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Background: The glioblastoma’s bad prognosis is primarily due to intra-tumor

heterogeneity, demonstrated from several studies that collected molecular biology,

cytogenetic data and more recently radiomic features for a better prognostic

stratification. The GLIFA project (GLIoblastoma Feature Analysis) is a multicentric

project planned to investigate the role of radiomic analysis in GB management, to

verify if radiomic features in the tissue around the resection cavity may guide the

radiation target volume delineation.

Materials and methods: We retrospectively analyze from three centers radiomic

features extracted from 90 patients with total or near total resection, who completed

the standard adjuvant treatment and for whom we had post-operative images

available for features extraction. The Manual segmentation was performed on

post gadolinium T1w MRI sequence by 2 radiation oncologists and reviewed by a

neuroradiologist, both with at least 10 years of experience. The Regions of interest

(ROI) considered for the analysis were: the surgical cavity ± post-surgical residual

mass (CTV_cavity); the CTV a margin of 1.5 cm added to CTV_cavity and the volume

resulting from subtracting the CTV_cavity from the CTV was defined as CTV_Ring.

Radiomic analysis and modeling were conducted in RStudio. Z-score normalization

was applied to each radiomic feature. A radiomic model was generated using features

extracted from the Ring to perform a binary classification and predict the PFS at

6 months. A 3-fold cross-validation repeated five times was implemented for internal

validation of the model.
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Results: Two-hundred and seventy ROIs were contoured. The proposed

radiomic model was given by the best fitting logistic regression model, and

included the following 3 features: F_cm_merged.contrast, F_cm_merged.info.corr.2,

F_rlm_merged.rlnu. A good agreement between model predicted probabilities and

observed outcome probabilities was obtained (p-value of 0.49 by Hosmer and

Lemeshow statistical test). The ROC curve of the model reported an AUC of 0.78

(95% CI: 0.68–0.88).

Conclusion: This is the first hypothesis-generating study which applies a radiomic

analysis focusing on healthy tissue ring around the surgical cavity on post-operative

MRI. This study provides a preliminary model for a decision support tool for a

customization of the radiation target volume in GB patients in order to achieve a

margin reduction strategy.
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1. Introduction

Glioblastoma (GB) continues to be the most common and
threatening primary brain tumors in adults and despite a multimodal
treatment (maximum safe surgical resection followed by adjuvant
radio-chemotherapy with Temozolomide) the prognosis remains
poor, with a median overall survival (OS) of 14.6 months and a
median progression free survival (PFS) of 6.9 months (1). In spite of
decades of research, our knowledge of this neoplasm is still limited.
This bad prognosis is primarily due to intra-tumor heterogeneity,
demonstrated also from several studies that collected molecular
biology and cytogenetic data for a better prognostic stratification
of glioblastoma.

The implementation of these markers, however, depends in
routine clinical practice on surgical tissue (2). On the contrary, the
use of medical imaging, as a non-invasive tool to derive prognostic
factors that can predict outcome such as survival, PFS, and response
to therapy, is becoming increasingly popular. The images can be
described not only qualitatively in order to highlight the presence of
necrotic, edemigenous, malignant, suspected or metabolically active
areas, but also quantitatively in order to generate numbers that
become real measurable data (3–5).

Radiomics (6) is the process that involves the high-throughput
extraction of quantitative features by computing local macro and
micro-scale morphologic changes in texture patterns (e.g., roughness,
image homogeneity, regularity, edges) with the intent of creating
mineable databases from radiographic images.

Some experiences with glioblastoma are reported via radiomics
approaches to predict tumor’s histological features (7), progression
(8), grade, treatment response (9), or even overall survival (10–13).

Magnetic resonance imaging (MRI) is the imaging modality for
characterizing GB in these studies and generally has an integral role in
diagnosis, response assessment, surveillance and radiation treatment,
especially for defining the volume of irradiation (14).

Defining the optimal target volume for GB is still a challenge and
represents a balance between minimizing treatment related toxicity,
while ensuring efficacy in terms of tumor control and allowing a
re-irradiation approach. The recent ESTRO-ACROP guidelines in
macroscopically resected GB recommend to add an isotropic margin

of 2 cm, adjusted to anatomical border, to resection cavity plus any
residual enhancing tumor on contrast-enhanced T1 weighted MRI,
without considering the peri-tumoral oedema.

This size of safety margin had traditionally been defined around
2–3 cm based on early anatomic and clinical research. In fact, the
recurrences reported in several studies are mainly central, in field
or marginal (80–90%) with 10–20% of lesions outsides the irradiated
field (15, 16).

Several studies have been conducted to identify look for strategies
of margin reduction, such as peritumoral zone investigation, the
analysis of pattern of recurrence (15) or integration between different
imaging methods (17), but no clear indication of reducing margin is
yet available (18–22).

In light of all these considerations, the GLIFA project
(GLIoblastoma Feature Analysis) is a multicentric project planned
to investigate the role of radiomic features in GB management.
In particular, in this study we aim to verify whether there
are any radiomic features in the tissue around the resection
cavity which may guide the target volume delineation allowing
a margin reduction strategy toward a personalized medicine
approach (23).

TABLE 1 Eligibility criteria for GLI.F.A. Project.

Inclusion criteria Exclusion criteria

– Histological diagnosis of GB > 18 yrs;
– ECOG performance status <4;
– Total or near-total resection;
– Platelet counting > 100 × 109/L;
– Hb > 11 g/L;
– GB > 4000/mm3 ;
– Neutrophils > 1900/mm3 ;
– Total bilirubin and alkaline phosphatase at

less than 1.25 normal concentration;
– Informed consent that documents that the

patient has been informed in a way that is
clear and comprehensible to him and that
fits all aspects of the study.

– Biopsy
– Degenerative neurological

diseases or other
neuropsychiatric disorders;

– Pregnancy status;
– Respiratory failure;
– Immunodepression status;
– Chronic renal failure.

ECOG, Eastern Cooperative Oncology Group.
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FIGURE 1

(A) CTV_cavity: Surgical cavity ± post-surgical residual mass; (B) CTV: CTV_cavity + 1.5 cm; (C) CTV_Ring: CTV–CTV_Cavity.

FIGURE 2

Patients’ selection.

1.1. Patients selection

This is a multicentric retrospective study approved by the
ethics committees of Institutions involved. All procedures
performed were in accordance with the ethical standards of the
institutional and/or national research committee and with the

1964 Helsinki declaration and its later amendments or comparable
ethical standards.

All adult patients, with histologically proven glioblastoma
Isocitrate dehydrogenase (IDH) wild-type underwent total or near-
total resection of the enhancing tumor, followed by standard radio-
chemotherapy and adjuvant chemotherapy (1), who have performed
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MRIs according to a timeline protocol of image acquisition shared
among the project participants, were considered eligible in this study
(Table 1). All MRIs must contain at least the post-contrast T1-
weighted sequences and T2-weighted Fluid Attenuated Inversion
Recovery (FLAIR) and relative images must be available in the
required imaging protocol descriptions from Digital Imaging and
Communication in Medicine, or DICOM format (24).

Patients, clinical data and MRI data of GB were obtained from
three centers (Università degli studi di Perugia e Azienda ospedaliera
di Perugia; Fondazione Policlinico Universitario Policlinico Agostino
Gemelli, IRCSS; Mater Olbia Hospital).

Data were collected from patients treated from 2016 to October
2020, with total or near total resection, who completed the standard
adjuvant treatment, with at least 9 months of follow-up and for whom
we had post-operative images available for features extraction.

The MRIs of these patients were examined and patients whose
diagnostic images were blurred or with some of the required
sequences missing were excluded from the contouring phase.

1.2. Image acquisition and segmentation

Imaging was performed on 1.5 T MRI unit from different
manufactures (Philips Medical Systems, SIEMENS, GE
Medical Systems).

One sequence was included in the current study: gadolinium
(Gd) enhanced T1-weighted FSPGR (T1c). The images were acquired
with the following imaging parameters: slice thickness 4–5 mm, pixel
spacing 0.35–0.90 mm.

The images were loaded in a radiation therapy delineation
console (Eclipse, Varian Medical Systems, Palo Alto, CA, USA) and
in the open-source software 3D Slicer for the definition of regions
of interest (ROI).

Manual segmentation was performed on post gadolinium T1w
MRI sequence by cooperation of 2 radiation oncologists expert in the
management of brain cancer, with at least 10 years of experience (SC,
FB), and all cases were individually reviewed by a neuroradiologist
with at least 10 years of experience (SG, RR).

The ROI considered for the analysis were the following:
the surgical cavity ± post-surgical residual mass clinical target
volume_cavity (CTV_cavity); a margin of 1.5 cm was added to
CTV_cavity to obtain the CTV and the volume resulting from
subtracting the CTV_cavity from the CTV was defined as CTV_Ring
(Figure 1).

1.3. Radiomic feature extraction

Radiomic features were extracted from the CTV_Ring using
MODDICOM, an open-source R library developed for radiomic
feature extraction (25). This software was validated and calibrated
within the Image Biomarker Standardization Initiative, which aimed
to standardize the definition and computation of radiomic features
among different software implementations (26).

In total, 226 radiomic features belonging to different feature
families were extracted for each CTV_Ring. 17 statistical features
provided statistical measures of the gray-level histogram of the
ROI; 14 morphological features provided morphological descriptors
of the ROI; 195 textural features described properties of the local

TABLE 2 Clinical data characteristics of patients with glioblastoma (GB)
(n = 90).

Characteristics n (%)

Gender

Male 62 (68,9%)

Female 28 (31,1%)

Age

Median 61,7 yrs

Min 80 yrs

Max 39 yrs

<50 yrs 12 (13, 3%)

≥50 yrs 78 (86, 7%)

MGMT-gene metylathion

Not 37 (41, 1%)

Yes 48 (53,3%)

NA 5 (5, 6%)

Type of surgery

GTR 23 (25, 6%)

STR 67 (74, 4%)

IDH

IDH wild-type 100 (100%)

PFS

PFS ≤ 6 months 30 (33, 3%)

PFS > 6 months 60 (66, 7%)

GTR, gross total resection; STR, subtotal resection; IDH, Isocitrate dehydrogenase; MGMT,
methylguanine-DNA methyl-transferase; yrs, years.

distribution of the gray levels within the ROI based on co-occurrence
of gray levels, consecutive sequence of pixels or zones with the same
gray level (27).

1.4. Radiomic feature selection and
radiomics modeling

Radiomics analysis and modeling were conducted in RStudio (R
version 3.6.3). Z-score normalization was applied to each radiomic
feature before further analysis.

We generated a radiomic model using the features extracted from
the CTV_Ring to perform a binary classification and predict the PFS
at 6 months. Class 1 represented PFS below or equal to 6 months,
while class 0 represented PFS above 6 months.

Feature selection was implemented to reduce the number
of variables included in the model and prevent overfitting.
A univariate analysis was performed using the Wilcoxon-Mann-
Whitney statistical test, which tested the statistically significant
difference between the two classes for each radiomic feature.
A significance level of 0.05 was set for the univariate analysis.
The collinearity of the statistically significant features was assessed
by computing the Pearson cross-correlation coefficient. We set a
threshold of 0.9 for the Pearson coefficient to exclude collinear (highly
correlated) features.

Different logistic regression models were generated using the
selected features. The best fitting model was determined with a
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FIGURE 3

Boxplots of the radiomic features included in the developed logistic regression model for the two classes of the outcome. Class 1 (cyan) indicates
progression free survival (PFS) below or equal to 6 months, while class 0 (red) indicates PFS above 6 months.

stepwise feature selection according to the Akaike Information
Criteria (28), to compromise between model fitting goodness and
model complexity.

1.5. Radiomic model performance and
validation

The internal calibration of the proposed model was evaluated
by producing the calibration plot, reporting model predicted
probabilities against observed outcome probabilities, and by means
of the Hosmer and Lemeshow goodness-of-fit statistic. A p-
value > 0.05 indicated that there was no statistically significant
difference between model predicted probabilities and observed
outcome probabilities (29).

The discrimination performance of the proposed model was
assessed by calculating the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, and by computing the
classification evaluation metrics.

The 95% confidence interval (CI) for the AUC was yielded
by performing 2000 stratified bootstrap resampling. Sensitivity,
specificity, positive and negative predictive values (PPV, NPV) were
computed after defining the probability threshold as the best cut-
off according to the Youden’s index method. The 95% CI of these
evaluation classification metrics was obtained by adopting the Jeffreys
method for small sample sizes (30).

A 3-fold cross-validation repeated five times was implemented
for internal validation of the model. Mean and standard deviations
of the evaluation classification metrics were calculated over the five
repetitions (31, 32).

2. Results

2.1. Patient population

From January 2016 to October 2020, we collected consecutive 347
newly pathologically confirmed patients with GB and screened these
cases (Figure 2).

90 patients were considered to retrospectively analyze the pattern
of radiomic features.

Patients’ characteristics are reported in Table 2.

2.2. Development and validation of
radiomic model

Based on the Wilcoxon–Mann–Whitney statistical test, 48 out of
the extracted 226 radiomic features showed a statistically significant
difference between the two classes. Following the correlation analysis
with the Pearson coefficient, 12 out of the 48 remaining features

TABLE 3 Model coefficients and statistically significant p-values.

Estimated model
coefficient

Standard
error

P-value

Intercept −0.92 0.27 <0.001

F_cm_merged.contrast 0.89 0.36 0.013

F_cm_merged.info.corr.2 −1.10 0.34 0.0012

F_rlm_merged.rlnu 0.81 0.33 0.014
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FIGURE 4

Calibration plot reporting the observed probabilities against the model predicted probabilities.

were retained for the model development phase. The proposed
radiomic model was given by the best fitting logistic regression
model, and included the following 3 features: F_cm_merged.contrast,
F_cm_merged.info.corr.2, F_rlm_merged.rlnu.

The boxplots represented in Figure 3 show the distribution
of the selected radiomic features used in the model for the two
classes of outcome. Table 3 reports the estimated model coefficients
and the statistically significant p-values (p-value < 0.05). The
feature F_cm_merged.info.corr.2 which presented no overlap of the
interquartile ranges of the two classes, as shown in Figure 3, was also
associated to the most statistically significant p-value of the model
coefficients.

A good agreement between model predicted probabilities and
observed outcome probabilities was obtained, as showed in the
calibration plot (Figure 4) and as indicated by the p-value of 0.49
resulting from the Hosmer and Lemeshow statistical test. Figure 5
represents the ROC curve of the model with an AUC of 0.78 (95%
CI: 0.68–0.88). The discrimination performances of the model for
the binary classification are reported in Table 4 for model fitting and
internal validation. The cross-validation confirmed the performances

FIGURE 5

Receiver operating characteristic (ROC) curve of the developed
radiomic model. The bars indicate the 95% confidence intervals (CI)
for sensitivity and specificity.

obtained during model fitting with a slight or no decrease of the
metrics, suggesting that no overfitting had occurred. Specifically, the
specificity decreased from 0.80 during model fitting to 0.75 for the
cross-validation, while the NPV remained stable at 0.84.

3. Discussion

The emerging big challenge in the field of medical research is to
identify multimodal predictive/prognostic factors (clinical, imaging
and molecular data) and integrate them in a quantitative manner
to provide prediction models that estimate patient outcomes as
a function of the possible decisions toward an individualized or
personalized medicine.

In the last years, the main effort of radiology research has been
focused on quantifying imaging variations trying to understand their
clinical and biological implications.

Radiomics uses high-throughput radiomic features and
mathematical models to quantify tumor characteristics, allowing
the non-invasive capture of microscale information hidden within
medical imaging features undetectable by the human eye and
add value to clinical visual perception by exposing underlying
pathophysiology, including intra-tumoral heterogeneity (29, 33–35).

To date the application of radiomics in GM setting has shown
considerable progress in demonstrating that it can be a tool capable
of deriving much information, with implications in diagnostics, such
as differentiating tumors based on texture analysis, differentiating
treatment effects (radiation necrosis, pseudo-progression) and tumor
recurrence, in prognosis such as survival stratification (1–4, 34–
38) and applications in the choice of optimal therapy (39–41),
e.g., stratification of response to anti-angiogenic treatment for
recurrent glioblastoma.

Most radiomics studies have focused on analyzing features
extrapolated from pre-operative MRI by studying the macroscopic
site of the tumor, using ROIs such as tumor enhancement (ET),
non-enhancement, tumor/necrosis (NET), and edema (ED).

Few studies (42, 43) have suggested that heterogeneity extends
beyond the tumor margins into the peritumoral brain region (PBR),
suggesting that the interaction of specific cells (i.e., glioma cells,
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TABLE 4 Model discrimination metrics for model fitting and internal validation with cross-validation.

AUC Sensitivity Specificity PPV NPV

Model fitting 0.78 (0.68–0.88) 0.70 (0.52–0.84) 0.80 (0.68–0.89) 0.64 (0.47–0.78) 0.84 (0.73–0.92)

Cross-validation 0.79 (0.04) 0.70 (0.08) 0.75 (0.12) 0.60 (0.15) 0.84 (0.03)

Model fitting presents the 95% confidence interval (CI) of the metrics in brackets. Cross-validation presents mean and standard deviation values (in brackets). PPV, positive predictive value; NPV,
negative predictive value.

vascular endothelial, neuroglial and microglial cells) (44, 45) and
molecular events in the PBR contribute to tumor infiltration, blood-
brain barrier impairment and micro-vascularization and ultimately
affect overall survival in GB.

There has been also an increasing interest in understanding the
role of the PBR in molecular pathogenesis, as the residual cells along
the resection margin and in the surrounding region can represent
resistant and rapidly proliferating clones (43), which can lead to
disease recurrence (46).

On the other hand, as we know, the anatomy of the brain can
be significantly altered after surgery and the characteristics of the
tissue surrounding the surgical cavity can be affected by postoperative
changes such as gliosis, ischemia, blood products and can be the site
of resistant and rapidly proliferating clones. After all, in radiotherapy,
postoperative MRI is the imaging of choice for volume definition:
surgical cavity plus the margin because it may be the site of resistant
and rapidly proliferating clones (43).

Few studies have focused on the radiomic analysis of features
in postoperative MRI. Dasgupta et al. generated probabilistic maps
by developing a radiomic signature using imaging data from low-
grade glioma (LGG) (tumor marker) and brain metastasis (BM) PTR
(edema marker) and applied on 10 cases of GB PTR. They found
that a radiomic signature can demarcate areas of microscopic tumors
from edema in the PTR of GB, which correlates with areas of future
recurrence. The authors finally suggested the potential application of
radiomic features in driving radiotherapy target volumes, as standard
practice includes a wider margin empirically (46).

Our study aimed to develop a predictive model based on radiomic
features analysis extracted from real data to guide the target volume
delineation in radiotherapy, focusing on the open question of the
margins to be given to the surgical cavity, in order to re-evaluate and
to hypothesize a CTV contouring guided and personalized according
to radiomic features.

Considering our homogeneous population of 90 GB IDH wild-
type, the analysis focused on a healthy tissue ring around the surgical
cavity resulting in a radiomic model able to discriminate between
patients with low-risk and high-risk of relapse at 6 months with an
AUC of 78.5%. We decided to considerate the clinical outcome of
PFS at 6 months that could describe the local control after radio-
chemotherapy, excluding the overall survival that could depend on
other clinical and treatment variables. This predictive model with
high NPV of 0.84 could allow us to select a population of patients
with low-risk of relapse at 6 months, in whom it may be possible to
reduce the total CTV by decreasing the margins to 1.5 cm, planning
a dose strategy modulation in the surrounding tissue and potential
reducing the toxicity of healthy tissue and critical structures.

The radiomic features included in the developed radiomic model
were textural features computed from the gray-level co-occurrence
matrix (F_cm_merged.contrast, F_cm_merged.info.corr.2), which is
based on the combinations of the gray-levels of neighboring pixels,
and from the gray level run length matrix (F_rlm_merged.rlnu),

which is based on the sequence of consecutive pixels with the same
gray-level. Furthermore, the radiomic model presented a high NPV
of 0.84 when compared to the null model, which was based on
the prevalence of the majority class 0 (∼67%). This result was
confirmed in the internal validation, which was performed to assess
the generalizability of the model. The limitations of this study include
the lack of independent validation of the proposed radiomic model,
the absence of images for all patients due to unsuitable imaging data,
small sample size and the lack of correlation with other potential
clinical prognostic factors of PFS or with recurrence pattern.

However, this is the first hypothesis-generating study that applies
a radiomic analysis based on the irradiated target volume as
region of interest (ROI) for GB, focusing on healthy tissue ring
around the surgical cavity on post-operative MRI. Future steps
will include performing an external validation of the model and
verifying the applicability of the model in the clinical practice through
clinical trials.

4. Conclusion

This study provides a preliminary model for a decision support
tool employing radiomic features for a customization of the radiation
target volume in GB IDH wild-type in order to achieve a margin
reduction strategy.
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