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Deriving social determinants of health from underserved populations is an important

step in the process of improving the well-being of these populations and in driving

policy improvements to facilitate positive change in health outcomes. Collection,

integration, and e�ective use of clinical data for this purpose presents a variety of

specific challenges. We assert that combining expertise from three distinct domains,

specifically, medical, statistical, and computer and data science can be applied along

with provenance-aware, self-documenting workflow tools. This combination permits

data integration and facilitates the creation of reproducible workflows and usable

(reproducible) results from the sensitive and disparate sources of clinical data that

exist for underserved populations.
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1. Introduction

1.1. Motivation

Social determinants of health (SDOH) are an increasingly recognized significant contributor

to health outcomes. SDOH are defined as the social, behavioral, and environmental factors that

contribute to health inequalities and account for up to 70% of health outcomes (1). SDOH

contribute substantially to an individual’s overall physical and mental health. Specifically, low

literacy, racial segregation, poverty, food insecurity, housing instability, transportation, and

financial problems can impact an individual’s health and contribute substantially tomortality (2).

For example, place of birth is more strongly associated with life expectancy than genetics or

race (1), and in the United States, a 15-year difference in life expectancy exists between the most

advantaged and disadvantaged citizens (3).

In this work, we are particularly interested in SDOH as they apply to people with opioid

use disorder (OUD). Substance use disorders (both illicit drug use and alcohol) affect 22.5
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million individuals (2014), but only 18% received treatment (4).

The indirect and direct cost of illicit drug use is estimated to be

approximately USD200 billion (2007) (5). Recently, treatment of

substance use disorders has emphasized harm reduction approaches

and management as a chronic medical condition instead of a reliance

on criminalization and incarceration (4, 6).

We are particularly interested in factors that affect treatment

uptake for hepatitis C virus (HCV) infection because the infection

is highly prevalent among people with OUD as injection drug use

is the primary mode of transmission. HCV is a leading cause of

chronic liver disease and can progress to cirrhosis, liver cancer, and

death if not treated. Globally, HCV affects 58 million individuals,

and HCV prevalence among people with OUD ranges from 30 to

70% (7–9). Recently, direct-acting antivirals (DAAs) against HCV

have dramatically changed treatment outcomes. DAAs are all oral,

curative in more than 90% of patients, and have virtually no side

effects (10). DAAs have promoted the objective of HCV elimination,

and interventions promoting HCV cure among people with OUD are

required to achieve elimination goals (11, 12).

People with OUD are considered underserved due to limited

financial resources, difficulty in accessing medical care, and

underemployment. As a consequence, they typically avoid healthcare

encounters in conventional medical settings due to concerns

regarding stigma. As high-quality and accurate SDOH data require

truthful responses from patients, investigators must consider the

relationship between the patient and their healthcare provider, which

is related to the trust between the patient and their healthcare

provider (13, 14). Indeed, patient-provider trust is the basis of

therapeutic alliances that include affective bonds, agreement on goals,

and task assignment (15, 16). Patients need to have the confidence

that their health information is secure, confidential, and will be

protected at all times (17). When addressing SDOH among an

underserved population, such as people with OUD, these factors

become even more important.

A potential approach to increase the accuracy and quality of

collected SDOH information may be to situate data collection in

venues that people with OUD consider “safe spaces,” where they

feel supported, and the environment is described as destigmatizing

(18, 19). Opioid treatment programs (OTPs) have been described

as accepting, comfortable, and trusting environments. The trust

between patients, OTP staff, and healthcare providers largely

circumvents stigma encountered in traditional healthcare

settings (13, 14). Recent work has focused on the concept of

health equity, that all population members should have access to

high-quality health care (1, 20). Professional societies, such as the

American College of Physicians (ACP), have highlighted research

gaps in the area of SDOH based upon the realization that they require

prioritization in order to improve health outcomes, particularly

among underserved populations (1, 21, 22). Furthermore, recent

data have also illustrated that SDOH are associated with geographic

variation in healthcare spending, particularly in Medicare (23).

In recent years, the terms “reproducibility" and “reproducibility

crisis" have been used to express concerns about research practices

and selection mechanisms applied to the production and analysis

of scientific data. These concerns initiated a response from

the scientific community with a National Academies of Science,

Engineering and Medicine (2019) report examining the issues and

providing guidelines and potential solutions (24). In the field

of biomedical research, Ioannidis (2005) discussed reproducibility

issues in biomedical sciences. As digital medicine is seeing an

explosive growth, steps need to be taken to implement the already

learned lessons (25–28). This will ensure that efforts are not wasted

and that the reported data and research findings are reliable.

This action is particularly important if these data, and findings

based upon the data, are used for formulating healthcare policy

decisions. We take the term “reproducibility" to be a synonym of

computational reproducibility (24, 28), which indicates the ability of

a new investigator to reproduce data and results originally obtained,

when the same raw materials and procedures are used.

In this paper, we will exemplify the use of computing in

assembling a reproducible SDOH data set to facilitate understanding

of factors that affect people with OUD pursuit of treatment

for HCV infection. Our population has unique characteristics,

including underemployment, being potentially stigmatized, and

typically with limited financial resources, that require consideration

of data collection in a safe space, which promotes accurate patient-

level responses. Because a large percentage of health issues are

based upon SDOH, the US federal government, in large part, is

basing healthcare reimbursement through value-based payments on

satisfactorily addressing SDOH. A critical research issue is how to

accurately and systematically collect SDOH data, especially from

underserved populations, who may be the most important target for

interventions designed to improve health inequalities and outcomes.

Our methods and procedures for data collection, integration, and

use focus on an underserved population; however, they can be

applied to all individuals in a variety of settings and have important

policy implications.

1.2. Parent study overview

We are conducting a randomized controlled trial utilizing the

stepped-wedge design at 12 OTPs throughout New York State

(NYS). Telemedicine for HCV, with simultaneous administration

of medications for opioid use disorder and DAAs for HCV, is

being compared to offsite referral. In our study, all telemedicine

encounters occurred in OTPs. Recruitment commenced in March

2017 and concluded in Feb 2020, and the study consisted of four

recruitment periods of equal time length with equal numbers of

participants recruited per site per period. Every site had biannual

onsite staff appreciation and learning lunches with the entire OTP

staff, patient advisory committee members from each site, and case

managers (29).

1.3. Structure of the OTP

The OTP staff includes clinicians, nurses, social

workers, counselors, and mental health professionals. The

NYS Office of Addiction Services and Supports (OASAS)

oversees a network of prevention, treatment, and recovery

providers for OUD in NYS. OASAS mandates staffing ratios,

frequency of in-person appearance to obtain methadone,

and development of treatment plans to address OUD and its

complications.

Frontiers inMedicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2023.1076794
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Markatou et al. 10.3389/fmed.2023.1076794

1.4. OASAS

Continuous engagement with NYS OASAS was critical for the

implementation and conduct of the study. At the beginning of the

study, we had to obtain OASAS permission to conduct telemedicine

encounters in OTPs, which are under the jurisdiction of OASAS.

Once permission was granted, OASAS staff assisted with recruitment

of individual sites. The total number of recruited sites as well as

the total number of patients recruited from each site follow the

requirements and methods associated with the stepped-wedge design

implementation. These are described in detail in Talal et al. (30).

Furthermore, clinic interest and committment to a 5-year period

was taken into consideration after we ensured clinic eligibility. We

also utilized data obtained from OASAS in the following manner:

1) individual- and site-level demographic data were used in the

randomization and 2) data derived from initial admission intake

and annual assessments are used in the analysis of SDOH that

are associated with pursuit and completion of HCV treatment

through telemedicine.

1.5. Study purpose

One of the secondary goals of the parent study is to accurately

identify the SDOH that are clinically significant and important in

facilitating healthcare access, specifically HCV care access. As a first

step, we seek to identify patterns of HCV care uptake as well as

to understand the importance and contribution of each identified

SDOH toward treatment initiation. Our population comprises

individuals who uptake or decline HCV care either via telemedicine

offered in the OTP or via offsite referral to a liver specialist. In this

setting, we would like to identify the individual-level SDOH that

differentiate the individuals who uptook treatment and/or obtained

a cure and compare with those who did not.

A timeline of significant study milestones and their relationship

to SDOH data sources is illustrated in Figure 1A. SDOH were

collected from a variety of sources discussed in Section 3, where the

integration pipeline for the site-specific forms is also presented. These

sources andmethods are used to create the data set to be analyzed and

are depicted in Figure 1B.

2. The importance of reproducibility in
biomedical protocols

In 2019, the US National Academy of Sciences, Engineering

and Medicine released a report on reproducibility and replicability

in science, which was originated by the American Innovation and

Competitiveness Act of 2017 (24).

What is reproducibility and what does it mean in different

research contexts? The concept of reproducibility is complex.

Reproducibility is one of the major tools science has used to establish

the validity of scientific findings. It refers to obtaining consistent

results using the same inputs, computational steps, methods, codes

and conditions for analysis (24). As computing and data play

an important role across all of science and engineering, ensuring

the reproducibility of computational and data-enabled research is

critical to ensure the trustworthiness of the results. Reproducibility

is the minimum necessary condition for results to be believable

and informative.

In our context, reproducibility means that if different

investigators follow the same steps and procedures as originally

described, our collection processes and methods return the same

high-quality data set for analysis. This entails that our processes

restrict errors in data collection that affect reproducibility. In Section

4, we elaborate on these aspects.

Two important types of errors relevant to our work are errors

that produce “bad" data and errors in data management. Additional

errors include errors in statistical analysis using the produced data

as well as communication and logic errors. Brown et al. (31) discuss

these different types of errors and their impact on scientific findings.

We note here that “bad" data are data acquired through erroneous

or sufficiently low quality collection methods, study designs, and/or

sampling techniques.

A second type of error is associated with data management errors.

These refer to errors made when handling or storing data, or when

choosing a statistical method to describe or model the data. A key

challenge in avoiding data management errors is the importance of

context in deciding whether a particular choice (i.e., for storage or

analysis of data) is an error. For example, approaches to clustering

that rely on geometric means tend to perform significantly worse

when applied to data sets with correlated attributes. The choice to

apply k-means clustering to our data set may be reasonable, but

may be considered an error on the same data set with ten additional

attributes (covariates).

The issue of reproducibility of clustering results is also a well-

known challenge in the relevant fields that use clustering methods

[see McShane et al. (32), Dolnicar and Leisch (33), and Bollon

et al. (34)]. Research on this challenge is ongoing, and validation

measures seeking to evaluate the reproducibility of clusters have

been developed. Kapp and Tibshirani (35) took advantage of

the connection between reproducibility and prediction accuracy

and developed the in group proportion (IGP) index, a validation

procedure for clusters found in data sets independent of the data in

which they were identified. We address this issue in two ways. First,

we compute IGPs for the identified clusters; secondly, we evaluate the

degree of agreement of our clustering with the PhenX dataset using

cosine similarity. Section 3.3 provides a careful description of our

procedures and results.

Furthermore, reproducibility also entails explainability. Knowing

how and why a particular methodology was chosen for data

collection, storage, or analysis is crucial for two reasons: (i) a scientist

who wants to apply a comparable methodology to a new context (e.g.,

to apply a similar analysis to a new data set) needs to understand the

reasoning behind each step of that methodology, and (ii) a scientist

who identifies an interesting feature of an artifact resulting from that

research methodology (e.g., a cluster of outliers on a plot) needs to

be able to determine if it is a legitimate feature of the system under

study, or (likely erroneously) of the methodology.

In this paper, we outline the use of a new platform for data

science, named Vizier1 (36), that facilitates reproducibility through

a combination of automated record-keeping, context tracking, and

context-specific guardrails. We discuss these techniques in greater

depth in Section 4. However, at a surface level, Vizier meticulously

1 https://vizierdb.info
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FIGURE 1

(A) Patient flow: Study entry occurred between 2017 and 2020. Prior to initiation of treatment for hepatitis C virus (HCV) infection, blood was obtained to

ensure active infection and medications were ordered. After treatment initiation, participants were evaluated at treatment weeks 2 and 6 to ensure that

the level of the virus was below detection. Once treatment was completed, participants were followed for 3 months to ensure a sustained virological

response occured (SVR) (i.e., cure). Those who achieved a cure entered the follow-up phase for 2 years to ensure persistence of the cure.

(B) Data flow-metaform timeline: Illustrated is the data flow (black) and significant study timepoints (red). Site-specific psychosocial evalaution and

OASAS admission forms are collected on admission to the opioid treatment program. OASAS annual updates are completed anually. We were able to

leverage these forms for several years preceding study entry to obtain a comprehensive assessment of SDOH data on each study participant. The

site-specific psychosocial evaluation forms were di�erent syntactically, and we standardized these forms for the creation of the metaform.

records every action that a user takes in the pursuit of a specific

research artifact (e.g., a plot, model, or data set), and uses the result

to build a so-called provenance graph. Choices that the user makes

(e.g., casting an attribute to an integer, even if it contains non-

integer values) are registered in this provenance graph, propagated

through it, and presented to users as they inspect dependent

artifacts. Moreover, the provenance graph is made accessible to

users through several context-specific views, allowing users to

quickly identify dependencies and trace specific outcomes through

complicated analyses.

We also go further and outline in detail the steps taken to

integrate the different data sources and to obtain a final SDOH

data set to be used for understanding the impact of SDOH on an

underserved population.

3. Data collection and integration:
Challenges and solutions

3.1. Data sources, formats, and processes

Data for this study were collected from the following three main

sources:

1. Psychosocial Evaluation forms from each site that are completed

on admission (DS-1).

2. Admission Transaction Spreadsheet Report (PAS-44) and Opioid

Annual Update Transaction Spreadsheet Report (PAS-26) that

are completed by the site and submitted electronically to OASAS

(DS-2).

3. Extracts of experimental data from the parent study, collected

incrementally over the period of the study, using the

MyOwnMed (37) system (DS-3).

The first data source (DS-1) consists of a range of

distinct, site-specific physical forms. If a patient has multiple

admissions, there are multiple psychosocial forms associated

with this patient; these forms may be different syntactically and

semantically from each other. In addition, data were presented

in different formats, depending on the site. For example, while

most sites provided paper forms, some data were provided

from separate electronic health record systems and excel

workbooks of evaluation questionnaires entered by site staff.

Each physical form, export, or excel spreadsheet contained

syntactically distinct questions and data elements and were

conducted over a wide range of time from different regions

across NYS.
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The second data source (DS-2) was exported from OASAS’s web

application by each site as excel spreadsheet reports. In contrast to

the high entropy of data from DS-1, DS-2 consisted of only two

types of reports, each with a consistent set of data elements. Though

the collection was conducted over a similar period of time as DS-

1, the data elements and questions in the reports did not vary over

time. The spreadsheet reports contained records from every patient

of the site, not just study participants, and could only be exported

1 year at a time. If there were 30 years of records for a site, there

would be thirty spreadsheet reports, each with potentially hundreds

of thousands of records. Since the Institutional Review Board only

allowed access to records from consented study participants, each of

these reports needed to be filtered by staff at the site to contain only

study participants before releasing it.

There was significant diversity, not only in the questions

and data elements themselves, but with the evolution of the

questions over time, and the different modalities with which

the information was originally collected and maintained.

The process of integrating real-world data, such as these,

involved numerous methodological decisions. Recording

these decisions through a tool like Vizier is critical to ensure

that the resulting integrated data set can be safely re-used in

new studies.

3.1.1. Data collection and transfer
Psychosocial evaluation forms were located for each enrolled

participant by the case manager at each site. Protected health

information was redacted from each form by site staff participating in

the study. In cases where the forms could be redacted on computers

and saved, the files were sent securely over the internet. In contrast,

paper forms were redacted and delivered physically. Regardless of

how the non-structured forms were delivered, all of the data elements

from each form needed to be represented as structured data. This was

accomplished using two different methods. Some forms appeared in

high frequency and therefore would yield more data from a single set

of questions than less frequently occurring forms. These forms were

represented using Javascript Object Notation (JSON) Schemas (38),

and a spreadsheet entry protocol was used to represent less frequently

appearing forms. Generating the JSON schema for a form is more

work and is substantially more difficult technically when compared

to the spreadsheet protocol, but it provides reasonable benefits, which

we will describe in detail later. Teammembers entered data manually

into either the electronic forms generated from the JSON schema or

into Excel files using the protocol. Forms were reviewed for accuracy

and completeness by other team members prior to submission.

Specific metadata, including the submission confirmation number,

entry date, entering individual, participant, and entry notes, were

manually recorded in a tracking spreadsheet (manual tracker)

after submission. The submissions were processed by Vizier (39),

a computational notebook platform that enabled the integration,

validation, and documentation of the entered data and preparation

process. Vizier provides the infrastructure to automatically track

and document interdependencies between preparation steps and

the produced data sets. When new input data are submitted, the

dependent preparation steps and output data sets can be recomputed.

These, and other features of Vizier, were used to cross-reference the

submissions with the manual tracker and to validate that the study

participant, submission confirmation number, and submission date

match the information entered in each submission, iteratively, as

new data entry and submissions were ongoing. Any mismatch or

discrepancy, as well as documentation provided by entry staff, is

attached to each submission record and can be traced back to the

source through subsequent preparation steps and transformations

using the dependency graph provided by Vizier.

Particularly where data are messy, researchers are obligated

to make “best-effort” attempts to wrangle the data into

a form suitable for analysis. If this choice is made early

in the research process, even subtle changes in analytical

methodology can conflict with assumptions made during

the data integration process. The same holds if the prepared

data are re-used in a new analysis. Vizier’s Caveats (36,

40) allows annotations on records to propagate through

analyses, drawing the data scientist’s attention to relevant

data documentation (e.g., best-effort choices).

We worked with OASAS data management to determine what

SDOH data exist within the organization and to understand methods

and protocols to access it. Spreadsheet reports that are accessible by

each site through an OASAS web application, specifically admission

reports (PAS-44) and annual update reports (PAS-26), were adequate

sources for the data of interest for the study. We developed a plan

for working with the sites to assist them in acquiring the OASAS

reports and in preparing the contained data to be acceptable for

delivery and use in the study. The plan involved training study-

supported case managers or other site staff on the process to export

each report and on how to filter and prepare the data for delivery.

We developed a computer application to simplify filtering, de-

identification, validation and secure transmission of data. Site staff

reviewed the resulting data prior to transmission. The processes

employed for acquisition and delivery of the data from sites varied

between data sources, but for any data that flowed over the internet,

transport layer security and multi-factor authentication were used to

provide a secure channel for the transmission.

3.1.2. JSON Schemas and JSON schema forms for
data entry

JSON Schema (38) is an Internet Engineering Task Force (IETF)

standard specification for defining the structure of data that allows

the annotation and validation of JSON (41, 42) documents. It

provides clear human and machine-readable documentation that can

help with automated validation, transformation, and quality control

of client-submitted data (43). JSON Schema describes the names,

data types, and properties of data elements of a JSON document

and the hierarchy of those elements. Yet, it does not describe how

a given data type should be rendered as a form input component.

We used JSON uiSchema (44), a metadata format that captures

how the elements of a JSON schema should be displayed (i.e., as

a form) in a user interface. The uiSchema object follows the tree

structure of the form field hierarchy and defines how each property

should be displayed to the user, describing the general layout of

a form by using different uiSchema elements, which can often be

categorized into either Controls or Layouts. Some uiSchema elements
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allow an options property, allowing further configuration of the

rendering result.

Because of the wide variety of physical forms, the varying

frequency that instances with which each form appeared, and the high

degree of evolution of these forms over time, there was a motivation

to efficiently translate each type of form to a simple data entry

interface. We wanted to make it easy to perform data entry and

enable the automation of quality checks, such as schema validation

and datamanagement of evolving schemas.We found that generating

a JSON Schema that maps every form section and question to a JSON

object that reflects the structure and content of the physical form

sufficiently satisfies these motivations. Form sections and subsections

were encoded into the schema as nested objects that matched the

hierarchy of the sections and subsections in the form, and they were

named matching the respective titles of those sections. Questions are

included in the hierarchy where they appear in the physical form

respectively and are named with the text of the question. Questions

with free text answers are encoded as string fields, number questions

as number fields, multiple choice questions as string or number fields

with Enumerated Values (or “enums,” which restrict JSON instances

to have certain values specified in the schema as an array), and

multiple answer questions as array fields. The JSON Schemas with an

associated JSON uiSchema were then used to render data entry forms

that enforce the schema during entry and submission using React

JSON Schema Forms (45), a react component for rendering JSON

Schemas as web browser-based data entry forms. Forms that were

entered into Excel workbooks lacked the initial schema enforcement

on data entry but were preprocessed after submission to infer a JSON

Schema that we then used to ingest the excel workbooks into the

same workflow used to process the React JSON Schema entered

physical form submissions. We reused this same process again to

ingest the OASAS spreadsheet reports. The result was one data set

that contained all the data fromDS-1 andDS-2, for which the number

of data elements over time and the percentage of those elements that

were complete is summarized in Figure 2. Since all of the data except

DS-3 are now in one data set, and every data element is represented

in conformance to a JSON schema, irrespective of the submission

fromwhich it originated, we can walk over the schemas and automate

tasks. These include secondary data validation and extraction of data

elements of interest in a way that is flexible to the introduction of new

data and schemas. Where errors occur, we can attach caveats (36, 40)

so that the errors are noticed when the resulting data sets are used.

JSON Schemas enable a method of traversing data elements

where the types and hierarchy are known, but the traversal

itself is not dependent on those types or their hierarchy. This

is more flexible to the introduction of new data and can

improve the ability of researchers to more easily accept new

data and understand how that data evolve over time.

3.2. Models and algorithms

3.2.1. Data-centric notebook-style workflows
At the outset of data collection planning, we did not know the

exact content of the data we would be collecting, the volume, or

even the source and format. As we gained more information on the

acquisition details, it became evident that the collection would be

occurring incrementally, that it would be from multiple sources, and

that the medium of data delivery would be disparate.With the limited

resources for data collection and preparation, we needed an efficient

method to bring the diverse data together that was flexible enough to

handle not only the ad-hoc acquisition of data but also the evolving

understanding of the content of that data. When data collection is

ad-hoc, data arrive incrementally as they are available; for this study,

either they were delivered from a site after extraction, or they were

submitted by data entry staff one form at a time as they completed

entry. Because the content of the data is unknown before it arrives

in some cases, and it is coming incrementally, the preparation and

processing of the data are forced to be incremental as well. As new

input data become available, changes to how data are processed may

be needed, or additional data may need to be added to maintain

use cases of output data sets. For example, when a critical data

element assumed to be present for all forms is missing from a newly

submitted form, the workflow caveats the data for the investigator.

In our study, the date of conduct (i.e., the date when a particular

form was administered to a participant) was missing from a subset

of data from two different sites. Instead of the workflow opaquely

failing to complete without an explanation, or worse, completing and

using incorrect default value assignments (e.g., the assignment of date

of 01-01-1900 to forms missing the actual date of conduct), which

is known to occur in existing ETL systems (46), Vizier caveats the

data with an explanation of what went wrong and where. Figure 3

illustrates a simplified representation of the iterative, ad-hoc flow of

information from the sources of data to the resulting output data sets.

It highlights the use of caveats and how they draw attention to (the red

values in the output data set) and explain (the “Dataset Caveat List")

errors that can occur so that they can be addressed, like the example

of missing dates of conduct. To address the error in this specific case,

the missing dates of conduct had to be acquired from the site and

integrated into the workflow by adding two steps or “cells,” one to

ingest the newly acquired dates of conduct data and one to join those

with the records missing the dates. All subsequent transformations

and steps in the workflow that use the output from the previous step

are re-evaluated automatically.

Adaptable workflows that can repeat previous work on

new information, automatically propagating changes, are

safer for use on incrementally evolving data (e.g., when

integration takes place concurrently with data collection).

The cognitive burden on data scientists is lower, and there

is less risk that a missed processing step will leave stale data

in the workflow. Moreover, the same information provides

explainability, reducing the time required to track down data

integration errors.

3.2.2. Multi-modal and multi-lingual
Different facets of data collection and curation require different

approaches, programming languages, libraries, and tools. Existing

languages and libraries are often specialized for the specific details

of a task. For example, JSON Schema forms and spreadsheets

are ideal for data entry because high-level technical skills are not

required, and they have some “guard rails,” like schema enforcement

through form validation. The Python programming language has

many libraries and tools for data wrangling. The Scala programming

Frontiers inMedicine 06 frontiersin.org

https://doi.org/10.3389/fmed.2023.1076794
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Markatou et al. 10.3389/fmed.2023.1076794

FIGURE 2

Figure depicts the dates, quantity, and degree of completeness for all social determinants of health data (i.e., DS-1 and DS-2) collected as described

above by study sites. Dates when forms were administered to participants range from 1971 to 2021. The quantity of data collected (i.e., number of fields)

from each site is depicted by the size of the box, ranging from 69 to 8236 fields. The color of the box, ranging from red to green, depicts the degree of

field completeness, ranging from 11.2 to 97.6%.

FIGURE 3

Iterative flow of data during ad-hoc collection and integration.

language and Spark are excellent for data processing. Structured

Query Language (SQL) is designed for relational data querying.

Traditionally, bringing all of these language tools together to be

used in a cohesive and seamless way is a difficult and problematic

undertaking in itself. However, the process often arises naturally on

projects precisely for the reasons just outlined. These projects can

become very complex quickly and can spanmultiple code files written

by a variety of developers (46) with numerous dependencies that

require installation and maintenance. Managing such projects can

be infeasible for small research teams or organizations with limited

resources. Seamless integration of these features without technical

management, dependency tracking to prevent stale data, propagation

of documentation, and explainability of errors through caveats reduce

management complexity and can improve the focus of data scientists

and researchers on the data.

3.3. Semantic alignment of data

3.3.1. Definition of NLP models and description of
semantic alignment concept

Exploring the relationships between different SDOH variables

derived from the self-reported data (from DS-1 and DS-2) and

outcomes in the experimental data (DS-3) was a necessary goal. To

do this exploration, we first need to align time points of specific

milestone events in the experimental data of the parent study for each

participant with self-reported data collected nearest to those time

points. Common SDOH variables need to be derived from the data

elements in the self-reported data across the different and diverse sets

of forms that were collected and time-aligned with the experimental

data milestone events. As the data were collected and structured, each

question that appeared on a form was recorded along with the form

section and subsection headings. For example, the question “What Is

The Highest Grade You Have Completed” that appeared on a form in

a section titled “economic” and subsection titled “Education” would

be recorded with a “field name” of “What Is The Highest Grade You

Have Completed” and a “field path” of “economic/Education/.” On

another form, the same question appeared “What Is The Highest

Grade You Have Completed,” but under a section titled “Education

Data", which would be recorded with a “field name” of “What Is

The Highest Grade You Have Completed” and a “field path” of

“Educational Data/.” These two questions ask the same thing, but

appear in sections with different titles and/or subsection titles. In

many instances, a revision of a form would change a section title,

which results in questions being recorded with different “field paths.”

We recorded 7,519 distinct questions when the section title in which

a question appears and the text of the question is used to determine
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FIGURE 4

Sankey diagram depicting the history of data collection through di�erent forms. Every number indicates a unique identification indicating the form and

the sequence in which it was collected for a patient. The gray links represents the number of patients. The size of the nodes represent the number of total

forms collected.

if a question is distinct. If we only consider the exact wording of

the question itself as determining the distinctness of a question, then

that reduces the number of distinct questions to 3,582. On another

form, there was a question, “Highest grade attained” under a section

titled “social” and, subsection “Education History.” In this case, the

question’s wording is different, but the question is, semantically very

similar. For the purposes of this study, we would want to consider all

three versions of the question in the same SDOH variable category.

Grouping the questions from the approximately 49 distinct forms

that have been utilized for data collection on SDOH by semantic

similarity can assist in deriving the SDOH variables and exploring

the relationships between SDOH variables and the experimental

data milestones.

3.3.2. Metaform creation
The process of identifying SDOH categories for data collection

is an iterative process, which was challenging based upon the

large number of forms as depicted in Figure 4. The first step

of this process included using language models, dimensionality

reduction, and clustering algorithms to identify the clusters. These

steps facilitated labeling. The subject matter experts (SMEs) initially

developed a label that best defined each cluster. At the same

time, SMEs realized that some questions would benefit from being

placed in a different cluster because they did not pertain to

the main idea indicated by the cluster label. The process was

continually refined and becamemore accurate as additional questions

were added.

At the final step, the SMEs were provided with the clustering

results and were asked to evaluate whether the assignment of each

specific question to the designated cluster was correct. This exercise

resulted in the SMEs identifying that at least 90% of the questions

were correctly assigned to their designated cluster by the clustering

algorithm. The SMEs then assigned the remaining questions to the

appropriate cluster.

3.4. Identifying and validating SDOH
categories

We will now discuss, in more detail, the methods that are

utilized to extract the broad categories of data that are acquired

from semantically similar, but syntactically distinct, questions in the

forms. As this method incorporates the expertise and insight of SMEs,

it is sometimes referred to as a “Human-in-the-Loop” approach.

Figure 5 is a diagrammatic representation of the flow of data between

the various components. The first block of the diagram shows the

use of the language model, dimensionality reduction and clustering

algorithm to generate clusters. The second block of the diagram

shows the “Human-in-the-loop” approach where the clusters are

validated by the SMEs and compared with the PhenX data.
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3.4.1. Natural language model
We use a pre-trained model all-mpnet-base-v2 (47), a

transformer-based natural languagemodel. Themodel is based on the

MPNet architecture and has the highest performance in generating

sentence embeddings according to Sentence-Transformers (48). We

did not perform any additional fine-tuning on our dataset. Themodel

that was provided by Sentence-Transformers was used in its original

form, which has an output dimension of 768. Thus, the output of this

model for each question in the SDOH dataset is an embedding that

has length of 768.

3.4.2. Dimensionality reduction and clustering
As the embedding produced by the language model has a high

dimensionality, we explore dimensionality reduction methods that

can be implemented prior to clustering. Therefore, the process we

use here is a two-stage approach in which the first stage screens for

informative variables (or covariates, or features), while the second

stage applies appropriately selected clustering methods on the pre-

selected variables. We note here that in the context of model-based

clustering of high dimensional data, Bouveyron and Brunet-Saumard

TABLE 1 The table indicates the reconstruction error values as a function of

the dimension in the neighborhood of the chosen optimal dimension.

Dimension (d) Average reconstruction error

20 8.35× 10−6

30 6.47× 10−5

35 1.22× 10−4

40 2.14× 10−4

45 3.85× 10−4

The average was taken over ten random replications of the training data set of size 1,937.

FIGURE 5

Diagrammatic representation of processes followed to extract SDOH data from available forms. The numeric steps of the SDOH extraction pipeline are

incorporated, and correspond to the following. 1. The language model is applied to the forms used to extract SDOH data; 2. The language model outputs

a vector of dimension 768× 1; 3. Locally Linear Embedding (LLE) is applied to reduce the dimension; 4. K-Means (spherical) is applied to data obtained in

3 to generate the clusters; 5. The clusters generated in step 4 are provided to SMEs to label them with an SDOH category; 6. The SMEs evaluate the

clustering and re-categorize any misclassified questions; 7. The categories of the individual SDOH present in our data are compared with the SDOH

categories present in the PhenX dataset.
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(49) indicate that automatic reduction of the dimensionality of the

data, without taking into account the goal of clustering, may produce

suboptimal results.

The nonlinear relationships in the data may not be well

represented by linear approaches, and therefore linear approaches

can perform poorly. Nonlinear dimensionality reduction approaches

may be appropriate in this case. We explored different non-

linear approaches including manifold learning, kernel PCA

(KPCA), isometric mapping (IsoMap), locally linear embedding

(LLE), multidimensional scaling (MDS), and uniform manifold

approximation and projection (UMAP) on the word embeddings.

We implemented clustering techniques from three different

categories, which are as follows: partitional methods, spectral

methods and hierarchical methods. Partitional methods, such as the

k-means and spherical k-means, decompose a data set into a set of

disjoint clusters. Spectral methods use a similarity matrix to partition

points into disjoint clusters. Hierarchical clustering methods, such as

the bisecting k-means, complete linkage, Ward linkage and BIRCH

generally build a hierarchy of clusters either by the top-down or

bottom-up approach. Some pertinent instances of application of

these methods for text clustering include: k-means in Costa and

Ortale (50), spectral clustering in Schindler et al. (51), bisecting

k-means in Abuaiadah (52), complete Linkage in Abd Rahman

et al. (53), Ward linkage in Shehata (54), and BIRCH in Gupta

and Rajavat (55). With the exception of UMAP and spherical

k-means, all the dimensionality reduction and clustering algorithms

mentioned above have been implemented in Python using the

Scikit-learn library (56). UMAP was implemented using its own

library (57). The locally linear embedding algorithm was proposed

in Roweis and Saul (58). In our implementation, we used K = 5

neighbors and calculated the reconstruction errors for several lower

dimensional representations ranging from d = 2 to d = 100.

We plot the average reconstruction error 8(Y) versus the number

of components (d) to determine the best number of components

for us. Table 1 presents the summary statistics associated with

the average reconstruction error, and Figure 6 plots the average

reconstruction error, the average taken over 10 random replications

of the clustering process using a data set of size 1,937. Spherical

k-means is a variant of the normal k-means technique, which is

widely used for data clustering. The primary distinction between

regular k-means and spherical k-means is that the latter represents

data points and cluster centroids as points on a unit sphere. This

makes it possible to compute the distance between data points and

cluster centroids more efficiently. The spherical k-means works in the

same way as the standard k-means algorithm, with the key difference

being the distance measure. The spherical k-means employs the

cosine distance (also known as cosine dissimilarity) as the distance

measure, and it is commonly used in document clustering and other

applications with high-dimensional vectors. In our research, we

employed an implementation of spherical k-means as proposed in

a study by Kim et al. (59). The study introduced a technique for

fast initialization of cluster centroids, reducing the computational

cost of the algorithm. Additionally, the study proposed a method

for projecting sparse centroids, which uses a sparse representation

of the centroids to decrease the computational expenses of the

algorithm. This sparse representation can significantly decrease

the number of non-zero entries in the centroids, thereby reducing

the computational cost of the algorithm. The implementation can

be found in (60). The parameters used were: max_iter = 10, init =

similar_cut, sparsity=minimum_df, minimum_df_factor = 0.05. The

“minimum_df_factor” parameter is used to specify the minimum

number of documents in which a term must appear as a proportion

of the total number of documents. This parameter is used to filter out

rare terms that may not be informative for clustering. For example,

if minimum_df_factor is set to 0.05, then terms that appear in fewer

than 5% of the documents will be removed, helping the reduction of

dimensionality of the data and speeding up the clustering process. It

also helps to increase the interpretability of the clusters by reducing

the number of irrelevant terms.

The above described process entails the selection of a pair of

dimension reductionmethod and clustering algorithm for identifying

the number of components to be kept and subsequently used for

identification of the number of clusters. Reproducibility of both,

the process followed and the findings, is important. To assess the

performance of the different methods used and decide on the

number of clusters, we used a variety of internal validation metrics,

such as Calinski-Harabasz (CH) index, silhouette coefficient, and

the elbow plot to identify the pair of clustering algorithm and

FIGURE 6

Plot of the average reconstruction error vs dimension of the data. The average was taken over ten random replications of the training data set of size

1,937.
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dimensionality reduction methods that are appropriate for our data.

The combination of LLE and spherical k-means performs best. The

final dimensions used is equal to 35 (Table 2). The total number of

clusters provided by LLE and spherical k-means from the elbow plot

is 38. Figure 7 depicts the elbow plot we used to identify the total

number of clusters.

As seen in the elbow plot, we determined that 38 is the

ideal number of clusters produced by using the language model,

dimensionality reduction, and clustering algorithm.

Table 4 presents the definitions of the labels of the final clustering

using the collaborative approach of automation and labeling by

the SMEs.

3.4.3. Evaluation of the cluster model
The procedure described in the previous section produces

a clustering model, in which each cluster contains syntactically

different questions corresponding to the same SDOH variable. In this

section, we describe an evaluation procedure that relies on the use of

a cluster quality measure, called the in group proportion. We then

measure the agreement of clustering against the PhenX data set.

TABLE 2 Summary statistics of the reconstruction error when lower

dimension d = 35 over ten random replications of the training data set of

size 1,937.

Minimum reconstruction error 6.36× 10−5

Maximum reconstruction error 1.92× 10−4

Median reconstruction error 1.10× 10−4

IQR of reconstruction error 9.03× 10−5

Mean of reconstruction error 1.22× 10−4

Standard deviation of reconstruction error 5.14× 10−5

3.4.4. Computing IGP
Methods for assessing the reproducibility of clustering patterns

available in the literature include bootstrap and testing procedures for

the significance of clustering. The main idea in computing the IGP

index can be described as follows. First, we have two independent

sets of data, where one set is called the training set and the second

the test set. These two sets are not required to have the same size.

In the next step, we cluster the training and test data into k clusters.

Finally, we measure how well the training set cluster centers predict

co-membership in the test set. For each pair of test observations

assigned to the same test cluster, we determine whether they are also

assigned to the same cluster based on the training centers.

The total size of our data set is 3,582 questions. We randomly

partition this set into two subsets, a training set with size 1,937 and a

test set with size 1,645. These sets are independent of each other by

construction. We developed our clustering model using the training

set and compute IGP using the R package “clusterRepro” (Version

0.9, October 12, 2022).

Additionally, we tested our methods over 10 independent runs

to further evaluate the reliability of the results. Table 3 presents the

summary statistics of the IGP over the 10 runs. Notice that all

means of the IGP scores are fairly high, indicating the validity of the

different clusters.

3.4.5. Comparing with the PhenX dataset
The PhenX Toolkit (consensus measures for Phenotypes

and eXposures) provides recommended standard data collection

protocols for conducting biomedical research. The protocols are

selected by Working Groups of domain experts using a consensus

process, which includes the scientific community (61). In 2018,

the National Institute on Minority Health and Health Disparities

(NIMHD) funded an administrative supplement to the PhenX

project to select high-quality standard measures related to SDOH for

FIGURE 7

Elbow plot for choosing the number of clusters. The vertical line indicates the number of clusters produced by the algorithm, which equals 38.
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inclusion in the PhenX Toolkit (62). We match the SDOH categories

for which we have data with the measures available in the PhenX

toolkit. Figure 8 presents the mapping of the PhenX SDOH toolkit

protocol names to the SDOH categories identified in our data, while

Figure 9 presents a histogram of the cosine similarities between the

PhenX categories and our embedding vectors.

The main idea is to combine the category, subcategory 1,

subcategory 2, subcategory 3 and the definition (see Table 4) together

into a single string and compare those with the names of themeasures

contained in the SDOH PhenX toolkit. Using the MPNet language

model, we generated 768 dimensional embedding vectors for each of

the measure names in the PhenX Toolkit as well as for the category,

subcategory 1, subcategory 2, and subcategory 3 and the definition

combined. We then computed pairwise cosine similarities (63) to

measure the similarity between two vectors in an inner product space.

Cosine similarity is widely used in text analysis. Mathematically, if

x and y are two d dimensional vectors, then - sim(x, y) = cosθ =
x · y

||x||||y||
where ||x|| is the euclidean norm of vector x = (x1, x2, ..., xd)

defined as
√

x21 + x22 + ...+ x2
d
. The cosine similarity always belongs

to the interval [−1, 1].

3.4.6. Determination of threshold
To determine the threshold, we use a data-driven method that

is based on the use of the boxplot of the cosine values as shown in

Figure 10.

The boxplot is a graphical method that demonstrates key

characteristics of the distribution of the cosine similarities among the

PhenX categories of the SDOH and those found in our data. We use

as our cut-off value the upper hinge of the boxplot. The upper hinge is

defined as the third quartile of the data plus 1.5× Interquartile Range.

Values of the cosine similarity that are greater than the upper hinge

imply that the pairs of text to which they correspond are similar. The

upper hinge of a boxplot corresponds to indicating the point that

is approximately 3 standard deviations away from the mean should

the sample follow a normal distribution. In our case, the value of the

upper hinge is 0.4415. Our text consisted of the category, subcategory

1, subcategory 2, subcategory 3 & the definition as illustrated in

Table 4. Our text was compared to the measure name in the PhenX

data set and were found to be similar. The cosine similarity values

show that almost 86.11% of the categories in our data set map to one

or more categories.

4. Data quality and the pursuit of
reproducibility

The incremental nature of data exploration is at odds with the

needs of reproducibility. The former is ad-hoc and exploratory, while

the latter requires deliberate, methodical documentation of process,

including the reasoning behind specific choices. As already discussed,

a significant portion of our data preparation and analytical work

relied on a computational notebook called Vizier (36, 39, 64, 65). We

now discuss the design of Vizier, and how it works to make it easier to

track the processes that resulted in visualizations, models, and other

research artifacts.

Computational notebooks like Jupyter (66), Apache

Zeppelin (67), or Vizier provide users with a close analog of a

scientific notebook that tracks the evolution of their scientific

process. As users of a computational notebook append units of code

(called ‘cells’) to the notebook, the code is run and its results are

shown inline. Code cells can be supplemented by documentation

cells that exist purely for the user to record their thoughts. In

principle, the notebook records the full set of steps required to

reconstruct a scientific artifact.

In practice, there exist several challenges in maintaining and

using this record. First, many computational notebooks allow non-

linear edits to the notebook: a user may return to and revise earlier

steps in the notebook if they realize they made a mistake. The final

revision of the notebook may not adequately describe the context in

which a particular piece of code was written, making it difficult to

understand why a particular choice was made. Second, as a notebook

becomes increasingly complex, it becomes difficult to follow the logic

behind how a particular artifact was constructed. Similarly, even if

the process of an artifact’s construction is well documented, it can

be difficult to keep track of which documentation is relevant to that

artifact in a complex notebook.

4.1. How do we ensure the reproducibility of
our work?

Effective reproducibility requires a record not only of what

the user did and when, but also why he/she did it. It is not

realistic to expect software to understand the user’s reasoning

in general.

TABLE 3 Summary statistics of the IGP scores over 10 runs.

Iteration Median IQR Mean SD Q1 Q3 Range

0 0.91 0.118 0.896 0.077 0.837 0.955 0.267

1 0.915 0.115 0.853 0.191 0.841 0.955 1.0

2 0.924 0.086 0.897 0.088 0.87 0.956 0.385

3 0.918 0.164 0.879 0.129 0.815 0.979 0.5

4 0.93 0.122 0.891 0.116 0.842 0.964 0.625

5 0.948 0.086 0.922 0.095 0.898 0.984 0.5

6 0.927 0.088 0.879 0.174 0.873 0.961 1.0

7 0.935 0.085 0.914 0.085 0.885 0.97 0.333

8 0.919 0.14 0.891 0.098 0.825 0.965 0.333

9 0.922 0.135 0.886 0.116 0.83 0.965 0.6
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TABLE 4 Final clustering table.

Category Subcategory 1 Subcategory 2 Subcategory 3 Definition

Health General category, anything “medical” or affecting the physiologic

functioning of the body (i.e., physical) or mind (i.e., mental).

Health Physical Physiological (e.g. HIV testing), neurological (e.g., sleep)

Health Mental Psychiatry (emotion, mood, hallucination, nightmare, eating disorder,

contemplating suicide/homicide, developmental/learning disabilities)

Health Mental Psychological

(Non-medical)

Confidence or ability to complete the activities of daily living, stressors,

attitude, meditation, understanding, comprehension, awareness,

judgement, insight, object recall, self-help, life goals, life plan, sexual

orientation (i.e., gender)

Health Mental Behavioral Addiction, losing control, behavioral therapy (group/individual)

Health Mental Behavioral Substance Use Role of substance use, treatment, detox, relapse

Health Mental Behavioral Gambling Addicted to playing games of chance for money

Health Mental Behavioral Sexual or Physical

Abuse

Violence to others/self, general violence/domestic violence, action/plan

for homicide or suicide.

Family Group of adults and their children living together or with shared

experiences

Family Family History Family history of any illnesses, conditions, family of origin

Family Relationship Support system, sex (condom), relationship with children or living with

children

Family Childhood

Experience

Experiences growing up, trauma, fear, foster care, upbring

Family Childcare Service Childcare needs

Education Process of giving or receiving systematic instruction.

Education Training Vocational

Education Language Secondary Language

Education School Learning style, educational plan, grade, education problems, educational

goals, degree

Education Literacy Reading, writing, arithmetic

Employment Condition of having paid work

Employment Work Workplace, work environment

Employment Finances Income, salary

Employment Insurance Medicare, medicaid, private insurance

Employment Benefits Social security, disability, assistance (employment assistance program

[eap], social assistance, etc)

Housing Shelter or living quarters

Housing Location Physical space (i.e., building, structure, homelessness)

Housing Roommates Household activities, number of people who live in households

Housing Community Neighborhood, county, transportation

Leisure Free time, hobbies, interests, activities

Legal Related to or the process of the law

Legal Legal History Court, prior conviction, prior arrest, sentencing

Legal Parole Mandated treatment

Legal Incarceration Jail, Prison

Legal Child Protective

Services (CPS)

Child protection against mistreatment

Demographics Age, sex, race, ethnicity, primary language, zip code

Military Relating to or the characteristic of the armed forces

Spirituality Quality of being concerned with human spirit or soul.

The definitions of the 36 clusters presented below represent the fusion of all reports and are obtained via automation and validation by the SMEs. The gray boxes are left intentionally blank.
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FIGURE 8

This graph illustrates the mapping of the PhenX SDOH Toolkit Protocol Names to the SDOH categories in our data. The orange nodes represent the SDOH categories in our data and the blue nodes represent the

PhenX categories. The mapping was generated by comparing the cosine similarity between the names of the Protocols and the names of the SDOH categories in our dataset. The presence of an edge between a

blue node and an orange node signifies that the PhenX category and the SDOH category in our data were found to be semantically similar according to the cosine similarity. The occurrence of many connections

from one SDOH category in our dataset to several PhenX data categories indicates that our category is determined to be comparable to more than one category in the PhenX data.
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FIGURE 9

Histogram of the cosine similarities between the embedding vectors of “category, subcategory 1, subcategory 2, subcategory 3 and the definition” and

“PhenX categories”.

4.1.1. Automating context tracking
Instead, Vizier records as much as possible of the context in

which a decision was made; making it easier to infer reasoning in

retrospect. Concretely, each modification to the notebook is recorded

by Vizier as a notebook revision, along with metadata about what

changed in the notebook, and what remained unchanged. Figure 11

illustrates a simplified version of the model: each edit to the notebook

generates a new revision, and users may manually elect to backtrack

and “branch” an older version of the notebook. Each revision is

a sequence of references to cell descriptions that provide the code

or documentation that defines the cell. Cell descriptions may be

shared across multiple revisions, both minimizing wasted space, as

well as providing an easy way to compute the differences between

two workflows.

Revisions also track the results of running each cell on the output

of the prior cell—We call this the “state” of the notebook at the cell.

4.2. State and provenance

Vizier views state as a collection of name-value pairs (i.e.,

variables and the corresponding values). We refer to values as the

notebook’s ‘artifacts,’ and these may include data sets, models, data

visualizations, or indeed even simple variable values that are passed

from one cell to the next. State evolves along two dimensions:

notebook order and revision order. Each code cell interacts with the

state; the cell’s code reads from the state generated by prior cells,

and generates changes to the state that are visible to subsequent cells.

Vizier checkpoints the state after each cell finishes running. We refer

to this sequence of cells as the state’s evolution in notebook order.

As the notebook is revised, non-linear updates modify portions of

the state, which are likewise checkpointed after each cell is run. We

refer to the sequence of states resulting from edits to the notebook

(non-linear or otherwise) as revision order.

Checkpointing in both program and revision order makes it

possible to quickly reconstruct the full context in which a user

decided to edit a cell, as well as the differences before and after the

cell was run. In particular, Vizier records which artifacts a given cell

FIGURE 10

Boxplot of the cosine similarities between the embedding vectors of

“category, subcategory 1, subcategory 2, subcategory 3 and the

definition” and “PhenX categories”.

FIGURE 11

Vizier’s notebook versioning data model (36).

interacted with in a given revision of the notebook. This information,

in aggregate across the entire notebook, defines a set of dependencies
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FIGURE 12

Extracting dataflow and workflow provenance from notebooks.

for each artifact produced by the notebook, and is referred to as the

provenance of the artifact.2

The notebook’s provenance—the artifacts each cell reads and

writes—defines a dataflow graph that shows how each specific artifact

was derived. For example, consider a workflow where a data set

is loaded and used to derive a model. A simplified version of the

dataflow graph that Vizier generates for this workflow is shown in

Figure 12, excluding the cells in the dotted box. The figure shows

that the ‘Model’ artifact was derived from a single data set (‘Original

Data’). If additional data are discovered, they can be easily integrated

into the workflow: The data scientist adds two new cells, one to load

and clean the additional data, and one to merge the two data sets

together (e.g., using SQL). The dataflow diagram is updated, showing

the ‘Model’ artifact derived from the output of the merge cell, which

itself was derived from the two source datasets.

4.2.1. Ensuring correctness
Non-linear edits to notebooks come with another challenge:

staleness (68).When a non-linear edit is made to one cell, the changes

may affect some cells that follow it. A common criticism of many

computational notebooks (69, 70) is such edits lead to stale cells.

These are cells that appear normally in the notebook, but that read

from state that no longer exists, and as a result will fail (or worse,

produce different outputs) when the notebook is restarted. When

performing a non-linear edit, users are expected to identify stale

cells manually and re-run them (labor-intensive), or to periodically

re-evaluate the entire notebook (slow).

From the notebook’s dataflow graph, Vizier derives a workflow,

or dependency graph that captures inter-cell dependencies. Recall the

example from Figure 12 where the data scientist adds two new cells to

load and merge new data into the original workflow. The dataflow

graph changes, linking the input of the model-building cell to the

output of the (new) cell that merges the data sets. Vizier recognizes

that the model-building cell needs to be re-evaluated to keep the

output fresh, but that the original data loading (and cleaning) cell’s

output can be safely re-used.

Concretely, Vizier encourages users to keep notebooks up-to-date

by automatically identifying and re-evaluating stale cells. This ensures

that (i) users are immediately notified if non-linear changes break a

portion of their notebook, and (ii) users later viewing the output of

those cells are guaranteed not to be viewing stale outputs.3

A key challenge is when the notebook requires users to take

actions outside of the notebook. For example, a common pattern is

2 The terms Lineage or Pedegree are also used in some communities.

for one portion of a notebook to generate an excel spreadsheet, which

the user edits before running the second portion of the notebook.

Vizier addresses this use case, and others, by providing a spreadsheet-

style data editor that tracks the user’s actions as they edit a data set.

Crucially, a record of the user’s actions (71) is stored in the notebook

and may be replayed if the source data change (36).

4.3. How do we help users to track down
bugs?

Extensive context (i.e., provenance) tracking is useful, but simply

displaying all collected information also includes an overwhelming

amount of data not relevant to the user’s immediate task. Instead,

Vizier leverages the collected provenance information to support

several filtered displays, each designed to help users answer specific

questions about data and artifacts.

4.3.1. Dependency tracking
Common questions asked by data scientists about their data are

“where did a data set (or model, visualization, etc, come from?” or

“how is a data set used?” For example, a user may wish to know which

cells were involved in the artifact’s creation as part of a sanity check,

or which models were affected by a training data set that was since

identified as flawed.

Fundamentally, both of these questions ask about the

dependencies of a given artifact. Vizier maintains sufficient

state to provide several tiers of user interfaces, from lightweight but

less informative to heavier-weight solutions that are more likely to

address the user’s question. The lightest-weight approach relies on a

portion of Vizier’s user interface called the “Table of Contents,” which

summarizes every cell and artifact in the notebook. Hovering over

a cell in the notebook highlights (i) the direct dependencies of the

cell (i.e., upstream cells that generated artifacts that the hovered cell

reads from), (ii) the cell’s transitive dependencies (i.e., the cells that

these cells read from), (iii) cells that depend directly on the hovered

cell’s outputs, or (iv) cells that depend transitively on the hovered

cell. Similarly, hovering over an artifact highlights dependencies with

respect to the artifact.

Hovering is meant to be lightweight and quick, but particularly

when the table of contents is large, it may be difficult for the user to see

all of the dependencies. As a second tier, Vizier allows users to filter

the notebook itself by dependencies. This acts like highlighting, but

provides a read-only view of the notebook that shows only cells that

contribute to (respectively, rely on) the inputs (resp., outputs) of the

indicated cell, or on the indicated artifact. Finally, Vizier can provide

a visual representation: Figure 12 shows, visually, the dependencies

between the notebook’s cells and their artifacts.

4.3.2. Fine-grained data dictionaries
Where possible, Vizier tracks the so-called “fine-grained”

provenance of its artifacts; retaining a record of the precise logic used

3 Vizier has a “frozen cell” mode that allows users to indicate that retaining

a stale output is desirable; cells with this feature enabled are prominently

identified.
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to derive one artifact from another. For example, when a database

query is used to derive a data set by joining together two other data

sets, Vizier retains the query. From this information, it is possible

to infer relationships, not only between artifacts, but between their

components. For example, fine-grained provenance can be used to

infer which records in the source data sets were used to derive a

record in the output data set.

Vizier makes use of fine-grained provenance for data

documentation. Data sets are commonly documented through

“data dictionaries” that outline, often in exacting details, the

nuances and unique features of the data set. This information

is helpful, but can be overwhelming, particularly in the early

stages of data exploration. Vizier allows users to define more

targeted forms of documentation through a feature of Vizier called

Caveats (40, 64, 72, 73). These annotations are propagated through

the notebook using fine-grained provenance.

Vizier identifies portions of a data set (e.g., cells, rows, columns)

that have been annotated by a provenance value, drawing the user’s

attention to the fact that there may be relevant documentation

available. The user can then retrieve the documentation that applies

to the portion of the data set that they are interested in (e.g.,

by clicking on a button next to a highlighted cell); only relevant

documentation will be displayed, allowing them to focus their

attention where it is needed.

4.4. The shape watcher

One of the specialized cell types that Vizier provides is called the

shape watcher, which records a set of data set features called ‘facets’:

(i) The set of attributes of the data set, (ii) The type and nullability

of each attribute, (iii) The range of values for an ordinal attribute,

and (iv) The set of distinct values for a categorical attribute. When a

shape watcher lens is initialized, it detects facets relevant to the data

set. Subsequent updates to the data set at that point in the notebook,

for example as a result of newly added data, trigger the shape watcher.

The shape watcher flags any facets that the new data set violates.

For example, consider one data source that initially uses the

symbols ‘M’ and ‘F’ to indicate sex, but where the data dictionary

changes, and new records switch to using the terms ‘Male’ and

‘Female’. The shape watcher would: (i) Warn the user that the data

set now includes a set of records that where the ‘sex’ attribute has an

unexpected categorical value, and (ii) Flag all of the new records with

Caveats so that all artifacts derived from the data set are marked with

warnings about the error.

5. Discussion

5.1. Real world importance of SDOH data

In this manuscript, we have described a pipeline to enable

collection, integration, and effective use of SDOH data derived from

an underserved population. Our study population is derived from

individuals with OUD who participated in a randomized controlled

trial assessing the effectiveness of telemedicine with onsite DAA

administration compared to offsite referral for HCV treatment.

Analyzing SDOHdata requires understanding of which determinants

are important to measure. It also requires data collection from non-

traditional and non-health data sources (74).

The importance of SDOH data is increasingly recognized.

Segregated communities in the US have been major drivers

of healthcare disparities, and this history emanates from

redlining. Redlining was a practice whereby lending institutions

restricted mortgages to African American applicants in certain

neighborhoods, which led to their concentration in often less

desirable neighborhoods. One goal of the renewed focus on SDOH

is to ensure health equity, which requires collection of SDOH

and community-level data including location of residence, zip

code, quality of food availability, and ethnic/racial neighborhood

composition. While the COVID-19 pandemic underscored the

importance of comorbidity data collection, other important data

elements are evaluation of structural racism, under or lack of

insurance, poor quality of care, and food and housing insecurity.

An important consideration in the collection of these data is

society’s stigmatization of people with OUD. People with OUD

typically interpret society’s views of addiction as a moral failing (75–

77). Healthcare providers, especially those unfamiliar with the

treatment of addiction, have historically perceived people with

OUD as irresponsible and nonadherent to medical care (78, 79).

Thus, truthfulness of responses to questions ascertaining SDOH

information appears to depend on the trust and comfort between

the people with OUD and the individuals attempting to collect the

information. In the collection of SDOH data, the ACP recommends

that data must be granular and inclusive of all personal identities to

more accurately identify socioeconomic trends and patterns (1). In

a recent review, for example, Taylor et.al. found that interventions

targeted to address SDOH have a positive outcome on health

and healthcare spending and that new workflows are needed to

administer SDOH assessments, especially as the US healthcare

system transitions to value-based care (22).

Addressing underlying factors that impact health andwellness is a

cost-effective means to prevent chronic diseases and health inequities

and improve overall population health. While preventative medicine

is less expensive than treatment, the same applies for social factors.

It is estimated that 70% of health is determined by social factors

and only 20% is determined by clinical care (80, 81). Studies have

found associations between unemployment, homelessness, drug use,

and poor mental health in diverse communities. Family relationships

and support are also important to consider as adolescents and young

adults are likely to be influenced by behaviors they observe or perceive

as acceptable based on childhood experiences (82). Interestingly,

it has been proposed that internet access, dependent on place of

residence, is another important SDOH to consider (81). Another

consideration for accurate SDOH data collection is participant health

as well as cultural and educational literacy. People with OUD have

been shown to have low to moderate health literacy levels (83–85),

and health literacy is an extremely important predictor of health

status (86). Another factor, racism, has been significantly related

to poor overall health, especially mental health, as the association

between racism and poor mental health was twice as large as the

association between racism and poor physical health. (87).

5.1.1. Data aggregation issues
Two main issues concern data aggregation, bad data acquisition

and bad data management. To reliably, accurately, and confidently
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acquire SDOH data in clinical environments, trust needs to be

engendered at the patient, health system, and governmental (i.e.,

local, state, federal) levels, each with their own potential concerns

that must be addressed. In terms of patients, particularly those from

underserved populations, they need to have confidence that their

health information will remain secure and confidential. Collecting

sensitive data in venues that patients describe as safe spaces by people

who are familiar with their situations can facilitate patients’ trust in

the process of data acquisition, transmission, and usage. Since the

OTP is described by people with OUD as a “safe space" (18, 19), they

are more likely to trust the clinical and non-clinical staff in a non-

judgmental, destigmatizing environment compared to conventional

healthcare settings, such as the emergency department, urgent care,

or primary care (29). In our context, data were acquired by OTP

staff and healthcare providers, which has been shown by others to

largely circumvent stigma encountered outside of the OTP (13, 14).

Therefore, people with OUD are willing to provide truthful answers,

enabling more accurate SDOH data collection, when they trust the

staff and feel respected.

The study was conducted at 12 sites across NYS, all overseen by

the same state agency (OASAS). We were able to obtain permission

from OASAS to utilize data collected for clinical purposes to extract

relevant SDOH. Over the course of the study, the research team

actively participated in OTP activities and workflows, demonstrating

trust, respect, and familiarity from an external entity. The research

team introduced their IT specialist (MB) to the staff of each OTP

involved in SDOH data collection. This transfer of trust permitted

the IT specialist to work with the OTP staff to collect SDOH data.

Data collection challenges, however, varied by site. For example,

one OTP had to enter the information from the intake forms

into a spreadsheet to share with the IT specialist due to difficulty

obtaining archival clinical information. Other sites had to obtain

intake forms from their archives and mail paper copies to the

research team for data entry. Other sites had difficulty downloading

SDOH forms from OASAS, so the IT specialist had to train

OTP staff and develop software to download and only retain data

relevant to study participants. All data entry of SDOH forms were

reviewed by different members of the research team for accuracy.

Data entry was documented in a tracking spreadsheet with dates

of conduct, dates of entry, and confirmation codes. The tracking

spreadsheet was used extensively for cross-referencing input and

output data, as well as correcting computational and human data

entry errors.

Beyond the issue of what types and how data should be collected,

there are issues of how the data are to be handled once they

are collected. The specific tasks to be considered include data

aggregation, secure transfer, and merging with already existing data

sets. In our context, data collected have been syntactically different

but semantically very similar, making integration feasible. As the

scope of the project expands to other healthcare settings, we expect

a greater diversity of attributes to appear, including the possibility

that additional attributes may become available for existing records.

Thus, even in this controlled setting, defining a single unified data

model is impractical. We need a data model that will allow us to

transfer this mass of heterogeneous data into a clinical setting. It

is crucial that this model must be extensible, allowing new data to

be easily linked to and integrated into existing data. The integration

process should adapt and evolve, with each integration effort making

it easier to integrate new data. The process should also be aware

of the uncertainty that it induces and able to communicate this

uncertainty to users of the integrated data (e.g., through provenance).

For example, subtle phrasing differences across two data collection

instruments may render them incomparable with respect to a

specific study. Finally, for such a process to be practical, it must

be commoditized or packaged in a comprehensive tool. Vizier’s

workflow system is a first step in this direction, but it remains an open

challenge for the data management community how to structure such

a tool.

5.1.2. Maintenance of reproducibility
How can we assess the reproducibility of the identified clusters

that contain questions associated with the different SDOH? In

our case, we first assessed the validity of the identified clusters

by computing the IGP scores. Further, we were able to compare

the SDOH categories identifed in our data with those present

in the PhenX data. Our procedures used Vizier, a computational

notebook. We ensured reproducibility by using Vizier to record

changes to the data, when they occurred, and why, as each

addition to the notebook makes an edit and a new version of

the data. Another Vizier function is producing a workflow, or

dependency graph, that captures intercell dependency. As data

modeling and analysis progresses, new output can be merged into

the datasets.

5.2. Research and policy implications

With the growing importance of SDOH in many dimensions, as

described throughout this article, it is incumbent on the research

community to develop reliable, validated approaches to utilize the

data in a straightforwardmanner with reproducible results.While the

topic of policy issues related to SDOH and relevant data acquisition

is quite broad, due to space constraints, we will limit our comments

to address data collection of underserved populations to inform

inclusivity and comprehensiveness of healthcare systems. Without

complete data, stakeholders, including policymakers, physicians

and other health professionals will be unable to make highly

informed, evidence-based decisions regarding care to communities

most impacted by SDOH. Several relevant recommendations have

recently been put forward by the ACP (88).

1. Data sharing-Data collected on testing, infection,

hospitalization, and mortality during a pandemic or in response

to screening and surveillance for infectious diseases (i.e., HCV or

HIV) should be shared with all relevant stakeholders including

government agencies at all levels, academic researchers, and

policymakers responsible for analysis of healthcare utilization trends

and forecasting for future growth.

2. Health literacy and culturally relevant data acquisition tools

should be available to assist in the collection of self-reported data.

Similarly, resources should be made available to clinicians so that

they are able to implement health literacy interventions and to

satisfactorily address cultural, informational, and linguistic needs of

their patients.

3. With regard to underserved populations, if we desire a more

inclusive healthcare system, then prioritization of data collection

among certain underserved populations may be necessary. Especially

in reference to pregnant women, the ACP has supported establishing
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maternal mortality review committees (MMRCs) that would be

charged with collecting relevant data, identifying causes of maternal

death, and developing strategies to prevent pregnancy-related death

and improve maternal outcomes. In the 38 states whereMMRCs have

been established, they have reduced maternal mortality by 20– 50%

(89), although 12 states have not established MMRCs (90).

Why is data prioritization needed? Timely access to accurate and

comprehensive data is crucial to addressing SDOH. In many areas

of SDOH, there has been a recent transition to electronic reporting.

Perhaps the lessons learned as explained in this article can assist in

the utilization of these data.

Reproducibilty is a foundational concept to scientific and

technical research because it allows confirmation of the validity of

the reported findings. Well documented data acquisition workflows

facilitate data reproducibility and optimal research practices.

Reproducible workflows, in turn, facilitate reproducible analyses and

the identification of potential errors in the data and the analysis.

Clustering methods provide a powerful tool that is versatile in

its use. Detecting and determining the presence of clusters and

obtaining reproducible results for the clustering procedures has

been an important concern. Kapp and Tibshirani (35) propose the

nonparametric IGP method for evaluating cluster reproducibility.

Techniques for testing the significance of the clustering results have

also been proposed in the statistical literature (91). We tested the

reproducibility of our clustering by comparing our clustering with

the one provided by the PhenX data set. More work is needed in this

area to derive methods that can be used with many data structures

and dimensions of the data.

Data curation and computational analysis play a major role

in modern scientific endeavors. Ensuring reproducibility of these

procedures requires tracking not only its individual steps (i.e., what

choices were made), but the context in which those steps were taken

(i.e., why the choices were made). To support reproducibility, tools

for data curation and analysis need to collect both forms of metadata.

More than this, reproducible data science technology should give its

users the tools they need to understand the metadata — tracking

the relationship between constructed artifacts as well as viewing the

context in which a particular item was created. We have observed, in

particular, a need for context-aware documentation [e.g.,as in Kumari

et al. (64)], not only to provide context for data, but also as a sort

of “guard rail” for data science. Crucially, such guard rails can not

be one-size-fits-all; even within a single domain, minor changes in

context (e.g., the addition of additional attributes) can invalidate

one form of analysis, while making another valid. Rather, an ideal

tool would build and track institutional knowledge, developed

through experience in a domain and working with specific categories

of data.

This paper addresses a fundamental issue in the expanding

role of SDOH as interventions targeted to improve healthcare

equity and disparities continue to evolve. We have outlined a

process to obtain high-quality, reproducible data from clinical

records collected longitudinally. We have outlined a process for

data extraction, acquisition, and preparation for analysis using a

computational notebook approach that has incorporated several

features to enhance reproducibility. The system readily incorporates

external data sources for analysis as well as for comparison and

as a benchmark. Given the growing importance of SDOH, the

procedures outlined here may be highly transferable to other settings

and populations.
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