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Introduction: Gastric cancer (GC) remains the major constituent of cancer-related

deaths and a global public health challenge with a high incidence rate. Helicobacter

pylori (HP) plays an essential role in promoting the occurrence and progression of

GC. Cancer-associated fibroblasts (CAFs) are regarded as a significant component

in the tumor microenvironment (TME), which is related to the metastasis of GC.

However, the regulation mechanisms of CAFs in HP-related GC are not elucidated

thoroughly.

Methods: HP-related genes (HRGs) were downloaded from the GSE84437 and

TCGA-GC databases. The two databases were combined into one cohort for

training. Furthermore, the consensus unsupervised clustering analysis was obtained

to sort the training cohort into different groups for the identification of differential

expression genes (DEGs). Weighted correlation network analysis (WGCNA) was

performed to verify the correlation between the DEGs and cancer-associated

fibroblasts which were key components in the tumor microenvironment. The least

absolute shrinkage and selection operator (LASSO) was executed to find cancer-

associated fibroblast-related differential expression genes (CDEGs) for the further

establishment of a prognostic model.

Results and discussion: In this study, 52 HP-related genes (HRGs) were screened

out based on the GSE84437 and TCGA-GC databases. A total of 804 GC samples

were analyzed, respectively, and clustered into two HP-related subtypes. The DEGs

identified from the two subtypes were proved to have a relationship with TME.

After WGCNA and LASSO, the CAFs-related module was identified, from which 21

gene signatures were confirmed. Then, a CDEGs-Score was constructed and its

prediction efficiency in GC patients was conducted for validation. Overall, a highly

precise nomogram was established for enhancing the adaptability of the CDEGs-

Score. Furthermore, our findings revealed the applicability of CDEGs-Score in the
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sensitivity of chemotherapeutic drugs. In general, our research provided brand-

new possibilities for comprehending HP-related GC, evaluating survival, and more

efficient therapeutic strategies.

KEYWORDS

Helicobacter pylori, gastric cancer, cancer-associated fibroblasts, prognosis, tumor
microenvironment

Introduction

Gastric cancer (GC) is the third leading cause of cancer-related
deaths worldwide (1), especially in East Asia. Worldwide, the number
of newly diagnosed GC patients is about 990,000 per year. The
mortality from GC is high with 784,000 deaths globally in 2018
(2). The incidence of GC varies considerably between genders and
regions, specifically, the incidence rate in men is two to three times
higher than that in women (3). The clinically available therapies for
GC are quite restricted, and the median overall survival for advanced-
stage gastric cancer is merely around 8 months (4). Notably, more
than two decades of research have demonstrated an inextricable
link between Helicobacter pylori (HP) and GC. HP is a Gram-
negative bacillus, which is microaerobic and spiral in shape. It
is usually found in stomach and is resistant to gastric acid. The
evolution of its spiral shape enables it to penetrate the mucus lining.
HP can cause a variety of gastrointestinal disorders, including GC.
It is estimated that GC induced by HP accounts for 65–80% of
all GC cases. The traditional view is that there are two potential
pathways of HP pathogenesis in academic circles: inflammation-
mediated damage to gastric epithelial cells and direct action of
bacteria, respectively. On the other hand, HP can also interfere
directly with the metabolism of epithelial cells by producing the
bacterial agent cytotoxin-associated gene A (5). Despite the fact
that comprehensive gastric cancer treatment can somewhat deter
the aforementioned pathogenic mechanisms, the problem of tumor
recurrence and metastasis faced by GC patients has remained
unresolved. As research progresses, the limitations of GC treatment
strategies are increasingly attributed to alterations in the tumor
microenvironment (TME) mediated by tumor stromal activity, in
which cancer-associated fibroblasts (CAFs) occupy an important
position (6). In spite of this, the biological mechanism of HP on CAFs
in GC remains unsolved.

More and more researches have witnessed that cell interactions
play an overarching role in TME, which is associated with tumor
metastasis (7). In detail, CAFs were associated to the differentiation
of protumorigenic macrophage (8), suppression of NK cells (9), and
blocking of the maturation of dendritic cells (10) via regulatory
molecules in TME. Obviously, CAFs are an important component
of the TME and were found in nearly every kind of solid tumor.
CAFs have been verified to promote cancer growth by supporting
tumor progression, remodeling the extracellular matrix, brokering
tumor-related inflammation and facilitating angiogenesis (11). It is
well known that normal fibroblasts already have an inhibitory role
on cell proliferation and tumor cell motility in vitro (12), as that
on epithelial carcinogenesis (13). Under this circumstance, normal
CAFs are reprogrammed into tumorigenic ones. The aforementioned
transformation requires a vast number of cancerogenic causes and
particular TME motivation, such as oxidative stress and hypoxia,
by which recruitment and activation of fibroblasts are enhanced.

Within these, TGFβ7 (14), PDGF62 (15), and IL-6 (16) are known
fibroblast activators and participate in cellular signaling circuits with
their corresponding receptors, thus mediating their enhancement of
synthesis and secretion capabilities. Not coincidentally, these general
findings are also confirmed in the TME of HP-associated GC. By
harvesting stomach samples from 8-week-old Spraque–Dowley rats
for incubation with the HP strain, the researchers found that in
the long-term presence of exosomes secreted by HP-activated gastric
fibroblasts (HP-AGF), normal gastric epithelial cells undergo a cancer
stem cell-associated programmed transformation, and this type of
transformation is associated with cancer development and metastasis
(17). In particular, HP-AGF further promotes the reprogramming of
normal cells to a tumor-like phenotype by inducing the aggregation
of actin to the nucleus and interfering with the process of DNA
transcription and repair in cells (18, 19). Given that HP and
CAFs play a key role in the formation of TME, it is interesting
to explore how HP-associated GC has altered TME infiltration
and exacerbated disease progression in GC patients with the help
of CAFs.

In our study, we made a prospective analysis of the expression
profiles of HP-related genes (HRGs). HP-associated-fibrosis relative-
gastric cancer differential expression genes expression (DEGs) were
also explored to validate the correlation with TME and prognosis
of GC patients in Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) databases. And we further built
a prognostic model based on different tumor subtypes with the
help of DEGs. Moreover, the GC metastasis and recurrence faced
by patients and medical staff are still a severe challenge (20).
Recent years have witnessed the continuous revolution in the
field of chemotherapy which has become a main medical strategy
for advanced GC (21). Consequently, a comprehensive analysis
of the mechanisms and characteristics of CAFs in the TME is
able to point out new ways to reveal the crucial processes of
carcinogenesis in GC and further carry out chemotherapy sensitivity
prediction.

The whole process of this study was exhibited in Figure 1.

Materials and methods

Data sources and pretreatment

Clinicopathological data in GC samples were retrieved from
GEO1 (GSE84437) and TCGA2 (TCGA-GC). All of the data was high-
throughput gene expression (fragments per kilobase million, FPKM).
We acquired the original “CELL” documents and obtained quantile

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://tcga-data.nci.nih.gov/tcga
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FIGURE 1

Diagram of the study. HP, Helicobacter pylori; CDEGs, cancer associated fibroblast related differential expression genes.

normalization and background adjustment. The data of GSE84437
and TCGA-GC were implemented conversion from FPKM values to
transcripts per kilobase million (TPM) using the following formula:

TPMi =
FPKMi

Total library FPKM
× 106

We then aggregated the two datasets for the sequent operations.
The batch effects were eliminated after applying the “Combat”
algorithm through “SVA” R package. Ultimately, there were
804 GC patients being included for further research after
excluding data with no survival information. The clinical
parameters contained sex, age, TNM stage, survival status,
and follow-up time.

HRGs cluster analysis

The HRGs were downloaded in MSigDB.3 The full details
of these genes were shown in Supplementary Table 1. To
evaluate the prognostic value of HRGs, GSE84437 and TCGA
were combined into one cohort for training. Univariate
Cox regression analysis enumerated the whole HRGs and
their corresponding p-value. HRGs with a p-value < 0.05
were regarded as prognostic-related genes. Furthermore, the
consensus unsupervised clustering analysis was obtained
to sort the training cohort into different groups based on
the expression of prognostic-related genes with help of the
“ConsensusClusterPlus” package. The HRGs cluster analysis
was based on the following assumptions: Primarily, the cumulative
distribution function (CDF) curve should meet continuity and

3 http://www.broad.mit.edu/gsea/msigdb/

stability. Next, the sample size was enough. Finally, the inter-
group relation declined and the intra-group relation increased
after clustering.

Correlation between two subtypes with
the clinical characteristics, immune
infiltration, and related pathways in GC

After consensus clustering, we explored the association between
the two subtypes. The patient features contained age, gender, TNM
stage, and project. Further, the distinctions in immune infiltration
among the two subtypes were observed executing the calibration
algorithm. Moreover, we used Kaplan–Meier curves to identify
the variance in recurrence-free survival (RFS) among different
subtypes with the help of “survminer” and “survival” packages. The
“GSVA” R package was performed to conduct gene set variation
analysis (GSVA), which revealed the biological processes in different
subtypes.

DEGs identification in subtypes and
functional annotation

Differential expression genes (DEGs) between the two subtypes
were ascertained by the “limma” package according to a prerequisite
that the modified p-value < 0.05 and the | Log2Fold Change| > 1.
Meanwhile, principal component analysis (PCA) was performed
with the “ggplot2” package. In order to demonstrate the function
of the DEGs and explore the enriched pathways and associated
gene functions, the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses were performed by the
“clusterprofiler” R package.
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Module related with CAFs identification
via WGCNA

After the function enrichment of DEGs in two subtypes, we
hoped to investigate the correlation between the regulatory process
of these DEGs intervened by HP and TME. To estimate the
proportion of major cells in TME, Estimated the Proportion of
Immune and Cancer Cells (EPIC) was used for the assessment of
TME component with the help of “EPIC” R package. Furthermore,
weighted correlation network analysis (WGCNA) was carried out
to construct a DEGs-related gene cop-expressed network with
“WGCNA” package. Concrete criteria were as followed: First, the gene
expression level upload procedure was performed by R language. The
network connection was calculated with help of Pearson’s correlation
coefficient. Then, set the soft thresholding β as 5 to render the mean
connectivity desirable among genes. Further, the transformation
from the adjacency matrix to topological overlap matrix (TOM)
was executed for subsequent gene hierarchical cluster by “hclust”
algorithm. Finally, modules were identified with the utilization of
dynamic tree cut and hierarchical cluster. Phenotypes and eigengenes
network were used to assess the correlation between module and trait.
The relationship between different cells and module eigengene was
regarded as the definition of module membership. Module turquoise
had the highest correlation coefficient to CAFs and was chosen
for further study.

Construction and validation of the CDEGs
prognostic risk score

Cancer-associated fibroblasts (CAFs) related module was applied
to the “survival” R package for univariate Cox regression on the
basis of that ∗p < 0.05 was considered as the cut-off value. Then,
performing the R package “glmnet,” these genes were included in
least absolute shrinkage and selection operator (LASSO) regression to
avoid overfitting. After that, 21 genes were screened out through the
multivariate Cox analysis and regarded as cancer associated fibroblast
related differential expression genes (CDEGs). The calculation of
risk score was as follows: CDEGs-Score = sum of each gene’s
(gene expression value × regression coefficient). GC patients were
segregated into high- or low-risk groups according to the median
risk score value. Later, Kaplan–Meier analysis and Log rank test
were used to carry out the survival analysis of the two groups.
Meanwhile, all groups underwent receiver operating characteristic
(ROC) curves analysis.

Establishment and verification of a
nomogram scoring system

After independent prognosis analysis, the “rms” R package
was used to produce a nomogram on the basis of the risk score
clinical characteristics. Each parameter was associated with a given
score respectively in the nomogram. The overall score obtained by
summing the scores of each parameter was the sample score. In
this nomogram, the actual observed data and the 1-, 3-, and 5-year
survivals were presented on calibration plots.

Combined characteristics analysis of the
risk score

The “mafTools” R package was executed to obtain the mutation
annotation format so as to explore the somatic mutations of GC
patients in different groups. We analyzed the relation between 22
infiltrating immune cells and 21 prognostic CDEGs. In the high-
and low-risk groups, we then applied boxplots to figure out the
differential expression levels and cancer stem cell index. For each
patient, the TME score was also calculated. In order to explore the
association between the sensitivity to chemotherapeutic drugs and
CDEGs-Score, the semi-inhibitory concentration (IC50) values were
calculated to estimate clinically common drugs separately through
“pRRophetic” R package.

Statistical analysis

Statistical processing and analyses were executed using R
software4 (version 4.1.0). All data were analyzed with significance at
∗p < 0.05.

Results

The landscape of HRGs in GC

In two datasets, we screened out 52 HRGs and presented
their mutation conditions with 433 HP-associated GC samples
(Figure 2A), which showed a high mutation frequency (266, 61%).
Among these genes, the one with the top mutation frequency was
TP53 (44%). Following that were IRF2 (5%), PLCG1 (4%), CASP5
(4%), and CASP8 (4%). Among these alterations, missense mutations
were the most common form, with T > A alterations predominating.

Next, somatic copy number variations (CNV) frequency analysis
was performed on the HRGs with the boxplot. Figure 2B exhibited
the position of CNV alterations in the HRGs on their relevant
chromosomes. All 52 genes were observed to vary degrees of
CNV in the mixed samples, among which GIT1, ATP6V1C1,
CCL5, PAK1, and ATP6V0A1 had extensive CNV increases, while
ATP6V0E2, CASP3, ATP6V0A4, and CDC42 presented CNV
decreases (Figure 2D). We further investigated the mRNA levels
in GC compared with normal samples and discovered that the
mRNA level and CNV alteration showed no significant correlation
in terms of HRGs (Figure 2C). There was a higher expression level
of GIT1, ATP6V1C1, and PAK1 in GC samples than in normal
samples. However, compared with the normal samples, HRGs such
as CASP3 and CDC42 which were considered as CNV loss were
also observed of higher expression level in GC ones. CXCR2, JUN,
ATPV1G2, MAPK10, PTPRZ1, and JAM2 were the only HRGs
lower expressed in GC samples, which didn’t show a consistent
decrease in CNV alteration either. In general, it could be concluded
that GC samples exhibited a generally high expression compared
to normal tissues and this phenomenon was not exclusively related
to CNV. Our findings demonstrated considerable differences in

4 https://www.r-project.org/
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FIGURE 2

The landscape of HRGs in GC. (A) Frequencies of mutation in 433 patients with GC in GEO and TCGA datasets. The mutation frequency of each gene
was presented on the right. Every column represented a sample. (B) CNV alterations of HRGs on 23 chromosomes. The red dot represented the gain
frequency while the green dot represented the loss frequency. (C) Expression distributions of 52 HRGs between normal and GC samples, *p < 0.05,
**p < 0.01, ***p < 0.001. (D) The CNV frequency of HRGs in all samples. HRGs, HP-related genes; GC, gastric cancer; GEO, Gene Expression Omnibus;
TCGA, The Cancer Genome Atlas; CNV, copy number variations.

both gene profiles and HRG expression levels between different GC
samples, suggesting a potential function of HRG in HP-related GC
progression.

Survival analysis of HRGs in HP-related GC
patients

To further demonstrate the prognostic value of HRGs in GC,
there were 9 genes being regarded as outstandingly prognostic
genes in overall survival through analysis of univariate Cox
regression and Kaplan–Meier survival (Figure 3A). Notably,
ATP6V1B1 had relatively high prognostic significance (log-rank
test, ∗p = 0.002). The combined landscape of HRG connection,
interactions of the regulator, and prognostic value was illustrated in
Figure 3B.

Identification of HP-infection related
subtypes and TME analysis

To further figure out the expression characteristics of HRGs
in GC, our study categorized GC patients by consensus clustering
algorithm, which was according to the expression profiles of 52
HRGs. Our outcomes showed that k = 2 was optimum for separating
the whole dataset into two subtypes (A, n = 313; B, n = 491;
Figure 4A). On the other hand, by the measure of proportion
of ambiguous clustering, when k = 2, the CDF curve slope was
the smallest (Figure 4B). Next, the Kaplan–Meier curves obviously
witnessed a better prognosis in subtype B on account of RFS with
∗p = 0.024 in log-rank test (Figure 4C).

Based on the clustering analysis, immune cell infiltration of
TME was evaluated in the two subtypes, which displayed remarkable
differences (Figure 4D). The activated B and CD8 T cells, eosinophils,
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FIGURE 3

Survival analysis of HRGs in HP-related GC patients. (A) The Kaplan–Meier survival analysis. (B) Interactions among HRGs. The area of the circles
represented the prognostic significance of each gene. The red circles, risk factors; the blue circles, protective factors. The correlation of genes was
indicated by lines whose thickness presented the strength of connection. The red lines, positive associations; the blue lines, negative associations. HRGs,
HP-related genes; GC, gastric cancer.

immature B cells, macrophages, MDSCs, mast cells, regulatory
T cells, follicular helper T cells, and type 1 helper cells had a
significantly higher infiltration level in the subtype A, while only
neutrophils exacted the opposite. Thus, immune cell infiltration
analysis revealed a higher immune cells enrichment in subtype A,
suggesting that immune factors might be a prognostic risk factor
for HP-related GC. Meanwhile, the two subtypes were performed
GSVA analysis and the subtype A showed an enrichment in
extracellular matrix remodeling and cell adhesion related pathways
based on two cohorts (GSE84437, TCGA) (Figure 4E). For instance,
cell adhesion molecules, vascular smooth muscle, and dilated
cardiomyopathy pathways were highly stimulated in subtype A.
From another angle, the subtype B was significantly enriched in
synthesis and metabolic pathways. In detail, it was manifested
by extensive activation of terpenoids backbone, steroids, folate,
glycosylphosphatidylinositol, spliceosome, RNA polymerase, and
proteasome synthesis pathways, including pyrimidine, glyoxylate,
and dicarboxylate metabolism pathways. In addition, gene damage

repair pathways were also presented a highly activated state in
subtype B, such as mismatch repair, homologous recombination, and
base excision repair pathways.

Moreover, the expression of HRGs and clinicopathological
features were relatively different in two subtypes (Figure 4F and
Table 1). Subtype A was more inclined to present higher T stage and
lower age (p < 0.001) compared to subtype B.

Identification of DEGs and the
corresponding functional enrichment

We further identified the DEGs in two subtypes and the discovery
was displayed on the volcano plot (Figure 5A). Then, our PCA
analysis indicated prominent difference between the two subtypes in
the transcription profiles of HRGs (Figure 5B).

Given that there was a significant distinction between two
subtypes clustered from HRGs, we further focused on what
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FIGURE 4

HP-related genes (HRGs) subtypes, clinicopathological and TME characteristics of subtype A and B classified by consensus clustering analysis.
(A) Heatmap of consensus matrix (k = 2) showing the relative area of each cluster. (B) The CDF curves revealing the consensus distributions according to
the k value. (C) Univariate analysis presenting 52 HRGs related to respective RFS time. (D) Immune infiltration level of 23 immune cells in subtype A and B,
*p < 0.05, **p < 0.01, and ***p < 0.001. (E) GSVA between subtype A and B. Red represented activated pathways while blue represented suppressive
pathways. (F) Distinct clinicopathological characteristics and expression levels of HRGs on account of different clusters. HRGs, HP-related genes; TME,
tumor microenvironment; CDF, cumulative distribution function; GC, gastric cancer; RFS, recurrence-free survival; GSVA, gene set variation analysis.

function the DEGs mainly played in subtype A and subtype B.
Thus, we resorted to GO analysis for further confirmation. GO
enrichment analyzed the DEGs associated with HRGs subtypes
and the DEGs were found presenting an enrichment in GO terms
correlated to extracellular matrix, which revealed the suppression of
expression (Figure 5D). The extracellular matrix was significantly
inhibited in organization, muscle contraction, collagen-containing,
contractile fiber, and contractile fiber part indicating that the

DEGs might have an internal relationship with the alteration of
extracellular tissues and cells. Meanwhile, the molecular function
enrichment results also displayed the inhibition of expression
related to extracellular matrix (Figures 5C, E). The above results
suggested that the DEGs had connections with extracellular
matrix remodeling and cell adhesion, which implied that the
DEGs potentially induced GC development by the alteration of
TME. Considering the function of CAFs in TME, the DEGs
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TABLE 1 The chi-square test of the relationship between two subtypes and clinical characteristics.

Characteristic B A p

n 491 313

Gender, n (%) 1.000

Female 165 (20.5%) 105 (13.1%)

Male 326 (40.5%) 208 (25.9%)

T, n (%) <0.001

T1 27 (3.4%) 2 (0.2%)

T2 82 (10.2%) 34 (4.2%)

T3 155 (19.3%) 104 (12.9%)

T4 221 (27.5%) 171 (21.3%)

Unknown 6 (0.7%) 2 (0.2%)

N, n (%) 0.560

N0 118 (14.7%) 70 (8.7%)

N1 178 (22.1%) 107 (13.3%)

N2 117 (14.6%) 89 (11.1%)

N3 65 (8.1%) 42 (5.2%)

Unknown 13 (1.6%) 5 (0.6%)

Age, median (IQR) 65 (57, 72) 61 (53, 69) <0.001

was likely to influence the GC progression by the mediation of
CAFs.

Identification of CAFs-related module
from comparing HP-infection related
subtypes

The transcription level of each kind of cells in mixed samples
sequency was showed (Figure 6A). Different cells had significant
distinctions in expression profiles. Further, the proportion of B
cells was the largest among all samples (>80%). The content
of CAFs showed a rather stable share although the proportion
was not high (Figure 6C). On this basis, we established a co-
expression network based on the interactions between genes with
the help of WGCNA. To render the topology network scale-free,
soft threshold = 5 was considered as the optimal (Figure 6D).
After clustering, 4 modules were identified by the hierarchical
clustering tree (Figure 6F). The turquoise module was recognized
as the CAFs-related module (Cor = 0.72, p = 5e-127) and was also
highly related to endothelial (Cor = 0.61, p = 3e-80) (Figure 6B).
Notably, the correlation of B cells with ME blue and ME turquoise
was completely opposite to that of CAFs, suggesting that B
cells might play an antagonistic role against CAFs during GC
progression.

In addition, we explored the correlation between different cells
by correlation analysis. In the correlation heat map, all immune cells
except NK cells were correlated with each other in different degrees
(Figure 6E). Importantly, CAFs showed a significant synergistic
relationship with endothelial, suggesting that epithelial-mesenchymal
transition might occur in TME under the action of CAFs.

Establishing a prognosis prediction model
from CDEGs

Before building the prediction model, we divided the cohort
into two parts, the train cohort and the test cohort. The two
cohorts were performed chi-square test to prevent confounding
factors (Table 2). 228 genes were processed after preliminary analysis
by univariate Cox regression. All included genes met the standard
that ∗p < 0.05 and the hazard ratio range did not contain 1
(Figure 7A). Subsequently, a 21-gene signature was ascertained in
accordance with the desirable λ value with help of LASSO and
multivariate Cox regression analysis (Figures 7B, C). Furthermore,
we established the CDEGs-Score and its calculation formula was as
follows:

CDEGs− Score =
21∑
i=1

βn × [FPKM]n

The whole cohort was categorized into high- and low-score groups
according to the median risk score. The samples numbers in each
group were 405 and 399, respectively. In addition, comparison
of the clinical materials between two risk groups revealed that
the clinicopathological features were relatively different among
two groups, which mainly showed in T (∗p = 0.004) and N
(∗p = 0.002) stage (Table 3). After dividing the cohort into two
groups, the alluvial presented a strong correlation between high-
risk and dead outcome. For the majority of cases in the high-risk
group had a survival outcome of death, while the majority of cases
in the low-risk group survived instead. Nevertheless, there was
no considerable discrepancy between risk and HP-related subtypes
(Figure 7D).
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FIGURE 5

Identification of DEGs between the two subtypes and the corresponding functional enrichment. (A) A volcano plot corresponding to the regulation of
DEGs in two subtypes, the default set of threshold was foldchange ≥ 2. (B) PCA plot exhibiting the distinctions in transcriptomes between the subtype A
and B. (C) The description of GO terms and KEGG pathways of DEGs. (D) GO and KEGG analysis of DEGs (the top 12 are shown). (E) GO Bubble plot
displaying expression level of DEGs in different terms. DEGs, differential expression genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; PCA, principal component analysis.

Further, we compared gene expression differences in three
different cohorts with the risk factor maps (Figures 7E–G). It was
evident that 21 genes showed expression differences between two
group in all three cohorts.

Validation of the CDEGs-related model

On account of the prognosis prediction model, the high- and
low-risk groups were exhibited Kaplan–Meier survival analysis
in three validations (Figures 8A–C). There was an apparent
difference in survival probability between two groups in all
cohorts (∗p < 0.001), train cohort (∗p < 0.001), and test
cohort (∗p = 0.002). On the basis of the risk score, the

AUC values of 1-, 3-, and 5-year overall survival (OS) for all
cohorts were 0.661, 0.691, and 0.680, respectively (Figure 8D).
The AUC values of 1-, 3-, and 5-year OS for the train
cohort predicted by the risk score were 0.718, 0.742, and 0.739,
respectively (Figure 8E). The AUC values for the test cohort
were 0.614, 0.640, and 0.626 at 1, 3, and 5 years in OS
predicted by the risk score (Figure 8F). Given that the clinical
application of CDEGs-Score in calculating OS was inconvenient
in patients, the nomogram relying on the risk and clinical
characteristics was constructed to predict the OS rates at 1, 3, and
5 years (Figure 8G). Calibration curves were applied to ensure
that the nomogram displayed an excellent consistence between
observation and prediction (Figure 8H). Moreover, the decision
curve analysis (DCA) indicated that the combination prediction
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FIGURE 6

Identification of CAFs-related module from comparing HP-infection related subtypes. (A) The display of the expression status of different cells in GC.
(B) Heatmap showing the relationship between GC traits and ME. Correlation coefficients and P-values were showed in each kind of cells. (C) Stacked
bar plot showing the percentage of various cells, and cell fractions estimated by EPIC. (D) Identification of soft-threshold power through analyzing the
value of mean connectivity and scale-free index. (E) The correlation matrix of eight types of GC sample cells. Coefficients were labeled. (F) Plot of gene
dendrogram presenting the module assignment with the help of average linkage hierarchical clustering. CAFs, cancer associated fibroblasts; GC, gastric
cancer; ME, module eigengenes; EPIC, estimating the proportions of immune and cancer cells.

of CDEGs and clinical factor was superior to the TNM stage
(Figure 8I).

Exploring the factors influencing the
prognosis of different groups

Then the distribution variations of the somatic mutations were
analyzed between high- and low-risk groups in all cohort. The top 20
mutated genes were TTN, TP53, MUC16, ARID1A, LRP1B, SYNE1,
FLG, FAT4, CSMD3, PCLO, DNAH5, KMT2D, FAT3, HMCN1,

OBSCN, RYR2, ZFHX4, SPTA1, PIK3CA, and CSMD1 (Figures 9A,
B). Compared to low-risk group, high-risk group gained higher
frequencies of TTN and TP53 mutations relatively. However, the
decisive difference was identified due to the mutation levels of
MUC16, PCLO, and PIK3CA. We next explored the connection
between the 21 genes in the prognosis prediction model and the
enrichment of immune cells. Our results found most immune cells
were significantly related to these genes (Figure 9C). Monocytes,
resting mast cells, naïve B cells, and memory B cells showed a
significant positive correlation with 21 genes, which suggested that
these cells were involved in disease progression and contributed
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TABLE 2 The chi-square test of the relation between train set and test set.

Characteristic Train Test p

n 402 402

Gender, n (%) 1.000

Female 135 (16.8%) 135 (16.8%)

Male 267 (33.2%) 267 (33.2%)

T, n (%) 0.708

T1 11 (1.4%) 18 (2.2%)

T2 56 (7%) 60 (7.5%)

T3 134 (16.7%) 125 (15.5%)

T4 197 (24.5%) 195 (24.3%)

Unknown 4 (0.5%) 4 (0.5%)

N, n (%) 0.505

N0 94 (11.7%) 94 (11.7%)

N1 139 (17.3%) 146 (18.2%)

N2 104 (12.9%) 102 (12.7%)

N3 59 (7.3%) 48 (6%)

Unknown 6 (0.7%) 12 (1.5%)

Age, median (IQR) 64 (56, 71) 63 (55, 71) 0.332

TABLE 3 The chi-square test of the relation between two risk groups and clinical features in cohort.

Characteristic Low High p

N 399 405

Gender, n (%) 0.940

Female 135 (16.8%) 135 (16.8%)

Male 264 (32.8%) 270 (33.6%)

T, n (%) 0.004

T1 22 (2.7%) 7 (0.9%)

T2 62 (7.7%) 54 (6.7%)

T3 139 (17.3%) 120 (14.9%)

T4 173 (21.5%) 219 (27.2%)

Unknown 3 (0.4%) 5 (0.6%)

N, n (%) 0.002

N0 117 (14.6%) 71 (8.8%)

N1 135 (16.8%) 150 (18.7%)

N2 87 (10.8%) 119 (14.8%)

N3 52 (6.5%) 55 (6.8%)

Unknown 8 (1%) 10 (1.2%)

Age, median (IQR) 63 (54, 71) 64 (56, 71) 0.124

to different prognosis in high- and low-risk groups, respectively.
In addition, we assessed the expression distributions of the HRGs
between the two groups. The boxplot presented that the expression
level of 26 genes were obviously different, including TJP1, JAM2,
ATP6V1E2, and JAM3 (Figure 9D).

Apart from this, we hoped to fix out the relationship of risk with
TME score. For the TME score, higher stromal and estimate scores
was associated with high-risk group, which demonstrated higher
TME scores for patients in high-risk group(Figure 9E).

Drug sensitivity analysis based on
CDEGs-score

The sensitivity of patients in the low- and high-risk groups
to the chemotherapy drugs selected according to current clinical
situation was evaluated. Notably, patients in the high-risk group
had lower IC50 value compared to low-risk group with regard
to dasatinib. In the low-risk group, IC50 values of cyclopamine,
rapamycin, methotrexate, gemcitabine, and vinorelbine were
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FIGURE 7

Establishing a prognosis prediction model from CDEGs. (A) Univariate COX regression confirmed that HRGs significantly related to the prognosis of GC.
(B,C) LASSO and multivariate Cox regression analysis. (D) Alluvial diagram of subtype distributions in groups with different risk and fustat. (E–G) Heat map
showing the correlation between gene expression and risk score in all cohorts, train cohort, and test cohort. CDEGs, cancer associated fibroblast related
differential expression genes; HRGs, HP-related genes; GC, gastric cancer; LASSO, least absolute shrinkage and selection operator.

lower relatively (Figures 10A–F). In general, there was indeed
remarkable correlation between the CDEGs-Score and drug
sensitivity.

Discussion

Helicobacter pylori (HP) is the predominant species in the
human gastric micropopulation, and the gastritis it induces has been
established as the greatest single risk factor for GC (22). In clinical
studies and animal models, researchers have directly demonstrated
that HP eradication can contribute to the prevention of GC in
infected individuals without pre-malignant lesions (23, 24). As for
pathobiology, the risk for the HP-infected people developing gastric
cancer is dependent on multiple factors including HP strain-specific
virulence factors, the host genotype, environmental factors such
as diet, and the alternations in the immune microenvironment
(25–27). Though, the current researches concerning the immune
microenvironment mainly focus on the interaction of immune

cells and subsequent signaling, such as the NF-κB pathway and
inflammasomes, partly neglecting the role of other non-immune cell
components with high significance (28). Since several experiments
have confirmed HP-related gastric fibroblasts as momentous
characters in the genesis and development of HP-related GC, it
is meaningful to further discuss their specific mechanism with an
overall genome and immune landscape cognition (18, 19). Thus, we
sorted the HP-related GC patients into two subtypes with HRGs
and thus identified CDEGs, and further analyzed the correlation
between their expression and TME as well as the prognosis, finally
establishing prognostic models for guiding the personal treatment of
HP-related GC patients.

In this study, we screened out 52 HRGs with HP-related GC
samples in the GSE84437 dataset. The genetic analysis indicated a
high frequency of mutations in HRGs, especially in TP53 (44%), RF2
(5%), PLCG1 (4%), CASP5 (4%), and CASP8 (4%). Several human
studies have certified the relationship between HP-related GC and
the development of TP53 mutations, the latent mechanism of which
may be the selective pressures offered by exogenous exposures for
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FIGURE 8

Validation of the CDEGs-related model. (A–C) The Kaplan–Meier survival analysis of all cohorts, train cohort, and test cohort. (D–F) ROC curves
comparing the 1-, 3-, and 5-year overall survival in all cohort, train cohort, and train cohort. (G) Nomogram for predicting the 1-, 3-, and 5-year overall
survival in the train cohort, ***p < 0.001. (H) Calibration curves of the nomogram for predicting of 1-, 3-, and 5-year overall survival. (I) DCA curves for
two independent prognostic factors or a combination of them in OS prediction. CDEGs, cancer associated fibroblast related differential expression
genes; ROC, receiver operating characteristic; DCA, decision curve analysis; OS, overall survival.

the emergence of mutant TP53 clones (29, 30). The other high-
frequency genetic mutations were first reported in HP-related GC
providing a novel perspective. More interestingly, we discovered
that the expression of most HRGs was upregulated in GC, but
had no significant correlation with the CNV alteration, implying
their regulation might be controlled by a complex transcriptional
regulatory network or epigenetics alternation.

Based on the expression of HRGs, we could divide the GC
patients into two subtypes with significant prognosis differences. In
subtype B, the patients had better RFS, lower T stage, and higher

age. With GSVA enrichment analysis, we discovered that the subtype
B was prominently enriched in synthesis and metabolic pathways
as well as gene damage repair pathways including mismatch repair,
homologous recombination, and base excision repair pathways,
which might partly account for its better prognosis. In addition,
subtype A was enriched in extracellular matrix remodeling and
cell adhesion related pathways, indicating the diversity between
the two subtypes in TME. Therefore, we further the relationship
between these two subtypes and immune infiltration. Compared
with subtype B, subtype A had significantly more activated immune
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FIGURE 9

Exploring the factors influencing the prognosis of different groups. (A,B) The waterfall plot of somatic mutation features constructed with high- and
low-risk groups. (C) Correlations between the abundance of immune cells and 21 genes in the prediction model, *p < 0.05, **p < 0.01, and
***p < 0.001. (D) Expression distributions between high- and low-risk groups in HGRs. (E) The correlations between risk and TME score. TME, tumor
microenvironment.

infiltration, including activated B cells, activated CD8 T cells,
eosinophils, immature B cells, MDSCs, macrophages, mast cells,
regulatory T cells, T follicular helper cells, and type 1 helper
cells. Geng et al. constructed a novel immune-related signature
for predicting the survival and curative effect of HP-positive
GC patients (31). Their model enriched the high-risk group in
several immune-related pathways, including B cell receptor signaling
pathway, leukocyte transendothelial migration, natural killer cell
mediated cytotoxicity, and type 1 and 2 helper cell differentiation.
Conversely, some metabolic pathways, such as carbon metabolism,
DNA replication, and nitrogen metabolism were upregulated in the
low-risk group, which was consistent with our findings. They also
verified that the patients with more intense immune infiltration had
a worse prognosis.

As the most dominant cell type in the stroma of TME,
CAFs can promote tumor progression, metastasis, and angiogenesis
with extracellular matrix remodeling (32, 33). Moreover, CAFs
also interact with diverse immune infiltration cells regulating the
anticancer immunological status of TME (34). The functional
enrichment analysis of the DEGs between the two subtypes
indicated that these DEGs were highly correlated with extracellular
matrix organization, extracellular structure organization, muscle
contraction, collagen-containing extracellular matrix, and contractile
fiber, which reveal the potential role of CAFs in causing the subtypes’
differences. With EPIC and WGCNA, we discovered a significant
synergic relationship between the CAFs and endotheliocytes,
affirming the promoting efficacy of CAFs in EMT. The paracrine
factors released by CAFs, especially transforming growth factor-β,
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FIGURE 10

Drug sensitivity analysis based on CDEGs-score. (A–F) Relationship between chemotherapeutic drugs and CDEGs-Score. CDEGs, cancer associated
fibroblast related differential expression genes.

were regarded as the main approach in modulating EMT (35). More
interestingly, we also found that the B cells might have an antagonistic
effect on CAFs, offering an unrevealed viewpoint.

Considering the significance of these DEGs and CAFs-related
heterogeneity on the clinical outcomes, a CDEGs-Score based on
a 21-gene signature identified by Cox regression analysis was
constructed for HP-related GC patients. The patients were divided
into high- and low-score groups, and the high score was related
to poor prognosis. We also further confirmed the efficacy of this
novel risk score model with the test, train, and all cohorts. The risk
score model had outstanding AUC in predicting OS, and the low
risk was significantly associated with better survival. The nanogram
based on the risk score and the clinicopathological parameters also
showed satisfying performance in predicting the OS of the 1-, 3-,
and 5-year. Zhang et al. also developed a prognosis model based
on the CAFs subtypes for GC patients, however, our model was
aimed at HP-related GC patients achieving more personal and precise
prediction (34).

For further analysis of the possible factors determining the
survival difference between the two groups, we acquired the
distribution variations of the somatic mutations and discovered
that the mutations of MUC16, PCLO, and PIK3CA were the
most essential. Encoding cancer antigen 125 (CA125), MUC16 is
frequently mutated and highly related to the prognosis in various
tumors, including cholangiocarcinoma (36–39), ovarian carcinoma,
hepatocellular carcinoma, and GC. With two GC cohorts, Li et al.
verified that MUC16/CA125 mutation was associated with high
tumor mutation load and better outcomes in gastric cancer (40),
which was consistent with our result. In previous studies, PLCO
was considered to be correlated with neuropsychosis such as bipolar

disorder, major depressive disorder, pontocerebellar hypoplasia type
III, etc (41–43). Interestingly, the own definitive molecular features
of EBV-positive GC include PIK3CA mutations, which may be
associated with signaling pathways leading to GC oncogenic process
by promoting chronic gastric inflammation (44). Furthermore, these
CDEGs were highly related to the immune cells, stromal, and
estimate scores, indicating high-risk showed a positive correlation
with activated immune infiltration.

Among diverse solid tumors, GC is considered the most common
one displaying CAF-mediated chemo-resistance including paracrine,
exosomal cargo, extracellular vesicle, and secretomic modes of
action (45). Therefore, we further explored the drug sensitivity
of frequently used chemotherapeutic agents in GC based on the
CDEGs-Score grouping, proving that the low-risk group was more
sensitive to cyclopamine, rapamycin, methotrexate, gemcitabine, and
vinorelbine. Similarly, Wei et al. demonstrated that CAFs facilitated
malignant progression and gemcitabine resistance of pancreatic
cancer via secreting SDF-1 (46). Our findings also partly accounted
for the prognosis difference resulting from the CDEGs classification
and provided clinical guidance in treatment. However, the above
results were acquired based on the data from public datasets, and
more clinical studies were required to verify our novel risk score
model for HP-related GC patients.

Nevertheless, our research offered a novel viewpoint for
understanding HP-related GC. Based on an overall genome
cognition, we screened out HRGs and thus identified two subtypes
according to the differential expression. By further enrichment
and immune infiltration analysis, we verified the essential role
of CAFs in leading this heterogeneity. Eventually, a reliable risk
score model based on CDEGs was constructed for predicting the
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chemotherapeutic efficacy and prognosis. In sum, our systematic
study of CAFs and CDEGs will act as a pioneer effort for exploring
their roles and value in HP-related GC.

Conclusion

In summary, we comprehensively analyzed the expression
pattern of HRGs and thus identified two subtypes in HP-related GC
patients. Based on these two subtypes, the CDEGs-score model was
constructed for predicting the prognosis of HP-related GC patients
and guiding their precise treatment for the first time. Meanwhile, our
study also provides a novel perspective on studying the mechanism
for malignant progression in HP-related GC, indicating targeting
CAFs may be a potential therapy.
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