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Patient-derived xenografts (PDXs) are an appealing platform for preclinical drug

studies. A primary challenge in modeling drug response prediction (DRP) with

PDXs and neural networks (NNs) is the limited number of drug response samples.

We investigate multimodal neural network (MM-Net) and data augmentation for

DRP in PDXs. The MM-Net learns to predict response using drug descriptors, gene

expressions (GE), and histology whole-slide images (WSIs). We explore whether

combining WSIs with GE improves predictions as compared with models that use

GE alone. We propose two data augmentation methods which allow us training

multimodal and unimodal NNs without changing architectures with a single larger

dataset: 1) combine single-drug and drug-pair treatments by homogenizing drug

representations, and 2) augment drug-pairs which doubles the sample size of

all drug-pair samples. Unimodal NNs which use GE are compared to assess

the contribution of data augmentation. The NN that uses the original and the

augmented drug-pair treatments as well as single-drug treatments outperforms

NNs that ignore either the augmented drug-pairs or the single-drug treatments. In

assessing themultimodal learning based on theMCCmetric, MM-Net outperforms

all the baselines. Our results show that data augmentation and integration of

histology images with GE can improve prediction performance of drug response

in PDXs.

KEYWORDS

drug response prediction, histology whole-slide images, gene expression, multimodal
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(PDX)
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1. Introduction

With recent advancements in applications of artificial

intelligence in medicine and biology, predictive modeling has

gradually become one of the primary directions in cancer

research for analytically predicting the response of tumors to

anticancer treatments (1, 2). In particular, conventional machine

learning (ML) and deep learning (DL) methods have been widely

investigated for building computational drug response prediction

models for cancer cell lines with large datasets of omics profiles

(3). The complex heterogeneities of cancer that occur within and

between tumors present a major obstacle to successful discovery

of robust biomarkers and therapies (4, 5). Patient-derived tumor

xenografts (PDXs) are a contemporary biological model that is

created by grafting cancerous tissue, obtained from human tumor

specimens, into immunodeficient mice. The in vivo environment of

PDXs helps preserve tumor heterogeneity as compared to in vitro

cell lines, and therefore, is presumed to better mimic the response

of human patients with certain cancer types. PDXs continue to gain

reputation for studying cancer and investigating drug response in

preclinical drug studies (6–8).

Predicting the response of tumors to drug treatments with

accurate and robust computational models provides a modern

approach for identifying top candidates for preclinical drug

screening experiments or personalized cancer treatments. A variety

of ML and DL approaches have been explored with high-

throughput drug screens and cell lines (9, 10). Alternatively, our

literature search retrieved only two publications that have used only

PDX data to train prediction models for drug response (11, 12).

Both studies used theNovartis PDX data (NIBR PDXE), which were

generated using a 1 x 1 x 1 experimental design (13, 14), where each

drug was tested against each patient PDX model using only one

entumored mouse per model. Nguyen et al. (11) used an optimal

model complexity (OMC) strategy with random forests to build

drug response models for 26 treatment-cancer type combinations.

They considered three genomic feature types in their analyses,

including gene expressions (GE), copy-number alterations (CNAs),

and single-nucleotide variants (SNVs). While considering a single

feature type at a time, they used OMC to determine an optimal

subset of features to obtain the best performing model for each

treatment-cancer type pair. They showed that for the majority of

cases, models developed with OMC outperform models that used

all the available features. In another study, Kim et al. proposed

PDXGEM, a pipeline that identifies biomarkers predictive of drug

response in PDX and then uses the identified markers to train

prediction models (12). To identify predictive genes based on

GE and drug response, the pipeline utilizes a strategy similar to

co-expression extrapolation (COXEN) (15, 16), and consequently

selects the genes whose co-expression patterns are best preserved

between PDXs and patient tumors. They trained prediction models

using random forests for six treatment-tumor type combinations

and then predicted response in patients.

A primary challenge in modeling drug response with PDXs

is the limited availability of drug response data. The sample

size of PDXs is usually orders of magnitude smaller than the

analogous cell line datasets. It has been shown that increasing the

amount of training samples improves generalization performance

of supervised learning models in vision and text applications

(17, 18), as well as drug response models in cell lines (19, 20).

Collecting PDX response data, either through experiments or

integration of multiple datasets, carries considerable technical and

financial challenges. Alternatively, instead of directly increasing the

sample size, the volume of data can be expanded by representing

each sample with multiple feature types. Multimodal architectures

that integrate genomic and histology images have been shown

to improve prognosis prediction of patients with cancer as

compared with unimodal architectures that learn only from a

single data modality (i.e., feature type) (21–23). Another possible

direction to address the limited sample size is data augmentation.

Augmentation techniques have been extensively explored with

image and text data, but not much with drug response. While

augmenting images has become a common practice, tabular

datasets such as omics profiles lack standardized augmentation

methods.

In this study, we investigate two approaches for predicting

drug response in PDX, including multimodal learning and data

augmentation. We explore a multimodal neural network (MM-

Net) that learns to predict drug response in PDXs using GE and

histology whole-slide images (WSIs), two feature types representing

cancer tissue, and molecular descriptors that represent drugs.

The multimodal architecture is designed to take four feature

sets as inputs: (1) GE, (2) histology images, and (3,4) molecular

descriptors of a pair of drugs. We benchmark the prediction

performance of MM-Net against three baselines: (1) NN trained

with drug descriptors and GE, (2) NN trained with drug descriptors

and WSIs, and (3) LightGBM model (24) trained with drug

descriptors and GE. With multimodal learning, our goal is to

explore whether the integration of histology images with GE

improves the prediction performance as compared with models

that use GE features alone. For data augmentation, we homogenize

the drug representation of single-drug and drug-pair treatments

in order to combine them into a single dataset. Moreover, we

introduce an augmentation method that doubles the sample size

of all drug-pair treatments. The proposed augmentations allow us

to combine single-drug and drug-pair treatments to train MM-

Net and the baselines without changing the architectures and

the dataset. We explore the contribution of augmented data for

improving the prediction of drug response.

This paper provides unique contributions compared with

existing works that train drug response models with PDX data

(11, 12). First, we build general drug response models for PDXs

across multiple cancer types and drug treatments. Alternatively,

prediction models in Kim et al. (12) and Nguyen et al. (11)

are built for specific combinations of cancer type and drug

treatment. Thus, our study targets a more challenging task. Second,

we utilize PDX histology images with multimodal architecture

which has not yet been studied for drug response prediction

in PDX. Our study presents a framework for integrating image

data with genomic measurements and drug chemical structure for

predicting treatment effect. Third, we combine multiple treatments

into a single dataset by homogenizing single-drug and drug-

pair treatments and utilize drug features for training models.

This provides an advantage over existing works which built

prediction models for unique combinations of drugs and cancer
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types, and therefore, disregard drug features when model training.

Furthermore, we propose an augmentation method for drug-pairs

that doubles the sample size of the drug-pair treatments in the

dataset. Fourth, existing studies built prediction models using the

PDXE drug screening data which were generated using a 1 x 1 x 1

experimental design, i.e., one mouse per model per treatment. In

contrast, we utilized the PDMR dataset where treatment response

is measured by comparing a group of treated mice to a group of

untreated mice. The group approach allows assessing the variability

of response across mice and might be considered as more reliable

in capturing tumor heterogeneity.

2. Materials and methods

2.1. Data

2.1.1. Experimental design of drug e�cacy in PDX
We used unpublished PDX drug response data from the

NCI Patient-Derived Models Repository (PDMR; http://pdmr.

cancer.gov). The NCI PDMR performs histopathology assessment,

whole-exome sequencing and RNA-Seq analysis of a subset of

tumors from each PDX model to establish baseline histology

and omic characterization for each model. To date, over six

hundred unique PDX models have been characterized and data

made available through the public website. Baseline pathology

and omic characterization from 487 models were used for this

analysis. The efficacy of drug treatments in PDMR is measured

through controlled group experiments. Figure 1 illustrates the

process of obtaining primary tumor specimen from a patient,

engrafting tumor tissue into PDX models, performing baseline

characterization, expanding tumor tissue over multiple passages

within a lineage, and then using the expanded tumors in drug

treatment experiments. A total of 96 PDX models from 89 unique

patients were used for the experiments. The tumors are grown

subcutaneously in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) host

mice and staged to an approximate tumor weight of 200 mm3 for

the drug studies. The control group is treated with a vehicle only

(i.e., a solution that delivers drugs to the treated animals). The

preclinical dataset includes twelve single-drug and 36 drug-pair

treatment arms (the drugs are still in preclinical and/or clinical

investigations and their names and properties are expected to be

released in the future). Median tumor volume over time for each

vehicle or treatment group is used for response assessment. The

GE profiles and WSIs were aggregated and preprocessed for the

downstream ML and DL analysis.

2.1.2. Drug response in PDX
The growth of tumor volume over time represents the response

of PDX tumors to drug treatments, as shown in Figure 2. There

are several methods available in the literature for encoding drug

response in PDXs which include both continuous and categorical

types, but no consensus currently exists regarding which type

or actual representation is better (6, 25). Continuous metrics

include percent change in tumor volume, area under the tumor

growth curve, best tumor response, best average response, and

more. In this study we chose to use the binary representation of

response which aligns with other drug response prediction studies

that are mentioned earlier (11, 12), and the RECIST criteria, an

existing standard for encoding response in patients (26). The group

approach intends to capture the variability of PDX drug response

across mice of the same lineage (25). Median tumor volume per

treatment group is assessed relative to the control group to create

a binary variable representing response. Specifically, for each drug

treatment experiment, a single experienced preclinical study analyst

assessed the curves of median tumor volume over time for each

treatment arm, and assigned label “1” for response (regression of

at least 30% from staging for more than one consecutive time point

at any point during the study) and label “0” for non-response. In

essence, a modified RECIST score for regression vs. no regression

was used to label the response. Thus, a single best response value

was assigned for each treatment arm.

2.1.3. Data generation
Three feature types were used for model training, including

drug descriptors, GE, and histology image tiles.

Gene expressions. Gene expressions have been considered to

provide more predictive power than other omics data types for

drug response prediction (DRP) (27), and therefore, are often

used to represent cancer in DRP models, either standalone or

in a combination with other multiomics (28). However, the high

dimensionality of gene expressions and the relatively small sample

size can lead to overfitting (2). To address this issue, several

gene selection methods have been utilized, including filtering

genes based on variability across samples (29–31) or using gene

subsets such as LINCS (10, 32–36) or COSMIC (35, 37–40)

that are known to be associated with cancer and/or treatment

response. We are not aware of any systematic analysis that studied

which filtering method better addresses overfitting and improves

prediction generalization. In this study, we filtered the RNA-

seq data by selecting 942 landmark genes discovered by the

Library of Integrated Network-Based Cellular Signatures (LINCS)

project. The LINCS genes have been shown to comprehensively

characterize and infer the gene expression variation of more than

80% of the whole transcriptome (32). We used TPM (transcripts

per kilobase million) expression values of these genes, which were

transformed by log2x+1, where x is the TPM value of a gene. The

log transformed TPM values of each gene were then standardized

to have a zero mean and a unit standard deviation across all gene

expression profiles.

Drug descriptors. We used the Dragon software package

(version 7.0) to calculate numerical descriptors of drug molecular

structure. The software calculates various types of molecular

descriptors, such as atom types, estimations of molecular

properties, topological and geometrical descriptors, functional

groups and fragment counts, and drug-like indices. A total of 1,993

descriptors were used for the analysis after removing descriptors

with missing values. We standardized the descriptor values across

drugs to have a zero mean and a unit standard deviation.

Histology images. During PDX model expansion, entumored

mice were sacrificed between 1,000 and 2,000 mm3 for collection

of tumors for representative model characterization including

histopathological examination. Hematoxylin and Eosin (H&E)
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FIGURE 1

Expansion of tumor tissue from the source specimen (ORIGINATOR) to mice across multiple passages. Mice originated from the same specimen are

divided into a control group and multiple treatment groups. Tumors from certain mice were histologically and molecularly profiled, resulting in

whole-slide images and omics profiles.

FIGURE 2

Representative tumor growth curves for vehicle control and three drugs. The label of response was assigned to Drug B because the tumor achieved

regression and non-response was assigned to the remaining drugs.

stained pathology slides were digitized into WSIs using an

Aperio AT2 digital whole slide scanner (Leica Biosystems) at

20x magnification. A board-certified pathologist from Frederick

National Laboratory of Cancer Research reviewed the slides to

ensure the PDX models were consistent with the original patient

diagnosis. Tumor regions of interest (ROIs) were annotated within
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FIGURE 3

Whole-slide histology image processing. (A) Whole-slide images

were annotated with region of interest (ROI) outlines, and image

tiles were extracted from within ROIs in a grid-wise fashion. (B)

Extracted non-background tiles underwent digital stain

normalization using the Reinhard method (44).

the image slides using QuPath (41) by a single University of

Chicago pathologist.

Whole slide images were processed into individual tiles using

the Slideflow software package (42, 43), as shown in Figure 3. Image

tiles were extracted from within annotated ROIs in a grid pattern

at 302 µm by 302 µm with no overlap, then downsampled to 299

pixels by 299 pixels, resulting in an effective optical magnification

of 10x. Background tiles were removed with grayscale filtering,

where each tile is converted to the HSV color space and removed

if more than 60% of its pixels have a hue value of less than 0.05.

Image tiles then underwent digital stain normalization using the

Reinhard method (44) and were subsequently standardized to give

each image a mean of zero with a variance of one.

2.1.4. Constructing PDX drug response dataset
In constructing the drug response dataset, we populated

samples from each group experiment with the corresponding

response label. Each sample that was molecularly and histologically

profiled consists of three feature types and a binary response value.

The feature types include drug descriptors, GE, and histology tiles,

as illustrated in Figure 4. Table 1 lists the summary statistics of the

dataset.

The PDMR preclinical dataset contains experiments of single-

drug treatments and drug pairs. In order to include both single-

drug and drug-pair treatments in the dataset, and ensure consistent

dimensionality of drug features, we homogenized single-drug

treatments by duplicating drug descriptors to form a pseudo drug-

pair that includes two identical drug feature vectors. In this case,

the samples of single-drug and drug-pair treatments will follow the

same input dimensionality for all ML models. Moreover, because

switching the position of drug features in drug-pair treatments

should not change the drug response, we augmented all drug-pair

samples by switching the position of the two drugs while keeping

the drug response value unchanged. Such data augmentation

doubles the number of drug-pair samples in the dataset.

Following the integration of group samples into the dataset

and the augmentation of drug-pair treatments, the drug response

dataset contains 6,962 samples. The total number of treatment

groups in the dataset is 959 with 917 non-response and 42 response

groups. The dataset contains three feature types (modalities): two

vectors of drug descriptors (a vector for each drug), GE profile,

and histology tiles. Each sample consists of a unique combination

of drug descriptors and GE profiles. However, each such sample

contains multiple image tiles from a corresponding histology

slide. Concretely, each sample consists of a GE profile, vector of

descriptors for drug 1 and drug 2, and multiple image tiles as

shown in Figure 4.We store the data in TFRecords (TensorFlow file

format) which enables efficient data prefetching and loading, and

therefore, considerably decreases the training and inference time.

2.1.5. Data splits
Data leakage can lead to overly optimistic predictions (45). Two

primary characteristics of our dataset may lead to leakage if random

splitting is used to generate training, validation, and test sets. First,

a drug response label is assigned to all the samples in the entire

treatment group. To prevent leakage, we make sure that samples

from the same treatment group always appear together in one of the

training, validation, or test sets. Second, the augmented drug-pair

samples represent, in reality, the same experiment, and therefore,

are also placed together when generating the splits. With this

strategy, we generated 100 data splits for the analysis (10-fold cross-

validation repeated ten times with different random seeds), where

the tissue features (GE profiles and WSIs) of the same treatment

group are kept together and not shared across training, validation,

and test sets of each data split.

2.2. Prediction models

We explore the performance of MM-Net, shown in Figure 5,

in predicting the drug response in PDXs. The model takes

preprocessed feature sets as inputs, including drug descriptors,

GE, and histology tiles, and passes them through subnetworks of

layers. The encoded features from the subnetworks are merged via

a concatenation layer and propagated to the output for predicting a

binary drug response.

Since the dataset is highly redundant in terms of GE and drug

features as shown in Figure 4 and Table 1 (there are 48 unique drug

treatments and 487 unique expression sets), we use a single layer of

trainable weights to encode these features with the goal to mitigate

overfitting. The image tiles are passed through a subnetwork of
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FIGURE 4

Data arrangement of the PDX drug response dataset. The dataset contains 959 treatment groups after homogenizing and augmenting the drug

experiments as described in Section 2.1.4. For example, Sample 1 is a single-drug treatment that is structured as a pseudo drug-pair treatment where

Drug 1 and Drug 2 features are the same feature vectors; Sample N is an augmented version of Sample N-1, in which the positions of drug feature

vectors are switched. Note that each sample contains multiple histology image tiles that were extracted from a large WSI.

TABLE 1 Summary of the PDX drug response dataset used for building

prediction models.

Patients 89

Primary tumor specimens 96

Single-drug treatments 12

Drug-pair treatments (excludes augmented samples) 36

Treatment groups 959

Gene expression profiles 487

Histology whole-slide images (WSIs) 487

Histology image tiles (extracted fromWSIs) 177,468

Single-drug response values 2,556

Drug-pair response values (includes augmented values) 4,406

Drug response values 6,962

convolutional layers of the Xception model (46) with weights pre-

trained on ImageNet (47). The output from the convolutional

neural network (CNN) is passed through a series of dense

layers before being concatenated with the encoded GE and drug

descriptor representations.

We compare the performance of MM-Net with three unimodal

baselines that use either GE or WSI as tumor features: (1) UME-

Net, NN that uses GE, (2) UMH-Net, NN that uses histology tiles,

and (3) LGBM, LightGBM that uses GE. Note that all models use

drug descriptors.

2.3. Training and evaluation

We used a randomized search to obtain a set of

hyperparameters (HPs) for UME-Net, including optimizer,

learning rate, and layer dimensions that encode GE and drug

descriptors. The values of these HPs were also used for MM-Net. A

few remaining HPs that are unique to MM-Net were determined

in a separate search using the MM-Net architecture. Another

randomized search was performed to obtain the HPs for LGBM

such as the number of leaves in the decision tree and the number

of trees.

To mitigate overfitting, we used the early stopping mechanism

in TensorFlow and LightBGM where model trainings terminate

automatically if the predictions on a validation set have not been

improved for a predefined number of training iterations. The early

stopping parameter was set to 10 epochs for all NNs and 100

boosting rounds for the LGBM. All NNs were trained for 400

training epochs which triggered early stopping and ensured model

convergence. To further address overfitting, we applied standard

image augmentation methods such as rotation and horizontal

flipping to histology tiles during the training of MM-Net and

UMH-Net.
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FIGURE 5

Multimodal neural network (MM-Net) learns from drug descriptors,

gene expressions, and tiles generated from whole-slide images, to

predict drug response in PDXs.

Since the dataset is highly imbalanced in terms of drug response

distribution, we used a weighted loss function that penalizes more

heavily incorrect predictions of the response samples as opposed

to the non-response samples. For training MM-Net, we used only

10% of the image tiles that were available in each WSI, because our

preliminary experiments revealed that the prediction performance

does not improve if additional tiles are used. The 10% of the tiles

have been drawn at random from each WSI.

For model evaluation, we used three performance metrics

for binary classification tasks, including Matthews correlation

coefficient (MCC), area under the receiver operating characteristic

curve (AUROC), and area under the precision-recall curve

(AUPRC). We calculated the metrics based on a test set of each one

of the 100 splits. To compute each metric for a given test set, we

aggregated all the sample predictions in the test set. In the case of

baseline models where each tumor sample is represented by a GE

vector, the prediction model generates in a single probability value

for each sample. However, in the case ofMM-Net where each tumor

sample is represented by multiple image tiles in addition to the GE

profile, the prediction model generates a single probability value

for each image tile which results in multiple predicted probability

values for a single sample. To conform with the output of the

baseline models, the tile predictions fromMM-Net were aggregated

viamean to provide a single probability value for each sample. Note

that while only 10% of the available tiles were used for trainingMM-

Net, all tiles in the test set were used to compute predictions and

subsequently obtain the performance metrics.

3. Results

A total of six prediction models were analyzed, as summarized

in Table 2. The models differ in terms of the feature sets and the

samples that were used for training and validation (binary columns

in Table 2). All models were evaluated across the same 100 data

splits. Figure 6 shows the performance metrics, including MCC,

AUPRC, and AUROC where each data point is a metric value

calculated for a given split. The average score of each model was

aggregated via mean across the splits for each metric (listed in

Table 2).

In constructing the drug response dataset, we used two

approaches to increase the number of response values, as described

in Section 2.1.4. We analyzed the effect of these two methods on

the prediction performance by comparing three unimodal NNs that

were trained with GE and drug descriptors on subsets of the dataset:

(1) UME-Net, trained with the full dataset that includes the original

and the augmented drug-pair treatments as well as single-drug

treatments, (2) UME-Netpairs, trained with only drug-pair samples

which include the original and the augmented samples, and (3)

UME-Netorg , trained with the original single-drug and drug-pair

samples that exclude the augmented drug-pair samples. Figure 6

shows the prediction performance of using the different training

subsets across the data splits where each data point is a metric value

calculated for a given split. While the distribution of scores across

the splits is quite substantial, removing either subset of samples

(i.e., single-drug samples or augmented drug-pairs) results in a

significant decline in prediction performance, as demonstrated by

two statistical tests, including paired t-test and Wilcoxon signed-

rank test (p < 0.05). In other words, augmentation methods lead to

a significant improvement in performance of the NNs when trained

with GE and descriptors. Hence, we used the full set of the available

training samples for the analyses of multimodal learning.

The MM-Net architecture, shown in Figure 5, was compared

against three baseline models, including UME-Net, UMH-Net, and

LGBM. The performancemetrics represent the ability of themodels

to generalize to a test set of unseen observations. Statistical tests

(paired t-test and Wilcoxon signed-rank test) were performed to

assess statistical difference between the models across the 100 data

splits. Based on the aggregated MCC score, MM-Net statistically

significantly outperforms all the baselines (p < 0.05 for both

tests) except for UME-Net. When considering the AUPRC, MM-

Net outperforms UMH-Net but there is no significant difference

when comparing MM-Net with UME-Net or LGBM. No statistical

significance was observed when comparingMM-Net with the other

models. All the performance scores and statistical tests are provided

in Supplementary Table S1.

As compared to DL models that are trained with cell

line data, all models in Table 2 generally exhibit a relatively

lower performance. For example, the average AUPRC is around

0.27 in Table 2 (all precision-recall curves are provided in the

Supplementary material) but models trained on cell lines can

exhibit AUPRC of 0.7 and above (48). Yet, we can observe a

large spread of scores for all models and metrics (Figure 6). This

indicates that for certain data splits, the models exhibit very high

generalization performance, while for other splits, the models

almost entirely fail to learn a meaningful mapping function for

predicting drug response. In practical scenarios, where the goal is

to design a highly generalizable model, a careful analysis should

be conducted to determine the training and validation sets that

adequately represent the test set. Subsequently, the threshold of

the classifier can be determined depending on the error rate that

the stakeholders can tolerate which will ultimately depend on the

specific application that the model was designed for (e.g., precision

oncology, drug development, etc.). In our analysis, however, the

objective was to conduct large-scale trainings across multiple data

splits and examine the overall capacity of MM-Net in predicting
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TABLE 2 Performance metrics including MCC, AUPRC, and AUROC are listed for drug response prediction models (UME-Net, UME-Netorg, UME-Netpairs,

UMH-Net, MM-Net, and LGBM).

Model WSI GE Single-drug Drug-pair Augmented drug-pairs MCC AUPRC AUROC

UME-Net – v v v v 0.2958 0.2996 0.8047

UME-Netorg – v v v – 0.2391 0.2610 0.7766

UME-Netpairs – v – v v 0.2039 0.2355 0.7423

UMH-Net v – v v v 0.2124 0.2303 0.7977

MM-Net v v v v v 0.3102 0.2974 0.7978

LGBM – v v v v 0.2594 0.2784 0.8065

As summarized in the binary columns (with v’s), the differences between the models are in the feature sets (GE, WSI, or both) and the samples. To compute the average score for each metric

and model, the predictions were aggregated viamean across the data splits.

Best scores per metric are shown in bold.

FIGURE 6

Boxplots showing the distribution of scores for the investigated drug response prediction models. The di�erences between the models are

summarized in Table 2.

drug response across multiple cancer types and treatments. We

observe that for certain dataset splits, MM-Net outperforms the

baselines but for other splits it underperforms, as shown in Figure 7.

An in-depth investigation is further required to understand in

which cases MM-Net trained with WSI significantly improves

prediction generalization.

4. Discussion

In this study, we investigated data augmentation methods

and a multimodal architecture for predicting drug response in

PDXs. We utilized the PDMR drug response dataset of single-

drug and drug-pair treatments that were generated in controlled

group experiments with PDX models of multiple cancer types.

To assess the utility of the proposed methods, we conducted

a large-scale analysis by training MM-Net and three baseline

models over 100 data splits that contain GE profiles, histology

image tiles, and molecular drug descriptors. We demonstrated that

data augmentation methods lead to a significant improvement in

drug response predictions across all performance metrics (MCC,

AUPRC, and AUROC). Alternatively, the MM-Net model exhibits

statistically significant improvement in prediction performance

only when measured by the MCC.

The data splitting strategy and the choice of performance

metrics play an important role in the downstream analysis

when evaluating the utility of prediction models for practical

applications. The dataset size and its diversity in terms of PDX

models and treatments allowed us to generate multiple data splits

while mitigating data leakage between training, validation, and test

sets. Since each split comprises unique GE and histology images,

we face a challenging prediction problem as opposed to a situation
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FIGURE 7

Receiver operating characteristic (ROC) curves for two di�erent data splits. (A) MM-Net outperforms the baseline models. (B) MM-Net underperforms

the baseline models.

in which the samples are randomly split. Alternative splitting

strategies may involve a careful choice of a single test set with the

goal to reduce the distributional shift between training and test

sets (49). Instead of carefully assembling the most representative

test set, we chose to conduct a large-scale analysis to assess the

empirical range of prediction performance with NNs and LGBM.

The results show a large spread of scores across the splits, indicating

that for certain data splits the models exhibit high prediction

performance, while for other splits, the learning of models fails.

When we specifically focus on the performance of MM-Net as

compared with the baselines, we discover that in 46 out of the

100 splits, the MM-Net outperformed the UME-Net baseline. This

observation implies that for certain data splits, the histology images

boost the generalization performance of the prediction model, and

therefore, its potential utility in preclinical and clinical settings. A

further investigation is required to better understand the cases and

data characteristics in which histology images improve response

prediction.

Technological progress in digital pathology and high-

throughput omic profiling have led researchers to generate

big data repositories of histology images and omics data, as

well as algorithms to jointly analyze these diverse data types.

Several papers have explored multimodal architectures that

combine histology images with omics data for predicting

survival outcomes of cancer patients. Mobadersany et al.

demonstrated that a CNN-based supervised learning model

combined with cox regression accurately predicts survival

outcomes of glioma patients from histology and mutation data

(21). Cheerla et al. proposed an unsupervised learning method

to learn a low-dimensional representation for each feature type

and, consequently, concatenated the learned representations to

predict survival outcome of cancer patients (22). They have also

demonstrated on 20 cancer types that a custom dropout layer that

randomly drops an entire feature vector improves predictions.

Building upon existing works, Chen et al. introduced a supervised

architecture for multimodal fusion of histology and omics data to

predict patient survival and applied their method to glioma and

clear cell renal cell carcinoma patients (23). The model uses graph

convolutional network (GCN) and CNN to encode histology image

data and feed-forward network for mutation data. Each encoded

feature vector is passed through an attention mechanism and

subsequently fused via a Kronecker product. The cox regression is

finally used to predict patient survival. While these papers do not

consider drug treatments in their analysis, they exploit modern

approaches for enhancing predictions of multimodal NNs with

histology and omics data and can be further explored for drug

response prediction.

A wide spectrum of methods is available in vision applications

for inducing changes in images that allow for data augmentation

(50). In this study, we exploit the lack of invariance to permutation

as the means to augment the sample size. Recently, additional

methods have been proposed for augmenting transcriptomic

data which can potentially be combined and provide further

improvement in predicting drug response (51–53). Considering

the scale of existing PDX datasets, data fusion and augmentation

provide promising research directions for enhancing predictive

capabilities with PDXs. However, special care should be taken

because high-dimensional feature sets can often lead to severe

overfitting and poor generalization. Presumably to mitigate

overfitting, Nguyen et al. (11) and Kim et al. (12) used

feature selection methods to reduce the dimensionality of

PDX data while considering a single omics feature type at

a time. Therefore, multimodal learning exhibits a tradeoff

between enriching the feature space via multimodal fusion and

overfitting. To alleviate this tradeoff, alternative methods can

be explored to reduce the feature space while incorporating

multiple feature types (54). With the methods proposed in

this study and ongoing research into novel augmentation and

fusion techniques, PDX pharmaco-omic datasets may become

more suitable for modern deep learning techniques and further

increase interest for building prediction models to advance

precision oncology.
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5. Conclusions

Deep learning methods have shown promising results in

predicting drug response in cancer cell lines. While PDXs are

presumed to better mimic human cancer, drug response datasets

with this cancer model are substantially smaller as compared to

cell line datasets. We investigate multimodal learning and data

augmentation methods to address the challenge of limited drug

response sample size. Our results suggest that data augmentation

and integration of histology images and gene expressions can

improve prediction performance of drug response in PDXs.
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