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Retinal images have been proven significant in diagnosing multiple diseases such 
as diabetes, glaucoma, and hypertension. Retinal vessel segmentation is crucial 
for the quantitative analysis of retinal images. However, current methods mainly 
concentrate on the segmentation performance of overall retinal vessel structures. 
The small vessels do not receive enough attention due to their small percentage 
in the full retinal images. Small retinal vessels are much more sensitive to the 
blood circulation system and have great significance in the early diagnosis and 
warning of various diseases. This paper combined two unsupervised methods, 
local phase congruency (LPC) and orientation scores (OS), with a deep learning 
network based on the U-Net as attention. And we  proposed the U-Net using 
local phase congruency and orientation scores (UN-LPCOS), which showed a 
remarkable ability to identify and segment small retinal vessels. A new metric 
called sensitivity on a small ship (Sesv) was also proposed to evaluate the methods’ 
performance on the small vessel segmentation. Our strategy was validated on both 
the DRIVE dataset and the data from Maastricht Study and achieved outstanding 
segmentation performance on both the overall vessel structure and small vessels.
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1. Introduction

In recent years, many research works have revealed that retinal fundus images can provide 
much helpful information, which is related to multiple diseases, such as Age-related Macular 
Degeneration (AMD), Glaucoma, Diabetic Retinopathy (DR) arteriosclerosis, and hypertension 
(1). Therefore, retinal image analysis is increasingly essential for computer-aided diagnosis (2).

Retinal vessels, as a part of the blood circulation system, have been proven to contain many 
essential biomarkers (1). The small retinal vessels (defined as vessels with a width less than 
65 μM in this paper), including small-artery and small-vein, are much more sensitive to the 
blood circulation system lesion and have great significance in the early diagnosis and warning 
of diseases (1). Thus, the accurate segmentation of retinal vessel structures, tiny vessels, is a 
crucial part of the quantitative analysis of retinal images. Considering the complexity of retinal 
vascular trees, automatic segmentation is necessary to eliminate the cumbersome and 
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time-consuming manual label processing. However, due to the low 
contrast between retinal vessels and background, the variation of 
vessel width, the complex geometric structure of small boats, and the 
severe background noise problem (1), that is a challenging task.

Most retinal vessel segmentation methods were focused on the 
performance of the overall retinal vessel structures and evaluated via 
global performance metrics like accuracy (Acc), sensitivity (Se), 
specificity (Sp), and area under the ROC curve (AUC). At the same 
time, the segmentation performance on the small vessels needed to 
receive more attention due to their small percentage in retinal images. 
A segmentation method with high sensitivity on small plates was 
required to identify and segment the small vessels from retinal images.

The recent works about retinal vessel segmentation can 
be classified into two categories, unsupervised and supervised methods.

Unsupervised retinal vessel segmentation methods, usually based 
on prior knowledge about the vessel structures in retinal images, 
include kernel-based methods, vessel tracking methods, model-based 
methods, etc. Kernel-based methods depend on the different specially 
designed filter kernels to detect the vessel structures. Azzopardi et al. 
(3) proposed an approach based on the combination of shifted filter 
response (COSFIRE) to see the bar-shaped facilities and achieved 
rotation invariability. Zhang et al. (4, 5) designed the left-invariant 
derivative (LID) filter on orientation scores (LID-OS) and achieved 
superior performance on the segmentation of crossings and 
bifurcations. Vessel tracking methods detect vessel structures by 
tracing the ridges of retinal vessels. Bekkers et al. (6) described two 
vessel tracking approaches, edge tracking in orientation scores (ETOS) 
and multi-scale vessel center line tracking in orientation scores 
(CTOS). De et al. (7) proposed a two-step tracing approach and gave a 
top way to address the problem of tracing with crossover. Model-based 
methods apply deformable models to identify vessel structures. Al-Diri 
et al. (8) and Zhao et al. (9) designed an infinite active contour model 
for the vessel segmentation task. With much simpler processes, 
unsupervised methods are usually faster than supervised ones. Besides, 
manually labeled ground truths are unnecessary for unsupervised 
methods. Thus the most troublesome step can be avoided. However, 
due to the complexity of vessel structures, one unsupervised way is 
often only able to cope with some possible vessel structures. Therefore 
unsupervised methods usually have poorer performance.

Supervised methods usually have better segmentation 
performance. Generally, a supervised learning algorithm produces a 
model which contains specific knowledge derived from the input 
images and manually labeled ground truths for the segmentation of 
retinal vessels. Fraz et al. (10) proposed the ensemble classifier of 
boosted and bagged decision trees and achieved Acc, Se, Sp, and AUC 
for 0.7406, 0.9807, 0.9480, and 0.9747 on the DRIVE dataset. 
Convolutional Neural Network (CNN) has dominated many computer 
vision tasks. With the ability to extract hierarchical features and take 
advantage of contextual information, CNN performs remarkably in 
medical image segmentation tasks. Ronneberger et al. (11) proposed 
the U-Net, a CNN specialized for biomedical image segmentation 
tasks. The U-Net conducts the convolution operator to extract features 
from original images and gets segmented photos directly via the 
up-sample operator. Wang et al. (12) used the U-Net in the retinal 
segmentation task and achieved an AUC of 0.9790 on the DRIVE 
dataset. The best vessel segmentation results were achieved in 
supervised ways (13). However, because of the reliance on manually 
labeled ground truths, laborious work is inevitable for supervised 

methods. Besides, for most deep learning approaches, massive labeled 
retinal images are required in network training, which makes things 
even trickier.

Notably, most of the proposed works mentioned above neglected 
the tiny vessels in retinal images, and none involved specific reports 
about the segmentation performance on small retinal vessels. No 
segmentation method or performance evaluation method for small 
plates was proposed.

This paper proposed a novel method called the U-Net using local 
phase congruency and orientation scores (UN-LPCOS). We combined 
the unsupervised methods of local phase congruency (LPC) and 
orientation scores (OS) with the deep learning network modified from 
the U-Net. The LPC, proposed by Kovesi et al. (14), showed a superior 
ability to enhance small vessels in retinal images. The LPC was 
invariable to the image contrast through analyzing images in the 
frequency domain and had high sensitivity to the small plates. The OS 
method was also adopted. With outstanding performance on complex 
vessel structures, such as crossings and bifurcations, the OS method 
can improve the robustness of our method. The retinal vessels were 
enhanced by LPC and OS, respectively. Then the original retinal 
images and two vessel-enhanced images were combined and served 
as the input of a U-Net-based deep learning network. The network 
produced the vessel probability score of each pixel. After thresholding, 
the binary images of vessel segmentation were obtained.

The proposed UN-LPCOS was validated on the DRIVE dataset 
(15) and the data from Maastricht Study (16). Some commonly used 
metrics, such as sensitivity (Se), specificity (Sp), accuracy (Acc), and 
area under the ROC curve (AUC), were calculated and compared with 
other proposed methods.

A new evaluation metric, called sensitivity on a small vessel 
(Sesv), was defined to describe different methods’ abilities on small 
vessel segmentation. We  also discussed the effect of different 
unsupervised vessel enhancement results in our practice and revealed 
the significance of LPC and OS in small vessel segmentation.

The main contributions in this paper were summarized as follows:

 (i) We combined two unsupervised vessel enhancement methods, 
LPC and OS, with the modified U-Net. We proposed a novel 
vessel segmentation method called UN-LPCOS, which 
achieved outstanding performance on small retinal 
vessel segmentation.

 (ii) We were the first to evaluate the abilities of different methods 
on small vessel segmentation. We proposed a new evaluation 
metric, called sensitivity on a small vessel (Sesv), to describe the 
performance of small retinal vessel segmentation quantitatively.

The rest of this paper was organized as follows. In section 2, some 
crucial methodologies involved in our method were introduced. The 
details of the experiments to validate our approach are displayed in 
section 3. And the experiment results are shown in section 4. Finally, 
further discussion was involved in section 5.

2. Methodology

The overall process of the proposed UN-LPCOS was presented in 
Figure 1, which contained three significant parts, image preprocessing, 
vessel enhancement, and vessel segmentation. The local luminosity 
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normalization method was adopted in the image preprocessing to deal 
with retinal images’ local luminosity and contrast variation problem. 
Then the unsupervised vessel enhancement was conducted to 
highlight the vessels, especially the tiny and complex vessel structures 
in retinal images. In this paper, the LPC and OS were applied for vessel 
enhancement, and they significantly improved the ability of our 
method on small vessel detection and identification. The vessel-
enhanced images combined with the preprocessed retinal photos 
served as the input of the deep learning network based on the U-Net. 
The network produced the vessel probability score for each pixel. After 
the thresholding, the binary vessel segmentation results were derived.

This section introduces some essential principles and methods 
adopted in the UN-LPCOS. The local luminosity normalization for 
the image preprocessing was presented first. Then we introduced two 
unsupervised vessel enhancement methods, local phase congruency 
and left-invariant derivative filter on orientation scores. Finally, the 
architecture of the deep learning network was illustrated.

2.1. Local luminosity normalization

The local luminosity and contrast variation problem are the 
significant interferences in retinal images due to the irregular retinal 
surface and non-uniform illumination. To overcome this issue, the 
local luminosity normalization method proposed by Foracchia et al. 
(17) was adopted for image preprocessing. It can be denoted below,
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where the N x y,( )  represents the normalized pixel intensity at the 
position x y,( ) , and the numerator is the original pixel value. The 
denominator is the arithmetic mean of the n n×  neighbors pixels’ 
intensity around x y,( ) , respectively (17).

2.2. Local phase congruency

Local phase congruency, proposed by Kovesi et al. (14), was a 
frequency domain image processing method with high sensitivity on 
small vessel structures. Unlike gradient-based methods, the LPC 
defined features based on the similarity of the local phase angles of 
different frequency components in images. Therefore, a dimensionless 
measurement of parts, invariable to the image contrast, was produced.

In this paper, the LPC of images was calculated through wavelets 
transformation. The original idea was denoted as I, while Mn

o
,θ  and 

Mn
e
,θ  represented the even and odd wavelet filters with the scale n 

and orientation θ , respectively. The image was convolved with the 
wavelet filters, and the filter responses were marked as Fn,θ  and 
Hn,θ , which were written as (14),

 
F I Mn n

e
, ,

;θ θ= ∗
 

(2)

 
H Mn

o
n, ,

.θ = ∗I θ  
(3)

Based on that, the local spectrum amplitude An, ,θ  and local 
phase angle φ θn,  of the image with corresponding scale and 
orientation were calculated as (14),
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FIGURE 1

The overall process of UN-LPCOS, including unsupervised vessel enhancement and vessel segmentation.
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And the weighted mean of the local phase angle with the 
orientation θ  was defined as (14):
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Then the modified local energy of the image, which achieved 
more localization accuracy, was derived as:
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and the local energy was calculated in each orientation (14).
Noise interference was one of the most intractable problems in the 

LPC. Thus, the noise threshold was introduced to suppress the noise in 
the LPC results. Since the noise spectrum was flat, the smallest wavelet 
filter, with the most considerable bandwidth, obtained the most energy 
from the noise, and the noise threshold was derived from it. The 
magnitude of the most negligible wavelet response followed a Rayleigh 
distribution. Its median was the expectation (denoted as ∝min ) of the 
noise distribution. The noise responses of filters with other scales and 
the response of the smallest filter were proportional to the bandwidth. 
Therefore, the noise threshold Tθ  was given as follows:
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n
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where µ θn, ,  and σ θn,  represented the estimation of the 
expectation and variance of the noise response of the filter with the 
scale of n  and the orientation of θ , respectively (14).

Due to the smoothing operation, different frequency components 
in the image had extra significance. We  applied the frequency 
weighting function to describe this difference. It was written as:
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where c was the cut-off value of the filter response spread and g 
was a gain factor that controlled the cut-off ’s sharpness (14).

Finally, we obtained the expression of the LPC. It was notable 
that, since the features would present in any direction of images, 
we  calculated and combined the results of different orientations. 
Thus, the LPC was denoted as,
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where the small constant 𝜀 was provided to cope with the situation 
where the 

θ
θ∑∑

n
nA ,  was tiny, and the ()+ meant that if the local 

energy were smaller than the noise threshold, the difference would 
be 0 (14).

The LPC orientation was also derived for the following vessel 
segmentation process to distinguish vessels from noise in the LPC 
results. LPC orientation was defined as the orientation with the 
maximum LPC value at each pixel, which was written as,

 

θ
εθ

θ θ θ

θ
LPC

n n

W E T
A

=
−( )

+













+

∑
argmax

,

.

 

(13)

Figure 2 shows one LPC vessel enhancement result of the DRIVE 
dataset. The small retinal vessels with low contrast were highlighted 
well and had similar feature intensity to the main retinal vessels. A low 
noise threshold was adopted to present as many small structures as 
possible, which leads to more noise in the LPC result. Fortunately, it 
would not influence the final vessel segmentation.

2.3. Left-invariant derivative filter on 
orientation scores

Due to the extremely complex structure, many segmentation 
methods lost their stability on retinal vessels. Many vessel 
segmentation approaches, based on the detection of tubular structures, 
failed on the bifurcation points and crossovers of retinal vessels. To 
overcome this problem and improve the robustness of the proposed 
UN-LPCOS, orientation scores (OS) was adopted to support vessel 
segmentation in this paper. More specifically, the left-invariant 
derivative filter on orientation scores (LID-OS), proposed by Zhang 
et al. (4), was involved.

The basic idea of the OS and LID-OS filters is described as 
follows. The original 2D image was disentangled into several 
orientation channels via anisotropic wavelets transformation, which 
was given as:

 
U R f x R y x f y dyf x,θ ψ ψθ θ( ) = ( ) ∗( )( ) = ∫ −( )( ) ( )−1

.
  
(14)

A B

FIGURE 2

The example of LPC vessel enhancement result. (A) The original 
retinal image from the DRIVE dataset. (B) The LPC vessel enhanced 
the result.
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Where Rθ ψ( )  represented a set of anisotropic filters, and f 
represented the retinal image. The orientation scores of the image were 
denoted as U x yf ,( ) , which was derived through the convolving of, 
and f (4).

Then a set of unique filters called left-invariant derivative 
(LID) filters were applied to the orientation scores to enhance the 
tubular vessel structures. The LID-OS filters were constructed on 
the LID frame to ensure the Euclidean invariance, which was 
defined as,

 
∂ ∂ ∂{ } = ∂ + ∂ ∂ − ∂ ∂{ }ξ η θ θθ θ θ θ, , , ,cos . sin . cos . sin .x y y x  

(15)

Based on the LID frame, the multi-scale rotating LID-OS filters 
were derived from the second-order Gaussian derivatives on 
orientation scores, and they were defined as:
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where ∝  was a normalization factor, which was given by µ σ σ= o s/ . 
The physical unit 1/ length kept the convolution results dimensionless 
and truly scale-invariant (4).

Finally, the 2D vessel enhanced image was reconstructed by taking 
maximum filter response in the orientation scores, and the final 
reconstruction output was written as:
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One LID-OS vessel enhancement result of the DRIVE dataset was 
displayed in Figure  3. The bifurcations were enhanced with high 
quality. The enhancement result achieved outstanding vessel 
connectivity, and the noise was suppressed well (4).

2.4. Modified u-net

The deep learning method was adopted in this paper to produce 
the final pixel-wise vessel probability image. And the preprocessed 
retinal photos combined with the vessel-enhanced results served as 
the input of the deep learning network. The basic architecture of our 
network was modified from the U-Net (shown in Figure  4A), 
consisting of two major parts, the encoder, and the decoder. The 
encoder extracted features from the input image through the 
hierarchical convolution operation. At the same time, the decoder did 
the de-convolution and up-sample procedure and produced the 
vessel probability image via the final softmax active function. The 
vessel probability image had the same size as the manual labeled 
ground truth and the input image. In each expansive operation of the 
decoder, the corresponding feature images from the encoder were 
concatenated with the feature images to be up-sampled. The deep 
learning model could be trained end-to-end with very little training 
data. It was crucial since only a few labeled retinal images were 
available (11).

Two significant modifications were introduced in our deep 
learning network. First, we modified the convolution operation sets in 
the original U-Net, which contained two repeated 3×3 convolutional 
layers and each followed by a rectified linear unit (ReLU). 
We  introduced the identity short-cut, which was inspired by the 
ResNet, and the detailed structure of modified convolution operation 
sets was presented in Figure 4B. Besides, to reduce the loss of the local 
image feature of the small vessel structure, we replaced all max-pooling 
layers in the original U-Net with convolutional layers with two strides 
for the down-sampling. These modifications could accelerate the 
training process of the deep learning model and enable the model to 
better identify the small vessel’s features.

3. Validation and experiment

3.1. Dataset

In this paper, the proposed method was validated on three 
datasets, the DRIVE dataset, the data from the Maastricht Study and 
the UoA-DR (18) database. The DRIVE dataset consists of 40 retinal 
images, divided into two parts, a training dataset and a test dataset, 
and each piece has 20 photos. Every picture has a resolution of 
565*584 pixels. The vessel structures of each image are annotated by 
two human investigators separately. Our deep learning model was 
trained on the training dataset and evaluated on the test datasets.

The data from Maastricht Study contains 600 retinal images, which 
are taken through the NIDEK AF230 with the resolution of 3,744 * 
3744 and resized to 1024*1024 with small structures preserved. The 
population of the Maastricht Study contains 1,363 healthy subjects 
(NGM), 366 prediabetes subjects (preDM), and 610 type two diabetes 
subjects (T2DM). Experienced ophthalmologists from the 
ophthalmology department in the Maastricht Medical Center, 
Maastricht, Netherlands label the ground truth of the blood vessels for 
each image. And the dataset is divided into two parts, a training dataset 
with 400 photos and a test dataset with 200 illustrations. The Eindhoven 
University of Technology IRB exempted the study from IRB approval.

The UoA-DR database consists of 200 high-quality images 
captured using a Zeiss VISUCAM 500 fundus camera with a FOV 
of 45 and a resolution of 2,124 × 2056 pixels in JPEG format. The 

A B

FIGURE 3

The example of LID-OS vessel enhancement result. (A) The original 
retinal image from the DRIVE dataset. (B) The LID-OS vessel 
enhanced the result.
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optic nerve head center, optic nerve head, macula, fovea, and the 
retinal vessels of all the 200 images in this database were manually 
segmented by a specialist ophthalmologist who acted as the first 
observer and by an optometrist as the second observer. The 
manually segmented features, such as retinal vessels, OD and fovea, 
for the 200 retinal images may be  used to benchmark the 
performance of new ARIA methods in the future. This database can 
be downloaded for free with certain access rights mentioned in Ref. 
Like the MESSIDOR database, not all the images marked as high 
quality are of MSRI quality.

3.2. Evaluation measurements

Based on the manually labeled ground truths, the pixels of final 
vessel segmentation results were divided into four categories: The 
true positive (TP) represented the pixels that were labeled as vessels 
in ground truths and correctly identified in model outputs. The 
actual negative (TN) referred to the pixels labeled as non-vessels in 
ground truths and denoted as non-vessels in output images. The 
human investigator considered the false positive (FP) as the pixels 
labeled as non-vessels but classified as vessels in segmentation 
results. And the false negative (FN) represented the pixels that were 
denoted as vessels in ground truths but not identified in 
segmented images.

For comparison, we adopted some commonly used evaluation 
metrics, Sensitivity (Se), Specificity (Sp), and Accuracy (Acc), to 
evaluate the global performance of the proposed method on vessel 
segmentation. These metrics were given by:

 
Se TP

TP FN
=

+
;

 
(18)

 
Sp TN

TN FP
=

+
;
 

(19)

  
Acc TP TN

TP TN FP FN
=

+
+ + +

.
 

(20)

Besides, the receiving operator characteristics (ROC) curve and 
the area under the ROC curve (AUC) were also recorded to evaluate 
our method’s performance on vessel enhancement.

The evaluation metric, called sensitivity on small vessels (Sesv), 
was defined to describe different methods’ abilities in segmenting 
small retinal vessels. The pixels of small vessels were separated from 
the ground truth first, and they made up the ground truth of small 
vessels, which determined the range of pixels we cared about in the 
small vessel segmentation. In this paper, vessels with a width under 
65 μM were defined as small vessels, which can be separated from the 
segmentation result and ground truth, respectively, using 
morphological opening operation. The kernel used for morphological 
opening can be  round with a diameter of 65 μM. Two new pixel 
categories were proposed: true positive on small vessels (TPsv) and 
false negative on small vessels (FNsv). They represented the pixels 
labeled as vessels in the ground truths of small vessels and identified 
as vessels or non-vessels, respectively. The 𝑆𝑒𝑠𝑣 was defined as:

A

B

FIGURE 4

The basic architecture of (A) our deep learning network modified from the U-Net and (B) the modified convolution operation set.
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Se TP

TP FNsv
sv

sv sv
=

+  
(21)

The ROC curve on a small vessel (ROCsv) was derived from the 
Sesv versus the 1 − Sp concerning the varying threshold value Th. The 
area under the ROCsv (AUCsv) was also calculated to evaluate the 
model’s performance on the minor vessel enhancement.

3.3. Experimental configuration

3.3.1. Local phase congruency configuration
The LPC analysis in retinal images was conducted via 2D wavelet 

transform. With six different scales, a set of anisotropic Gabor wavelets 
were adopted to calculate the embodiment’s local amplitude and 
phase. The minimum wavelet length was 3, and each following wavelet 
length was multiplied by 2. There were 12 wavelets with different 
orientations for every size to detect the features in any image direction. 
The coefficient of standard deviations k for the noise threshold 
calculation was set as 3. And in the frequency weighting function, the 
cut-off value c and the gain factor g were set as 0.4 and 10, respectively. 
Besides, in the LPC calculation, the feature orientation at every pixel 
was also recorded, which was the direction where the maximum LPC 
value was obtained.

3.3.2. Left-invariant derivative filter on orientation 
scores configuration

To apply the LID-OS in the vessel enhancement, retinal images 
were transformed into orientation scores. In this paper, the 
construction of orientation scores was implemented by convolving 
images with a set of rotated filters, precisely, the cake wavelets 
proposed by Duits et  al. (19) They could be  regarded as a set of 
quadrature filters, and the fundamental part represented the locally 
symmetric structures like ridges/lines. In contrast, the imaginary part 
responded to the antisymmetric structures like edges. Eight filter 
directions were uniformly selected. Then the second-order Gaussian 
derivatives in the LID frame were applied directly to the orientation 
scores of retinal images, and blood vessel structures were highlighted 
in each orientation layer. Therefore, the complex vessel structures, 
such as crossings and bifurcations, were enhanced well. The final 
vessel-enhanced results were reconstructed by obtaining the 
maximum filter response on all orientation layers.

3.3.3. Training of deep learning network
Data augmentation was conducted first to generate enough 

training data. In this paper, the method of cutting was adopted. Small 
patches, of dimension 64*64, on both the DRIVE dataset and the 
Maastricht Study data, were sampled randomly from the original 
training images and corresponding ground truths. To give our 
network the ability to discriminate the edge of the field of view (FOV) 
from vessel structures, the patches partially or entirely outside the 
FOV were also selected. For each training epoch, 9,000 patches were 
obtained by randomly extracting 450 patches in each of the 20 DRIVE 
training images. The first 90% of patches (8,100 patches) were used for 
training, while the last 10% (900 patches) were used for validation. 
And for the data from Maastricht Study, 100 patches were extracted 
randomly from each training image, and we got a total of 40,000 

patches from all 400 images. Similarly, the first 90% of patches were 
training data, and the other 10% were validation data. For both 
datasets, all patches were reselected in each training epoch.

The Categorical Cross Entropy (CCE) served as the loss function. 
The Stochastic Gradient Descent (SGD) was performed as the 
optimizer, with a learning rate of 0.01. And the training strategy of the 
mini-batch with the size of 32 patches was used on both the DRIVE 
dataset and the data from Maastricht Study.

4. Experimental results

4.1. Deep learning network training process

Our UN-LPCOS had a faster and more efficient deep-learning 
training process than the original U-Net. Our method’s network 
needed fewer epochs to complete training and achieve better 
performance. In Figure 5, the AUC values of each way were calculated 
with different training epochs. Then the AUC epoch − curves were 
derived, which showed the superior performance of our method on 
vessel enhancement. When the training was completed, the AUC 
values of our approach were higher than the original U-Net. With the 
modification of the network architecture, the deep learning model of 
our method was much easier to train. On the DRIVE dataset, our 
model needed 70 epochs to complete training, and on the data from 
Maastricht Study, we needed no more than 10 epochs. For the original 
U-Net, 100 and 20 epochs were needed on these two datasets, 
respectively.

4.2. Vessel segmentation result

In Figure 6, we presented the ROC curves of our UN-LPCOS on 
the DRIVE dataset, the data from the Maastricht Study and the 
UoA-DR dataset. For comparison, the performance of other proposed 
methods was also depicted. On the Maastricht Study data, our 
method’s ROC curve was compared with the original U-Net. The 
evaluation metrics of Se, Sp, Acc, and AUC values were presented in 
Table 1. These metrics, especially Acc and AUC value, proved the 
superior performance of our UN-LPCOS. The segmentation 
performance on small vessels is shown in Table 2. It demonstrated that 
our method outperformed both datasets’ original U-Net in small 
vessel segmentation.

4.3. Results on small vessels

This section highlights the superior performance of the proposed 
UN-LPCOS in the small vessel segmentation. Figure 7 shows examples 
of small vessel segmentation produced by the UN-LPCOS and 
compared with the results derived from the original U-Net. Our 
method could better segment when faced with minor and low-contrast 
vessel structures. The example patches were extracted from the DRIVE 
dataset and the data from Maastricht Study.

Besides the effect of different input combinations was also 
discussed. Figure 8 presents the ROCsv curves of the UN-LPCOS and 
original U-Net. With the changing segmentation threshold, our method 
consistently achieved higher Sesv than the original U-Net on the same 
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A B

FIGURE 5

The AUC values of proposed UN-LPCOS and original U-Net concerning different training epochs on (A) the DRIVE dataset and (B) data from the 
Maastricht study.

A B

C

FIGURE 6

The ROC curves of our UN-LPCOS on (A) DRIVE dataset, (B) data from the Maastricht study, and (C) UoA-DR dataset, compared with the second 
human observer; the method by Yin et al. (20), Zhang et al. (5), Wang et al. (12), and original U-Net. The dotted box was the critical area which was 
enlarged and displayed in the figure.
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Sp level. And the ROCsv curves of the original U-Net were surrounded 
by ours on both two datasets. In Figure 9, we analyzed the effect of 
different unsupervised methods on the segmentation performance in 
small vessels. Three different input combinations were involved: 1) only 
normalized retinal images (NOR), 2) normalized retinal images and 
LPC enhanced retinal images (NOR+LPC), 3) normalized retinal 
images, LPC and LID-OS enhanced retinal images (NOR+LPC + LID). 
And we calculated the ROCsv curves for each model.

On the DRIVE dataset, we could see the significant effect of LPC 
on small vessel segmentation. Besides, adopting LID-OS also impacted 
the model’s performance, but it was not so obvious compared with 
LPC. The ROCsv curves of the NOR+LPC (green curves) and the 
NOR+LPC + LID (red curves) were almost coincident on the DRIVE 
dataset. On the data from Maastricht Study, however, both LPC and 

LID-OS obviously influenced model performance. The ROCsv curve 
of NOR (blue curve) was surrounded by the NOR+LPC one (green 
curve), which was surrounded by NOR+LPC + LID (red curve).

4.4. Result summary

The ROC curve of our UN-LPCOS on the DRIVE dataset is 
presented in Figure 6A. It showed that our method outperformed 
other vessel segmentation methods listed in this paper. Compared 
with the original U-Net, our method also had a superior performance 
on the data from Maastricht Study and the data from UoA-DR (shown 

TABLE 1 Retinal vessel segmentation results.

Method Year Se Sp Acc AUC

DRIVE dataset

2nd human observer - 0.7760 0.9724 0.9472 –

Unsupervised method Al-Diri (8) 2009 0.7282 0.9551 – –

Roychowdhury (21) 2015 0.7395 0.9782 0.9494 0.9672

Azzopardi (3) 2015 0.7655 0.9704 0.9442 0.9614

Yin (20) 2015 0.7246 0.9790 0.9403 –

Zhang (5) 2016 0.7743 0.9725 0.9476 0.9636

Chalakkal (22) 0.7653 0.9735 0.9542 -

Supervised method Fraz (10) 2012 0.7152 0.9759 0.9430 –

Orlando (23) 2016 0.7897 0.9684 - -

Li (24) 2016 0.7569 0.9816 0.9527 0.9738

Wang (U-Net) (12) 2018 0.7810 0.9807 0.9536 0.9791

Xu (25) 2021 – – 0.9590 0.9713

Aashis (26) 2020 0.8410 – 0.9633 –

Our method 2022 0.8117 0.9841 0.9658 0.9830

Data from Maastricht study

U-Net 2018 0.8543 0.9938 0.9842 0.9815

Our method 2022 0.9379 0.9944 0.9905 0.9918

UoA-DR dataset

U-Net 2018 0.7861 0.9486 0.9366 0.9214

Our method 2022 0.8078 0.9503 0.9396 0.9279

TABLE 2 Small vessel segmentation results.

Method Year Sp Sesv AUCsv

DRIVE dataset

U-Net 2018 0.9851 0.6552 0.9502

Our method 2022 0.9851 0.6757 0.9665

Data from Maastricht study

U-Net 2018 0.9943 0.6451 0.9566

Our method 2022 0.9944 0.8475 0.9774

UoA-DR dataset

U-Net 2018 0.9486 0.7734 0.9155

Our method 2022 0.9503 0.7945 0.9216

A B C D

FIGURE 7

Small vessel segmentation results of our UN-LPCOS and original 
U-Net. (A) Original patches. (B) Normalized patches. 
(C) Segmentation results of original U-Net. (D) Segmentation results 
of our UN-LPCOS.

https://doi.org/10.3389/fmed.2023.1038534
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Kuang et al. 10.3389/fmed.2023.1038534

Frontiers in Medicine 10 frontiersin.org

in Figures 6B,C. A more detailed evaluation is presented in Table 1. 
On the DRIVE dataset, compared with the Se and Sp of some of the 
best-unsupervised methods (0.7246 and 0.9790 for Yin et al. (20), 
0.7743 and 0.9725 for Zhang et al. (5), 0.7653 and 0.9735 for Chalakkal 
et al. (22)), our method obtained better performance (0.8117 and 
0.9841). Besides, we got the highest Acc and AUC value than other 
supervised methods (0.9658 and 0.9830) on the DRIVE dataset. 
Compared with the original U-Net, the performance of our modified 
version achieved significant improvement, with 0.0307 higher in Se 
and 0.0024 higher in Sp on the DRIVE dataset; 0.0836 higher in Se at 
the same specificity level on the data of the Maastricht Study;0.0214 
higher in Se and 0.0017 higher in Sp on the UoA-DR dataset.

Our method obtained remarkable performance on the small vessel 
segmentation. We achieved 0.0205, 0.2024 and 0.0211 higher Sesv on 
the DRIVE dataset, the data from Maastricht Study and UoA-DR 
dataset than the original U-Net with the same specificity level. Besides, 
our method produced 0.0163, 0.0208 and 0.0061 higher AUCsv values 
than the original U-Net on the 3 datasets involved. The comparison of 
different input combinations was presented in Figure 9, and we could 

see the effect of other unsupervised methods on the model’s 
performance of small vessel segmentation. The introduction of LPC 
significantly improved the AUCsv value on the DRIVE dataset (0.9598 
for the input of NOR and 0.9664 for the NOR+LPC) and the data from 
the Maastricht Study (0.9557 for the information of NOR and 0.9710 
for the NOR+LPC). The LID-OS also had a positive effect, but it was 
much more limited (0.9664 for the NOR+LPC and 0.9665 for the 
NOR+LPC + LID on the DRIVE dataset 0.9710 for the NOR+LPC and 
0.9774 for the NOR+LPC + LID on the data from Maastricht Study).

5. Discussion

5.1. Global segmentation performance 
analysis

The global vessel segmentation performance of different methods 
is presented in Table  1, and the ROC curves of our proposed 
UN-LPCOS were showed in Figure 6. The global evaluation metrics 

A B

C

FIGURE 8

The ROCsv curves of proposed UN-LPCOS and original U-Net derived from the Sesv versus the 1 − Sp with respect to the varying threshold value Th, on 
(A) DRIVE dataset, (B) data from the Maastricht study, and (C) UoA-DR dataset. The dotted box was the critical area which was enlarged and displayed 
in the figure.
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and ROC curves demonstrated the outstanding performance of our 
method. More specifically, compared with other proposed methods, 
our UN-LPCOS achieved higher Acc and AUC values on both the 
DRIVE dataset and the data from Maastricht Study. Besides, the ROC 
curve of our plan was above all other methods involved in the DRIVE 
dataset, and on the data from Maastricht Study, our method’s ROC 
curve surrounded the original U-Net’s.

The UN-LPCOS modified the network structure of the state of art 
method and adopted the unsupervised methods of LPC and LID-OS 
for the enhancement of small and complex vessel structures. Therefore, 
we  maintained the excellent results of primary retinal vessel 
segmentation and improved the ability of small vessel segmentation 
in the meantime.

However, the small vessels accounted for only a tiny proportion 
of the retinal image pixels, and the advance of their segmentation did 
not impact the global result a lot. Thus, the improvement of global 
performance seemed very limited, especially for the AUC value 
(0.9791 for Wang et al. (12) and0.9830 for proposed UN-LPCOS). 
Since the retinal image from the Maastricht Study contained more 
small vessels, the improvement on it was more significant.

5.2. Small vessel segmentation 
performance analysis

The segmentation of small and complex vessel structures is a 
challenging task. Small retinal vessels are usually a few pixels wide and 
have low contrast with the background. Therefore, they usually melt 
in the background noise and are hard to be detected. Besides, the 
small vessel structure is only a tiny part of the retinal images, which 
brings more difficulty to training a deep learning network with high 
sensitivity on small vessels. We applied the LPC method to the retinal 
images to deal with these problems, and the small vessel structures 
were significantly highlighted. To present as many details of vessel 
structures as possible, a low noise threshold and small Gaussian 

kernels were used, even though they led to more noise in the 
LPC results.

To avoid the influence of LPC noise on the vessel segmentation, in 
addition to the LPC value, we also inputted the LPC orientation of each 
pixel into the deep learning network. The LPC orientations of a vessel 
segment were the exact or continuous change, while the orientations 
of LPC noise were the mess. Based on the contextual LPC orientation 
information, our deep learning network could distinguish between 
vessels and noise, and the harsh noise in LPC results would not affect 
the final segmentation. With the support of the LPC, our method was 
proved to have higher sensitivity in small vessel segmentation.

Moreover, we modified the original network structure of U-Net 
by replacing the max-pooling layer with the convolutional layer to 
reduce the loss of image features of small vessels and thus improve the 
model’s ability to identify small vessels.

5.3. Limitation

There are still some limitations of the proposed UN-LPCOS, 
which need to be  solved in future work. Although our method 
achieved exciting performance on the small vessel segmentation, 
accurate identification of vessel boundaries remained challenging. 
Since the boundaries of small vessels were usually blurred in retinal 
images, it took much work to determine the range of vessel much 
more accurately. To achieve higher sensitivity on small vessels, our 
method was more inclined to regard a pixel as the vessel during the 
vessel enhancement; thus, compared with ground truths, our approach 
tended to expand the range of small vessels. And the vessel width 
measured through our method was often more significant than that 
based on manual segmentation. Besides, connectivity is another 
weakness of our approach. Since we split one retinal image into many 
patches, conducted vessel segmentation separately, and stitched 
together, the vessel connectivity at the suture was reduced. In this 
paper, only two unsupervised methods were considered to improve 

A B

FIGURE 9

ROCsv curves of proposed UN-LPCOS with different input combinations, which included (1) only normalized retinal images, (2) normalized retinal 
images and LPC results, (3) normalized retinal images, LPC and LID-OS enhancement results, on (A) DRIVE dataset and (B) data from Maastricht Study. 
The dotted box was the critical area which was enlarged and displayed in the figure.
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the ability of deep learning networks on retinal vessel segmentation. 
And some other methods shall be introduced, and their effect on the 
segmentation results will be observed in future work.

6. Conclusion

In this paper, we  proposed a novel retinal vessel segmentation 
method named UN-LPCOS. It incorporated a modified U-Net structure 
and adopted two unsupervised vessel enhancement methods, local 
phase congruency (LPC) and orientation scores (OS), for attention. The 
LPC is a frequency domain image analysis method, which is sensitive 
to the small blood vessels even with low contrast in the retinal images. 
The OS is a multi-orientation image analysis approach and performs 
well on complex vessel structures. Adopting these two unsupervised 
methods boosts our method’s outstanding ability in the segmentation 
of small and complex vessel structures. An evaluation metric, called 
sensitivity on small vessels (Sesv), was proposed to describe the 
method’s performance on the small vessel segmentation. Our plan was 
validated on the DRIVE dataset and the data from Maastricht Study and 
achieved superior performance compared to all other methods. Besides, 
our approach showed outstanding ability in detecting small vessels and 
outperformed the original U-Net on small retinal vessel segmentation.
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