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Background: In the clinical context, the assessment of pain in patients with 
inadequate communication skills is standardly performed externally by trained 
medical staff. Automated pain recognition (APR) could make a significant 
contribution here. Hereby, pain responses are captured using mainly video cams 
and biosignal sensors. Primary, the automated monitoring of pain during the 
onset of analgesic sedation has the highest relevance in intensive care medicine. 
In this context, facial electromyography (EMG) represents an alternative to 
recording facial expressions via video in terms of data security. In the present 
study, specific physiological signals were analyzed to determine, whether a 
distinction can be  made between pre-and post-analgesic administration in a 
postoperative setting. Explicitly, the significance of the facial EMG regarding the 
operationalization of the effect of analgesia was tested.

Methods: N = 38 patients scheduled for surgical intervention where prospectively 
recruited. After the procedure the patients were transferred to intermediate care. 
Biosignals were recorded and all doses of analgesic sedations were carefully 
documented until they were transferred back to the general ward.

Results: Almost every biosignal feature is able to distinguish significantly between 
‘before’ and ‘after’ pain medication. We found the highest effect sizes (r = 0.56) for 
the facial EMG.

Conclusion: The results of the present study, findings from research based on the 
BioVid and X-ITE pain datasets, staff and patient acceptance indicate that it would 
now be appropriate to develop an APR prototype.
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1. Introduction

In the clinical context, the assessment of pain in patients with inadequate communication 
skills is still standardly performed externally by trained medical staff. This is usually done with 
external observation scales and is limited to and valid only at the time of assessment. Fine-
grained continuous documentation is not possible given the lack of personnel time. Essentially, 
observational scales rely on a classification of pain components (1) that are used to assign 
pain-associated stress. Such indirect pain indicators are also referred to as surrogate markers. 
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Mainly, surrogate markers such as facial expressions, vocalization, 
posture, and respiration are numerically assessed to determine a total 
pain score. Especially, the behavioral pain scale (BPS) is used in 
intensive care units when patients are unresponsive (2). All external 
pain assessment observation scales are only meaningful to a limited 
extent. In addition, a subjective coating by the observer is 
unconsciously included in the assessment. Automated pain 
recognition (APR) could make a significant contribution here. It is a 
visionary means to exploit valid and robust pain response patterns 
that can be  measured multimodally (= multiple signals) for a 
dynamic, high temporal resolution, objective automated pain 
recognition system. The idea and development of an APR was 
primarily driven by the awareness that patients with impaired 
communication skills are at high risk of over-or underuse of pain-
relieving analgesics. In recent years, machine learning algorithms 
related to APR have continuously emerged and evolved with the 
intention of further exploring pain configuration. The validation of 
these algorithms was always performed on healthy volunteers and 
pain patients. In this respect, APR actually represents an external 
objective observation method in which artificial intelligence is 
combined with hardware and software components with the goal of 
robustly and validly detecting pain. Werner et al. (3) and Frisch et al. 
(4) provide an excellent overview of the development status of the 
APR methodology for this purpose. The current focus of APR is on 
the detection of pain and its distinction between the classes “no pain” 
vs. “pain threshold” vs. “pain tolerance.” In this context, pain 
responses are explicitly recorded using video (for facial expressions 
(5, 6) and gestures (7–9)), microphones (for paralinguistics (10, 11)), 
and biosignal sensors which capture physiological activity, such as 
electrodermal activity [EDA], skin temperature, muscle activity  
[= electromyography, EMG], cardiac activity [= electrocardiogram, 
ECG] (12–16). The first commercial prototypes used only a single 
sensor for a rudimentary pain detection (17). In contrast, Medasense1 
designed a device that records EDA, heart rate variability, and 
temperature synchronously for use during surgical procedures. There 
are preliminary empirical findings on postoperative use. Several 
studies showed that pain recognition rates were significantly higher 
(18) when different modalities were synchronously merged (19) than 
rather using a single signal/modality.

Explicitly, checking pain intensity during the onset of analgesic 
sedation is of utmost relevance in intensive care medicine to avoid 
over-or underdosing. Therefore, an automated monitoring of pain 
could be of highest relevance. The basics for such a method have not 
been sufficiently investigated so far.

Nevertheless, the recording of facial expressions, gestures, and 
paralinguistics is critical for ethical reasons and data security. In this 
context, EMGs of the facial muscles zygomaticus major and corrugator 
supercilii represent an alternative to recording facial expressions via 
video. They can serve as a substitute by appropriate interpretation of 

1 www.medasense.com

their activities. In general, very few studies have investigated the 
applications of facial EMGs (20, 21).

The following research questions are the focus of this brief report:
In the present study, the activities of specific physiological signals 

(facial EMG, ECG, skin conductance level (SCL) and Temperature 
(TEMP)) were analyzed to determine, whether a substantial 
distinction can be  made between pre-and post-analgesic 
administration in a postoperative setting. Explicitly, the significance 
of the facial EMG in operationalization the effect of analgesia 
was investigated.

2. Methods

2.1. Patients

Patients scheduled for a surgical intervention within the next 
3 days with the necessity of post-monitoring in an intermediate care 
(ICM) unit were prospectively enrolled in the study after completion 
of a written, informed consent. They had to be at least 18 years old, 
oriented and capable of providing information. Exclusion criteria were 
pregnancy, neurological diseases or having a pacemaker or 
defibrillator. All procedures were carried out in the ICM (35 beds) at 
the University Medical Center of Ulm, Germany. From September 
29th, 2020 to April 13th, 2021, N = 38 (men = 28, women = 10) patients 
were included in the study. The ages ranged from 36 to 81 years, mean 
age was 62.3 years. Unfortunately, due to COVID-19 restrictions, the 
target sample size of 50 could not been reached.

2.2. Procedures and morphine equivalents

After the surgical procedure, the patients were transferred to 
intermediate care. There, after attaching electrodes to them to 
acquire and monitor biosignals relevant for the study, recording was 
started immediately and continued continuously throughout the 
patient’s stay in the ICM (see Figure 1). All patients remained under 
constant observation by 2 medical doctoral candidates until they 
were able to be transferred back to the general ward. During this 
time, all pain medications were meticulously documented and 
manually marked in the recordings. The main analgesics 
administered were tramadol, tilidine, piritramide, oxycodone, and 
remifentanil. To make the different drugs comparable, a conversion 
to their morphine equivalents was performed based on (22, 23) as 
follows: 1 mg morphine ≅ 0.1 mg tramadol/tilidine ≅ 0.7 mg 
piritramide ≅ 2 mg oxycodone ≅ 100 mg remifentanil/fentanyl ≅ 
1,000 mg sufentanil. The average time the patients spent in 
intermediate care was about 22.8 h, the average number of analgesic 
administrations was 10.4 with an average dose of 5.45 mg (converted 
to morphine equivalents).

2.3. Recorded biosignals

Physiological signals were recorded at a sample rate of 1,024 Hz, 
using the NeXus-10-amplifier and its associated software “BioTrace+ 

Abbreviations: Ag/Cl, silver chloride; APR, Automated Pain Recognition; COVID-19, 

Coronavirus Disease 2019; EMG, Electromyography; ECG, Electrocardiogram; 

Hz, hertz; ICM, Intermediate Care; SCL, Skin Conductance Level; TEMP, 

Temperature.
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NX10” from Mind Media.2 All biosensors were applied according to 
the instructions in Gruss et  al. (24). Bipolar pairs of Ag/AgCl 
electrodes were placed over the right corrugator supercilii and right 
zygomaticus major muscles to measure the Electromyography of the 
face. To record the ECG, three Ag/AgCl electrodes were attached to 
the patients’ upper body. Two more electrodes were attached on the 
bottom edge of the left hand to capture the SCL. At last, to obtain the 
peripheral body temperature, a temperature (TEMP) sensor was fixed 
to the tip of the left little finger with a medical tape. The software 
offered the possibility of manually setting markers during recording. 
Each time a pain medication was administered (see 2.2), a 
corresponding marker was set to mark the exact time in the 
biosignal recordings.

2.4. Biosignal processing and feature 
extraction

The processing of all physiological signals and subsequent feature 
extraction was done utilizing the “MATLAB 2018b” software from 
MathWorks.3 Firstly, all biosignals were downsampled to 512 Hz to 
speed up the processing procedures. In a next step, each type of 
biosignal was individually filtered as follows:

TEMP & ECG: We applied a moving average to both of the signals 
to smoothen their data. For the temperature we chose a 513 data-
points and for the ECG a 67 data-points sliding window. In addition, 
all ECG signals were detrended.

2 www.mindmedia.com

3 www.mathworks.com

SCL: The signal was filtered with a 20 Hz-low-pass filter and also 
smoothened with a 1,025 data-points sliding window.

EMG: The 2 EMG channels were processed with a 3rd-order 
Butterworth bandpass filter with cut-off frequencies of 20 and 250 Hz. 
Next, a Hilbert-transformation was performed and absolute values of 
the resulted signal were obtained. Finally, the data were low-pass 
filtered with a cut-off frequency of 4 Hz (25).

For statistical calculations, we extracted features for all biosignals 
from relevant data windows. The windows had a length of 60 s and 
were cut out of the signals directly ‘before’ and 5 min ‘after’ pain 
medication if possible. Those analgesic administrations had been 
manually marked in the biosignal recordings (see 2.3). All windows 
were visually inspected for artifacts and outliers. If necessary and 
doable, corrupted segments were corrected, otherwise the data 
window was discarded. Finally, features were derived that differed in 
number and type depending on the biosignal. With future machine 
learning in mind, we chose relevant features for biosignals suggested 
by Gruss et al. (16) and Werner et al. (3). To calculate the only ECG 
feature, we additionally used the Pan-Tompkins QRS-algorithm to 
detect R-peaks in the signal (26). They were grouped according to 
their corresponding windows (‘before’ and ‘after’ pain medication). All 
specific features are shown in Table 1.

2.5. Statistical Analysis

For all statistical tests we used the software “SPSS Statistics 28”.4 
We  performed non-parametric comparisons between the groups 

4 www.ibm.com/products/spss-statistics

FIGURE 1

Study setup. EMG ≙ Electromyography.
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‘before’ and ‘after’ for all biosignals and their associated features. With 
regard to the repetition of measurements, a Wilcoxon signed-rank test 
for dependent samples was chosen. A p-value of <0.05 indicated 
statistical significance. In addition, for each p-value, we calculated

the associated effect size r using the formula r = Z
N

, Z = test

statistic, N = number of samples. Effect size measures help to assess the 
practical relevance of the results of statistical tests. Cohen’s 
classification (27) was used to assess the size of the effect: 
0.1 ≤ r < 0.3 = small, 0.3 ≤ r < 0.5 = medium, and r ≥ 0.5 = large effect. 
Additionally, we were interested in whether the activities of both facial 
muscles were related to each other. In this sense, we calculated the 
differences of the related ‘before’ and ‘after’ values for all features for 
both muscles if both EMG signals were usable within the same 
window. The differences represented the change in activity and were 
used for non-parametric correlation analyses of the corrugator and 
the associated zygomaticus activities. Spearman’s ρ (= rho) and 
associated p-values were used to assess the association: 
0.1 ≤ |ρ| < 0.3 = small, 0.3 ≤ |ρ| < 0.5 = moderate, and |ρ| ≥ 0.5 = strong 
correlation (28).

3. Results

After discarding unusable data windows, at least more than 330 
samples per biosignal were left to examine statistically significant 
differences (NEMG_corrugator = 349, NEMG_zygomaticus = 344, NSCL = 331, 
NTEMP = 350, NECG = 349). A sample always consisted of a ‘before’ event 
and its related ‘after’ event. For the correlation analyses, there were a 
total of 310 samples, since both facial EMGs within the same sample 

always had to be qualitatively usable. Table 2 shows the results of the 
Wilcoxon tests for the comparisons of ‘before’ and ‘after’ groups for 
each biosignal feature.

Almost every feature is able to distinguish significantly between 
the groups. The p-values hereby range from 0.019 to 0.000 with 
medium (r ≥ 0.3) to large (r ≥ 0.5) effect sizes. The largest effect size 
within this study was found for feature “f6_EMG” of EMG_corrugator_
supercilii with r = 0.56 (p = 0.000). Features “f3_SCL” (p = 0.019, 
r = 0.13) and “f1_TEMP” (p = 0.004, r = 0.15) show high significant 
differences but have small effect sizes. No differences between the 
groups were found for features “f2_EMG” of EMG_corrugator_
supercilii (p = 0.191) and “f2_EMG” of EMG_zygomaticus_major 
(p = 0.867). Except for the two features mentioned above, all biosignal 
activity changed to the expected directions. Muscle and SCL activity 
turned down, peripheral body temperature slightly increased and 
heart beat slowed down. All findings strongly indicate a reduced 
sympathicus activity after pain medication.

Regarding a related activity of the two facial muscles, Table 3 shows 
that almost all correlation coefficients reveal highly significant moderate 
to strong correlations, ranging from ρ = 0.383** to 0.634**. Only “diff_
f2_C/Z” shows a weak correlation (ρ = 0.158**). All in all, the activities 
of the two facial muscles do not seem to be independent of each other.

4. Discussion

The fact that analgesia can be directly observed and assessed in a 
postoperative setting, e.g., with the BPS, is part of the S3-guideline 
“Analgesia, Sedation and Delirium management in Intensive Care.” 
That pain intensity has an influence on the autonomic nervous system 
has been shown in numerous studies (see introduction). However, it 
has not been operationalized to what extent the activities of biosignals 

TABLE 1 Extracted features for each biosignal.

Biosignal Specific signal feature

Electromyography (EMG)

musculus corrugator supercilii & musculus zygomaticus major

f1_EMG = maximum [in μV]

f2_EMG = minimum [in μV]

f3_EMG = root mean square [in μV]

f4_EMG = mean of local maxima [in μV]

f5_EMG = mean of local minima [in μV]

f6_EMG = peak to peak of the means of local extrema [in μV]

f7_EMG = mean [in μV]

f8_EMG = standard deviation [in μV]

f9_EMG = difference between max and min [in μV]

f10_EMG = interquartile range Q3-Q1

Skin Conductance Level (SCL) f1_SCL = maximum [in μS]

f2_SCL = peak to peak of the means of local extrema [in μS]

f3_SCL = slope of linear regression line [in μS/Hz]

Temperature (TEMP) f1_TEMP = maximum [in °C]

f2_TEMP = slope of linear regression line [in °C/Hz]

Electrocardiogram (ECG) f1_ECG = mean length of successive RR intervals [in ms]

μV ≙ microvolt, μS ≙ microsiemens, °C ≙ degrees Celsius, Hz ≙ hertz, ms ≙ millisecond, fx_y ≙ feature number x of biosignal y.
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are influenced after an analgesic administration. In this brief report 
the operationalization of an analgesic effect was proven statistically 
significant for the recorded biosignals EMG, SCL, ECG, and 
TEMP. This is an indication that physiological signals are suitable to 
check for an analgesic effect and should be  transferred into an 
AI-based prototype. This would be a key benefit for clinical staff.

Walter et al. (29) showed that the majority of clinical staff in the 
ICU would prefer a biosignal-based pain detection. In relation to this, 
facial EMG would have the benefit of replacing computer vision, in 
terms of cost effectiveness and data security. For clinical staff, the use 
of computer vision systems would be more complex, more demanding, 
and ultimately more error-prone as a result.

Despite initial skepticism of the authors regarding the (patient) 
acceptability of the facial EMG sensors, the continuous measurement 
of facial EMG was shown to be unproblematic.

Limitations:

 1. The sample is relatively small due to the complexity and 
duration of measurements and Covid-19 pandemic restrictions.

 2. The extent to which a particular analgesic dosage affected the 
activities of the various biosignals was not investigated.

 3. Why feature “f2_EMG” (= minimum of EMG signal) does not 
show a significant difference, cannot be verified at the moment.

Outlook:

 1. Further studies should statistically examine the influence of a 
certain dosage of analgesics on the sympathetic/
parasympathetic response.

 2. Findings from research based on the BioVid (30) & X-ITE (24) 
datasets, the results of the present study, staff acceptance (29), 
and patient acceptance indicate that it would now 
be appropriate to develop and test an APR prototype.

TABLE 2 Biosignal activity represented through features directly ‘before’ and 5 min ‘after’ pain medication: results of Wilcoxon signed-rank tests and 
associated effect sizes.

Biosignal Signal 
feature

Before pain 
medication

After pain 
medication

p r Z Change 
(before – 
after)

mean ±SD mean ±SD

EMG

corrugator supercilii

(N = 349)

f1_EMG 52.52 38.39 32.74 35.47 0.000 0.47 −8.78 ↘

f2_EMG 2.47 2.69 2.74 2.73 0.191 0.07 −1.31 ↗

f3_EMG 13.48 9.39 8.92 6.96 0.000 0.51 −9.46 ↘

f4_EMG 12.30 8.65 8.49 6.54 0.000 0.48 −9.05 ↘

f5_EMG 8.77 6.36 6.48 4.73 0.000 0.41 −7.70 ↘

f6_EMG 3.52 2.75 2.02 2.46 0.000 0.56 −10.54 ↘

f7_EMG 10.87 7.65 7.58 5.59 0.000 0.48 −8.91 ↘

f8_EMG 7.29 6.33 3.89 4.92 0.000 0.52 −9.73 ↘

f9_EMG 50.05 38.63 30.00 35.85 0.000 0.47 −8.82 ↘

f10_EMG 5.79 6.41 2.88 4.27 0.000 0.52 −9.73 ↘

EMG

zygomaticus

major

(N = 344)

f1_EMG 46.11 42.10 27.15 36.37 0.000 0.52 −9.64 ↘

f2_EMG 2.46 2.19 2.75 2.26 0.867 0.01 −0.17 ↗

f3_EMG 11.16 7.24 7.87 6.50 0.000 0.49 −9.08 ↘

f4_EMG 10.18 6.19 7.52 5.77 0.000 0.46 −8.53 ↘

f5_EMG 7.27 4.55 5.82 4.13 0.000 0.39 −7.25 ↘

f6_EMG 2.91 2.23 1.70 2.21 0.000 0.53 −9.82 ↘

f7_EMG 8.97 5.40 6.78 4.95 0.000 0.45 −8.38 ↘

f8_EMG 6.14 5.45 3.25 4.83 0.000 0.55 −10.26 ↘

f9_EMG 43.66 42.57 24.40 36.30 0.000 0.52 −9.72 ↘

f10_EMG 4.89 5.34 2.48 3.78 0.000 0.53 −9.82 ↘

SCL (N = 331)

f1_SCL 2.30 0.91 2.14 0.63 0.000 0.31 −5.70 ↘

f2_SCL 0.41 0.49 0.48 0.68 0.000 0.30 −5.53 ↗

f3_SCL 1.59E-06 7.77E-05 0.00 0.00 0.019 0.13 −2.34 ↗

TEMP (N = 350)
f1_TEMP 34.99 3.31 35.11 3.37 0.004 0.15 −2.87 ↗

f2_TEMP −1.17E-05 2.81E-05 0.00 0.00 0.000 0.42 −7.85 ↗

ECG (N = 349) f1_ECG 1395.58 213.69 1443.53 234.19 0.000 0.51 −9.44 ↗

EMG ≙ Electromyography, SCL ≙ Skin Conductance Level, TEMP ≙ Temperature, ECG ≙ Electrocardiogram, sd ≙ standard deviation, N ≙ sample size, fx_y ≙ feature number x of biosignal 
y, p ≙ significance (2-tailed), size, r ≙ effect size, Z ≙ test statistic.
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