressed. Furthermore,
it is noted that the proposed AttGAN methods have less bias
than Unet and cGAN methods according to their corresponding
images. Less bias is also observed from the 17-segment images
for the AttGAN and AttGAN-def methods. The denoised images
consistently exhibit worse resolution, i.e., more blurring, in shorter
acquisition times.

3.2. Quantitative analysis

3.2.1. Physical and clinical indices
Figure 6 summarizes the average quantitative indices on all

50 testing datasets for original fast SPECT and DL-based denoised
images. For all indices, DL-based denoising methods improve the
image quality as compared to the original fast SPECT images.
AttGAN-def obtains the best performance, followed by the AttGAN,
cGAN, and Unet. At 1 s/prj fast SPECT images, the NMSE values are
0.0317 ± 0.007, 0.0337 ± 0.008, 0.0363 ± 0.011 and 0.0380 ± 0.013
for AttGAN-def, AttGAN, cGAN, and Unet, respectively, where
AttGAN-def has significant difference with the other three DL
methods. Similar results are obtained for the PSNR and SSIM values.
The absolute errors of IR are 0.0435 ± 0.035, 0.0483 ± 0.046,
0.0498± 0.046 and 0.0632± 0.047 for AttGAN-def, AttGAN, cGAN

and Unet on 1 s/prj fast SPECT images. For the absolute error
of PDS, the AttGAN-def yields the lowest difference value among
all denoising methods on all noise levels. The denoised images
achieve better PDS performance, i.e., 1.60 ± 1.738, 2.36 ± 1.903,
2.76 ± 2.056 and 3.02 ± 2.428 for AttGAN-def, AttGAN, cGAN,
and Unet on 1 s/prj fast SPECT images, as compared to the original
fast SPECT images. The AttGAN-def has significant difference with
the cGAN and Unet while not significant difference with AttGAN
on 1 s/prj fast SPECT images. GAN methods outperform Unet in
general.

3.2.2. Bland–Altman plots
The Bland–Altman plots of PDS for different denoised

methods and fast SPECT images are shown in Figure 7.
The dashed lines denote the 95% confidence interval (CI) of
the PDS. For 1 s/prj fast SPECT, the AttGAN-def method
shows the smallest variance (95% CI: −4.835, +4.435)
compared to the reference filtered FT SPECT images, followed
by the AttGAN (95% CI: −6.383, +5.423), cGAN (95%
CI: −7.402, +5.802), and Unet (95% CI: −8.535, +5.615)
methods.

3.2.3. Joint histogram and linear regression
analysis

The voxel-based joint histogram and linear regression analysis
results are shown in Figure 8. Similar to other quantitative analysis,
AttGAN-def obtains the best performance (R2 = 0.8633), followed
by the AttGAN (R2 = 0.8433), cGAN (R2 = 0.8341), and Unet
(R2 = 0.8123) on 1 s/prj fast SPECT denoised images.

FIGURE 7

The Bland-Altman plots of PDS for fast SPECT different denoised images and acquisition times. The filtered FT SPECT images are used as reference.
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4. Discussion

This study aims to assess the potential of attention-based DL
network on fast MP-SPECT using clinical datasets. The attention
module, inspired by non-local means, was proposed to enable the
remote voxels to contribute to the local receptive filter during
convolutional filtering (28). To the best of our knowledge, we are
the first group to propose using an attention-based DL network for
denoising the MP-SPECT images. For the quantitative performance
comparison, we used filtered FT MP-SPECT images as the reference
since there was no ground truth. Results consistently showed that
the AttGAN denoised images had better quantitative accuracy
from the difference images, polar plots, 17-segment plots, various
physical indices, joint correlation histogram, linear regression and the
clinical PDS analysis, as compared to conventional cGAN and Unet
(Figures 4-8).

Our proposed networks were trained and tested for each dose-
specific dataset, respectively, which were acquired on a CZT scanner.
The denoising process is similar to an image-to-image translation
task, and should be applicable to data acquired from other scanners
or other denoised tasks, e.g., low dose SPECT imaging. The difference
between low dose and fast SPECT is that the former will be more
subject to patient motion with less radiation dose delivered to the
patients. This is particularly important for the increasingly young
patient population which has higher radiation risk than seniors (29).
In our fast SPECT study, the reduction of acquisition time would
be beneficial for patients with a sedation demand and patients with
less compliance. The reduced acquisition time would further increase
the patient throughput. Both low dose and fast SPECT are of clinical
interest and can be potentially achieved using DL techniques (17).

Shiri et al. (17) suggested that denoising from half acquisition
time per projection outperformed that from half number of

FIGURE 8

Joint histogram and linear regression analysis of fast SPECT and different denoised images in the 50 testing datasets for five shorter acquisition times.
The filtered FT images are used as the reference.
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projections for fast MP-SPECT by 2D ResNet. According to this
reference, our fast MP-SPECT datasets were obtained by reducing
the acquisition time per view. Compared with the existing literature,
Ramon et al. (13) reported that CNN-based denoising on 1/2 dose
level images could achieve image quality comparable to standard
full dose images based on the TPD values. Aghakhan et al. (16)
claimed that all denoised images on 1/2 dose level would be
clinically acceptable by using 2D cGAN in the projection domain.
Similarly, in our work, the mean value of the absolute difference
for PDS, a similar index to TPD between FT and AttGAN-
def denoised images on 1/2 acquisition time of FT is 0.66%.
Although our 3D AttGAN results could not be directly compared
with the previous studies due to the use of different networks,
datasets, imaging protocols, and evaluation methods, the results
are consistent.

In addition, some studies have shown that concatenating the
gender, BMI, state (stress or rest), and scatter window images
to the training dataset can improve the DL performance in the
attenuation correction task (30). We first proposed to add patient
defect information into the projections for training the AttGAN
and showed promising results. Incorporating the defect information
into the network structure or loss function could be further
investigated but it is beyond the scope of this study. One should
note that the defect information was extracted from the patients’
medical reports and SPECT images in this study, which may be
subjected to potential image artifacts. Moreover, the actual defect
information may not be able to be verified as other examination
results of the patients, e.g., CT angiography, are not available in
this study.

Ramon et al. (13) compared the performance between training
on a specific low dose level and training on a collection of
various low dose levels at the same time. Their preliminary
results showed that a dose-specific network can be more accurate
than a “one-size-fits-all” network. Liu et al. (31) proposed a
denoising method using an image noise index calculated from
the normalized standard deviation in the liver ROI for low
dose PET images. The image noise index was embedded as a
tunable parameter for training. Their results demonstrated that
their denoising method achieved better denoising performance
than the “one-size-fits-all” network, while it still could not
outperform the dose-specific network. Thus, we trained our DL
model using a dose-specific approach, i.e., separately for different
image acquisition times, for the best denoising performance.
More investigations are warranted for a more generalizable and
efficient training strategy, i.e., transfer learning, data preprocessing
and adjustment on the loss function for training based on all
available data.

Limitations of this study include that the clinical-related
evaluation is only conducted by PDS. A more comprehensive clinical
analysis and a ROC study of defect detectability are needed to
validate the proposed methodology. Another limitation is that our
DL networks were trained based on a relatively small patient cohort,
i.e., thirty-five patients. Training on a large number of patients
would benefit the model performance with less susceptibility of
overfitting, though our network’s loss function was validated to be
converged. Gong et al. proposed to pre-train the DL network with
simulation datasets and then fine-tuned it with a limited clinical
dataset (32). Their results suggested that using simulation datasets
with more realistic imaging conditions or with the use of a more
accurate Monte Carlo simulation would generate a more robust
pre-trained model.

5. Conclusion

In this work, we investigated the performance of AttGAN
in denoising fast MP-SPECT images using clinical datasets. The
proposed AttGAN provided superior denoising performance as
compared to the conventional cGAN and Unet. Patient defect
information could be useful parameter for further improving the
AttGAN-based denoising performance.
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