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Background and aims: Sarcopenia has a higher occurrence rate in patients with

chronic kidney disease (CKD) and end-stage renal disease (ESRD) than in the general

population. Low handgrip strength—and not sarcopenia per se—is associated with

clinical outcomes in patients with CKD, including cardiovascular mortality and

hospitalization. The factors contributing to low handgrip strength are still unknown.

Accordingly, this study aimed to determine whether uremic toxins influence low

handgrip strength in patients with CKD.

Materials and methods: This cohort study lasted from August 2018 to January

2020. The participants were divided into three groups: the control group [estimated

glomerular filtration rate (eGFR) ≥ 60 ml/min], an advanced CKD group (eGFR = 15–

60 ml/min), and an ESRD group (under maintenance renal replacement therapy).

All participants underwent handgrip strength measurement, dual-energy X-ray

absorptiometry, and blood sampling for myokines (irisin, myostatin, and interleukin 6)

and indoxyl sulfate. Sarcopenia was defined according to the Asian Working Group

for Sarcopenia consensus as low appendicular skeletal muscle index (appendicular

skeletal muscle/height2 of < 7.0 kg/m2 in men and < 5.4 kg/m2 in women) and low

handgrip strength (< 28 kg in men and < 18 kg in women).

Results: Among the study participants (control: n = 16; CKD: n = 17; and ESRD:

n = 42), the ESRD group had the highest prevalence of low handgrip strength

(41.6 vs. 25% and 5.85% in the control and CKD groups, respectively; p < 0.05).

The sarcopenia rate was similar among the groups (12.5, 17.6, and 19.5% for the

control, CKD, and ESRD groups, respectively; p = 0.864). Low handgrip strength was
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associated with high hospitalization rates within the total study population during the

600-day follow-up period (p = 0.02). The predictions for cardiovascular mortality and

hospitalization were similar among patients with and without sarcopenia (p = 0.190

and p = 0.094). The serum concentrations of indoxyl sulfate were higher in the

ESRD group (227.29 ± 92.65 µM vs. 41.97 ± 43.96 µM and 6.54 ± 3.45 µM for

the CKD and control groups, respectively; p < 0.05). Myokine concentrations were

similar among groups. Indoxyl sulfate was associated with low handgrip strength

in univariate and multivariate logistic regression models [univariate odds ratio (OR):

3.485, 95% confidence interval (CI): 1.372–8.852, p = 0.001; multivariate OR: 8.525,

95% CI: 1.807–40.207, p = 0.007].

Conclusion: Handgrip strength was lower in the patients with ESRD, and low

handgrip strength was predictive of hospitalization in the total study population.

Indoxyl sulfate contributed to low handgrip strength and counteracted the benefits

of myokines in patients with CKD.
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1. Introduction

Chronic kidney disease (CKD) is defined as impaired glomerular
filtration caused by structural or chronic damage to the glomerulus
and the genitourinary tract. The risk factors for CKD include
advanced age, metabolic disorders such as diabetes mellitus,
uncontrolled hypertension, autoimmune disorders such as systemic
lupus erythematous, and hereditary disorders such as polycystic
kidney disease (1). The progressive decrease in glomerular filtration
rate (GFR) can result in multiple complications, such as the
activation of the renin–angiotensin–aldosterone system, insulin
resistance, secondary hyperparathyroidism, vitamin D deficiency,
electrolyte imbalance, and the accumulation of uremic toxins,
which can trigger further comorbidities (2–4). Patients with CKD
and end-stage renal disease (ESRD) are more vulnerable to
comorbidities such as uncontrolled congestive heart failure, fluid
overload, altered consciousness, decreased erythropoiesis, renal
osteodystrophy, sarcopenia, and frailty; therefore, these patients have
a higher incidence of hospitalization or mortality than the general
population (5–8).

Frailty is defined as the state of increased vulnerability resulting
from aging-associated decline with compromised coping ability for
daily or acute stressors due to loss in reserve and function across
multiple physiologic systems (9). Sarcopenia, a major component
of frailty, is defined as age-related loss of muscle mass, plus low
muscle strength, and/or low physical performance. (10). The intrinsic
contraction–extension pattern of skeletal muscle supports the posture
and structure of the body. Sarcopenia is diagnosed either through
physical assessments, such as a handgrip strength test, or by using
radiology tools such as dual-energy X-ray absorptiometry (DEXA)
(11). Myokines such as irisin or myostatin are released from the
skeletal muscle, and they play a role in the modulation of skeletal
muscle homeostasis and by extension the development of sarcopenia
and frailty (12). Patients with CKD are more susceptible to frailty
or sarcopenia due to advanced age with other comorbidities such
as insulin resistance or metabolic acidosis, and dysregulation of

anabolic myokines (13, 14). Sarcopenia diagnosed through physical
assessment, as opposed to radiology, was associated with poorer
clinical outcomes in patients with CKD. However, the mechanisms
behind this relationship are still under investigation (15).

Indoxyl sulfate is a protein-bound uremic toxin found in
patients with CKD. The accumulation of this uremic toxin
could directly increase the oxidative stress levels within skeletal
muscle cells and impair the function of mitochondria (16).
Because skeletal muscle is part of the cardiovascular system, this
could affect catabolism and accelerate the development of frailty
and sarcopenia (17, 6). Furthermore, indoxyl sulfate influenced
decrease skeletal muscle anabolism, resulting in atrophy (17).
For patients undergoing dialysis, handgrip strength is related to
frailty, and in patients with CKD, handgrip strength is related to
specific comorbidities or mortality (18, 19). However, few clinical
studies have researched the relationship of uremic toxins with
sarcopenia and frailty or the interaction between myokines and body
composition. Accordingly, the present study investigated the role
of myokines in contributing to low handgrip strength in patients
with CKD and ESRD.

2. Materials and methods

2.1. Ethics and study protocol

This study was conducted at a regional hospital in New Taipei
City, Taiwan, in accordance with the tenets of the Declaration
of Helsinki. The study protocol was approved by the Ethics
Committee of Human Studies at Cardinal Tien Hospital (CTH-
107-3-5-027). The study period lasted from August 2018 to January
2020. The inclusion criteria were as follows: (a) estimated GFR
(eGFR) < 60 ml/min or spot urine proteinuria > 200 mg/g,
(b) age > 20 years, and (c) able to communicate verbally in
Mandarin Chinese. The exclusion criteria were as follows: having
unstable angina, acute myocardial infarction during the past
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6 months, severe anemia (Hb < 8 g/dL), systolic hypertension
(> 190 mmHg), active inflammation or infection, malignant
cancer, autoimmune diseases, emotional instability, musculoskeletal
disability, uncontrolled cardiac failure or respiratory problems, or
being hospitalized during the past month. After the participants
were enrolled, they were divided into three groups: (1) the control

group (eGFR > 60 ml/min), (2) the CKD group (eGFR 15–
60 ml/min), and (3) the ESRD group. ESRD was defined as
receiving maintenance renal replacement therapy continuously for
> 3 months. For the ESRD patients, the participants received
hemodialysis (three times per week with duration 3–4 h for each
session) with polyethersulfone as the dialyzer materials. The Kt/V

TABLE 1 Patient demographics by group.

Control CKD ESRD p-value

Sample size 16 17 41

Age* 48.5 ± 10.94 65.64 ± 5.93 60.68 ± 14.81 p < 0.05

Female (%) 12 (75) 4 (23.5) 14 (34.1) P < 0.05

Diabetes mellitus (%)* 1 (6.25) 11 (64.7) 26 (64.9) p < 0.05

Hypertension (%)* 3 (18.75) 14 (82.35) 36 (85.71) p < 0.05

Coronary artery disease (%) 0 (0) 1 (5.89) 4 (9.52) p = 0.425

Congestive heart failure (%)& 0 (0) 1 (5.89) 17 (40.47) p < 0.05

Malignancy (%) 0 (0) 1 (5.89) 1 (2.23) p = 0.569

*Control vs. CKD; &Control vs. ESRD.

TABLE 2 Incidence of low handgrip strength and sarcopenia by group.

Control CKD ESRD p-value

Sample size 16 17 41

Body mass index [kg/height (meter)2] 25.95 ± 4.79 24.12 ± 6.68 25.73 ± 3.44 P = 0.398

Grasping power (kg)&ˆ 28.95 ± 9.64 31.63 ± 8.47 21.30 ± 9.43 p < 0.05

Case number of low handgrip strength (percentage) 4 (25) 1 (5.85) 17 (41.46) p < 0.05

Case number of sarcopenia based on AWGS algorithm (percentage) 2 (12.5) 3 (17.6) 8 (19.5) P = 0.804

*Control vs. CKD; &Control vs. ESRD; ˆCKD vs. ESRD.

TABLE 3 Hematological and biochemical results by group.

Control CKD ESRD p-value

Blood urea nitrogen (mg/dL)*&ˆ 16.93 ± 9.25 44.91 ± 26.85 65.59 ± 21.44 p < 0.05*

Creatinine (mg/dL)*&ˆ 0.76 ± 0.22 3.13 ± 2.06 9.70 ± 3.31 p < 0.05*

Estimated glomerular filtration rate (ml/min)*&ˆ 97.77 ± 17.64 35.38 ± 25.75 7.45 ± 11.12 p < 0.05*

Sodium (mEq/L)&ˆ 140.13 ± 2.39 140.73 ± 3.80 138.10 ± 2.54 p < 0.05*

Potassium (mEq/L) 4.17 ± 0.29 4.61 ± 0.62 4.35 ± 0.73 p = 0.156

Calcium (mg/dL) 9.61 ± 0.62 9.11 ± 0.70 9.09 ± 0.81 p = 0.081

Phosphorus (mg/dL)&ˆ 3.81 ± 0.51 4.22 ± 0.72 5.44 ± 1.81 p < 0.05*

Uric acid (mg/dL) 5.71 ± 1.33 6.99 ± 1.58 6.35 ± 1.75 p = 0.115

Alkaline phosphatase (mg/dL) 68.87 ± 18.52 74.33 ± 28.77 80.53 ± 28.18 p = 0.313

Albumin (g/dL)& 4.33 ± 0.42 4.23 ± 0.32 4.03 ± 0.34 p < 0.05*

Cholesterol (mg/dL) 170.20 ± 27.78 143.73 ± 41.09 152.33 ± 39.61 p = 0.148

Triglyceride (mg/dL) 135.18 ± 54.59 118.82 ± 53.00 142.97 ± 69.62 p = 0.418

HbA1c (%) 5.86 ± 0.50 6.17 ± 0.74 6.58 ± 1.19 p = 0.138

Hemoglobin (g/dL)*& 13.17 ± 1.39 11.72 ± 2.19 10.95 ± 1.21 p < 0.05*

Indoxyl sulfate (µM)&ˆ 6.54 ± 3.45 41.97 ± 43.96 227.29 ± 92.65 p ≤ 0.05*

TIrisin (pg/ml) 115.12 ± 108.73 73.13 ± 37.71 72.71 ± 59.61 p = 0.106

Myostatin (ng/ml) 2.64 ± 4.49 1.28 ± 0.84 1.29 ± 1.98 p = 0.188

Interleukin 6 (pg/ml) 3.67 ± 7.09 2.99 ± 5.09 4.68 ± 4.67 p = 0.232

*Control vs. CKD; &Control vs. ESRD; ˆCKD vs. ESRD.
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of all participants was higher than 1.2 as the suggestion of the
National Kidney Foundation’s Kidney Disease Outcomes Quality
Initiative (20).

All participants received a prestudy medical workup, including a
physical evaluation, electrocardiography, resting echocardiography,
and blood biochemical tests. After enrollment, the participants
received assessments of their clinical parameters, baseline
hematological and biochemical parameters, baseline DEXA
measurements, and myokine concentrations.

2.2. Demographic data and biochemical
results

Demographic data were obtained from the medical records
at Cardinal Tien Hospital. The diagnoses of congestive heart
failure, diabetes mellitus, and hypertension were verified through
medical records. Body weight and height were measured after
hemodialysis to obtain body mass index. The following predialytic
hematological and biochemical parameters were collected from

TABLE 4 The concentration of myokine between the participants with and without lower handgrip strength.

Groups With lower handgrip strength
(n = 22)

Without lower handgrip strength
(n = 52)

P-value

Female (percentage) 8 (36.3) 22 (42.2)

Indoxyl sulfate (µM) 172.06 ± 114.33 97.69 ± 121.93 P < 0.05

Irisin (pg/ml) 68.86 ± 44.21 101.95 ± 88.77 P < 0.95

Myostatin (ng/ml) 1.28 ± 1.54 2.26 ± 3.56 P = 0.145

Interleukin 6 (pg/ml) 3.86 ± 4.89 4.33 ± 6.49 P = 0.302

FIGURE 1

Kaplan–Meier curves for cardiovascular mortality and hospitalization in the participants with or without sarcopenia (A,B) and low handgrip strength (C,B).
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FIGURE 2

ROC curve for predicting sarcopenia based on concentrations of indoxyl sulfate, irisin, myostatin, and Interleukin-6 (indoxyl sulfate: AUC: 0.642, 95% CI:
0.489–0.795, p = 0.071; irisin: AUC: 0.361, 95% CI: 0.208–0.513, p = 0.076; myostatin: AUC: 0.426, 95% CI: 0.269–0.0.583, p = 0.345; interleukin-6: AUC:
0.578, 95% CI: 0.429–0.727, p = 0.317).

FIGURE 3

ROC curve for predicting low handgrip strength based on concentrations of indoxyl sulfate, irisin, myostatin, and interleukin-6 (indoxyl sulfate: AUC:
0.724, 95% CI: 0.585–0.863, p < 0.05; irisin: AUC: 0.276, 95% CI: 0.142–0.410, p < 0.05; myostatin: AUC: 0.358, 95% CI: 0.208–0.508, p < 0.05;
interleukin-6: AUC: 0.578, 95% CI: 0.429–0.727, p = 0.317).
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each patient within 1 month after obtaining written informed
consent: hemoglobin, platelet count, white blood cell count, glutamic
oxaloacetic transaminase, glutamic pyruvic transaminase, albumin,
blood sugar, uric acid, total cholesterol, triglycerides, sodium,
potassium, calcium, phosphorus, and intact parathyroid hormone.
The eGFR was determined by using the Modification of Diet in Renal
Disease Study equation (21).

2.3. Measurement of myokines and
indoxyl sulfate

Myokines, including irisin, myostatin, and interleukin-6,
were measured by enzyme immunoassay kit (Abbkine, Wuhan,
China). Serum samples were drawn to measure biochemical and
hematological parameters. Serum was collected under fasting
conditions and stored at −80◦C for later measurement. The
parameters were measured according to the manufacturer’s
instructions (the inter- and intra-assay coefficients of variability
for irisin, myostatin, and interleukin-6 were < 11% and < 9%,
respectively). Indoxyl sulfate was measured using an enzyme-
linked immunosorbent assay (ELISA) kit (Leadgene Biomedical,
Tainan, Taiwan), validated through high-performance liquid
chromatography–mass spectrometry (US patent: US10723791B2).
The monoclonal antibody against antigenic indoxyl sulfate is
generated from 8 to 10 week-old female BALB/c mice with removal
rate 97.78% of human plasma. The binding activity, against indole,
L-tryptophan or 3-indoleacetic acid (defined by mean absorbance
of compounds–spiked wells)/[mean absorbance of blank control
wells (B/Bo)] was less than 30%. Briefly, the serum was diluted by
20-fold to a final volume of 100 µL and then added to an equal
volume of diluted detection antibody. After 1 h, the ELISA wells
were washed, and 3,3’,5,5’-tetramethylbenzidine was used for color
development. The indoxyl sulfate level was determined on the basis
of a standard curve.

2.4. DEXA: measurement of muscle mass

In addition to blood sampling, DEXA imaging was also
performed. Patients with ESRD received DEXA scans on the day

after hemodialysis. The DEXA imaging process was as follows. The
patients were asked to fast overnight and refrain from drinking
alcohol for > 8 h before the DEXA scan. During the examination,
the patients were asked to wear cotton clothing and remove all metal
objects from their persons. Scans were performed using a GE Lunar
iDXA (GE Healthcare, Chicago, IL, USA) operated in whole-body
scan mode, and the scan was performed in the order of head, upper
limbs, lower limbs, and trunk. The whole-body scan of each patient
required approximately 20 min to complete.

The appendicular skeletal mass index was defined as the sum of
the lean muscle mass of all four limbs divided by the patient’s height
(in meters) squared (appendicular skeletal muscle/height2) (22). The
relative fat mass indices for the trunk, leg, arm, android, gynoid, and
total body fat were obtained according to the method described by
Stults-Kolehmainen et al. (23). The scanner manufacturer defined
the trunk, leg, android, and gynoid regions as follows: (1) The trunk
region comprises the neck, chest, abdominal, and pelvic areas. The
upper and lower perimeters of the trunk are the interior edge of the
chin and the middle of the femoral necks without touching the brim
of the pelvis, respectively. (2) The leg region comprises the pelvic
region at an angle perpendicular to the femoral neck. (3) The android
region comprises the area between the ribs and the top of the pelvis
that is totally enclosed by the trunk region. The upper boundary is
20% of the distance between the iliac crest and the neck, and the
lower boundary is at the top of the pelvis. (4) The gynoid region
comprises the hips and upper thighs overlapping both the leg and
trunk regions (24). The results of these scans were analyzed using
the DEXA scanner’s integrated software (v12.10.017, GE Healthcare,
Chicago, IL, USA).

2.5. Diagnoses of sarcopenia and low
handgrip strength

The Asian Working Group for Sarcopenia (AWGS) (25) defines
sarcopenia as low muscle mass and low muscle strength. We used
the AWGS algorithm to identify sarcopenia as follows: appendicular
skeletal muscle index (appendicular skeletal muscle/height2) of
< 7.0 kg/m2 in men and < 5.4 kg/m2 in women. Low handgrip
strength was defined a handgrip strength of < 28 kg in men and
< 18 kg in women (25).

TABLE 5 Univariate and Multivariate logistic regression analyses for the factors associated with low handgrip strength.

Univariate odd ratio
(95% CI)

p-value Multivariate odd ratio
(95% CI)

p-value

Age (> 65 year/old) 3.136 (1.221–8.058) 0.005 6.728 (1.418–31.33) 0.016

Without CKD (estimated
GFR > 60 ml/min)

0.890 (0.643–1.232) 0.356

Hyperphosphatemia (> 5.5 mg/L) 0.654 (0.35–1.22) 0.171

Albumin (> 3.5 g/dL) 0.563 (0.29–1.90) 0.231

Hemoglobin (< 12 g/dL) 0.593 (0.299–1.173) 0.097

Irisin (> 63 pg/ml) 0.462 (0.235–0.911) 0.019

Indoxyl sulfate (> 135 µM) 3.485 (1.372–8.852) 0.002 8.525 (1.807–40.207) 0.007

DM 0.725 (0.424–1.344) 0.25

Hypertension 0.744 (0.546–1.098) 0.135

Congestive heart failure 1.494 (1.058–2.109) 0.009
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2.6. Cardiovascular mortality and
hospitalization assessment

Cardiovascular mortality and hospitalization records were made
prospectively by examining all patients who had been enrolled in the
study for at least 3 months between 1 April 2018 and 31 December
2021. Each medical chart was reviewed, and a physician assigned
the cause of death on the basis of all clinical information available
from the Cardinal Tien Hospital emergency department or intensive
care unit. Patients who were lost to follow-up after study completion
were excluded from this analysis. Cardiovascular mortality was
defined as any death directly related to cardiovascular system
dysfunction occurring at Cardinal Tien Hospital (including stroke,
myocardial infarction, congestive heart failure, or sudden death). The
hospitalization assessment comprised all hospital stays lasting at least
1 night that occurred during the 2-year period after diagnosis. These
data were collected from hospital admissions records and discharge
letters extracted from the general practice records.

2.7. Statistics

Continuous variables are presented as mean ± standard
deviation. Categorical values are expressed as percentages. A one-way
analysis of variance was used to compare the differences in variables
within the three patient groups. We used Pearson’s correlation
coefficient to assess the predictive performance of individual
parameters for low handgrip strength, including advanced age,

diabetes mellitus, coronary artery disease, congestive heart failure,
and indoxyl sulfate and myokine concentrations. Receiver operating
characteristic (ROC) curves were plotted, and the area under
the curve (AUC) was estimated. We compared the Kaplan–Meier
estimates for 2-year cardiovascular mortality and hospitalization
between the groups with and without sarcopenia and between
the groups with and without low handgrip strength. All statistical
analyses were performed using the statistical package SPSS for
Windows (v.17; SPSS, Chicago, IL, USA). A two-tailed p-value of
< 0.05 was considered statistically significant.

3. Results

3.1. Low handgrip strength was more
prevalent than sarcopenia in patients with
CKD and ESRD

Table 1 reveals the demographic characteristics of the three
study groups. The numbers of participants in the control, CKD, and
ESRD groups were 16, 17, and 42, respectively. The mean age of the
participants in the control group (48.5 ± 10.94 years) was lower than
that of the participants in the CKD and ESRD groups (65.64 ± 5.93
and 60.68 ± 14.81 years, respectively; p < 0.05). The rates of
hypertension (18.75, 82.35, and 85.71%; p < 0.05) and diabetes
mellitus (6.25, 64.7, and 64.9%, p < 0.05) were lower in the control
group than in the CKD and ESRD groups. The percentage of female

TABLE 6 The concentration of myokine and handgrip strength between the participants based on the quartile divided by age.

Groups 1st quartile based
on age

(30–46 years old)

2nd quartile
based on age

(46–61 years old)

3rd quartile based
on age

(61–69 years old)

4th quartile based
on age

(69–85 years old)

P-value

Handgrip strength (kg)* 31.79 ± 8.64 25.96 ± 8.28 26.83 ± 11.19 19.23 ± 9.44 P < 0.05

Irisin (pg/ml)* 122.39 ± 124.96 85.14 ± 61.88 61.66 ± 27.93 63.33 ± 21.85 P < 0.05

Myostatin (ng/ml) 2.98 ± 5.07 1.59 ± 1.71 0.96 ± 0.47 1.05 ± 0.53 P = 0.087

Interleukin 6 (pg/ml) 3.40 ± 3.00 4.66 ± 6.05 3.54 ± 4.07 4.44 ± 7.19 P = 0.634

*1st quartile vs. 4th quartile.

TABLE 7 Dual-energy X-ray absorptiometry parameters by group.

Control CKD ESRD p-value

Android fat mass (kg) 2.16 ± 0.87 2.11 ± 0.95 2.09 ± 0.80 0.969

Android lean mass (kg) 3.64 ± 0.67 3.79 ± 1.06 3.63 ± 0.86 0.814

Android total mass (kg) 5.08 ± 1.38 5.97 ± 1.71 5.73 ± 1.52 0.870

Android fat percentage (%) 36.34 ± 7.08 35.45 ± 9.01 36.04 ± 6.45 0.944

Gynoid fat mass (kg) 3.50 ± 1.32 2.82 ± 1.00 2.75 ± 0.85 0.081

Gynoid lean mass (kg) 7.26 ± 1.20 7.03 ± 1.95 6.51 ± 1.25 0.242

Gynoid total mass (kg) 10.85 ± 1.81 9.89 ± 2.42 9.26 ± 1.73 0.059

Gynoid fat percentage (%) 32.00 ± 8.78 28.40 ± 7.79 29.60 ± 6.05 0.407

Android/gynoid fat ratio 1.11 ± 0.31 1.40 ± 0.30 1.21 ± 0.18 <0.05

The ratio of trunk/leg fat mass 1.12 ± 0.26 1.40 ± 0.47 1.28 ± 0.20 0.05

The ratio of total trunk/limb mass 1.22 ± 0.29 1.55 ± 0.46 1.56 ± 0.26 <0.05

Lean mass/height2 16.64 ± 2.65 16.78 ± 1.60 16.86 ± 2.24 0.949

Appendicular skeletal muscle/height2 6.89 ± 1.32 7.14 ± 0.90 6.82 ± 1.20 0.641
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was higher in the control group (75, vs. 23.5% for CKD and 34.1%
for ESRD group). The mean duration of the ESRD subjects receiving
maintenance renal replacement therapy was 2.23 ± 1.45 years (not
demonstrated in Table 1).

Table 2 reports the prevalence of low handgrip strength and
sarcopenia in the different groups. Low handgrip strength was more
prevalent in the ESRD group than in the control and CKD groups
(41.46 vs. 25% and 5.85%, respectively; p < 0.05). The prevalence
of sarcopenia was similar among the groups (12.5, 17.6, and 19.5%
for the control, CKD, and ESRD groups, respectively; p = 0.864). The
body mass index was similar between groups (p = 0.398).

Table 3 displays the results of hematological and biochemical
analyses. The ESRD group exhibited significant baseline differences
in blood urea nitrogen, creatinine, and eGFR when compared
with the CKD and control groups. Moreover, the concentrations
of sodium, albumin, and hemoglobin were significantly lower
in the ESRD group than in the other two groups [sodium:
138.10 ± 2.54, 140.13 ± 2.39, and 140.73 ± 3.80 mEq/L (p < 0.05);
albumin: 4.03 ± 0.34, 4.33 ± 0.42, and 4.23 ± 0.32 g/dL
(p < 0.05); and hemoglobin: 10.95 ± 1.21, 13.17 ± 1.39, and
11.72 ± 2.19 g/dL, (p < 0.05) in the ESRD, control, and
CKD groups, respectively]. Conversely, the concentrations of
phosphorus was significantly higher in the ESRD group than in
the other two groups [phosphorus: 5.44 ± 1.81, 3.81 ± 0.51,
and 4.22 ± 0.72 mg/dL (p < 0.05); intact parathyroid hormone:
345.88 ± 291.67, 53.75 ± 25.82, and 157.43 ± 162.71 pg/ml
(p < 0.05) in the ESRD, control, and CKD groups, respectively].
Serum indoxyl sulfate was significantly lower in the control group
than in the other two groups (6.54 ± 3.45, 41.97 ± 43.96, and
227.29 ± 92.65 µM in the control, CKD, and ESRD groups,
respectively; p < 0.05). Irisin was higher in the control group than
in the other two groups, but the difference was non-significant. The
concentrations of myostatin and interleukin-6 were similar among
the groups.

Table 4 illustrated the concentration of myokine and indoxyl
sulfate between the participants with and without lower handgrip
strength. The indoxyl sulfate was higher in the lower handgrip
strength group (172.06 ± 114.33 µM vs. 97.69 ± 121.93 µM,
p < 0.05). The irisin concentration was lower in the lower handgrip
strength group (68.86 ± 44.21 pg/ml, vs. 101.95 ± 88.77 pg/ml,
p < 0.05).

3.2. Low handgrip strength—but not
sarcopenia—was associated with
hospitalization in all participants

Figure 1 illustrates the Kaplan–Meier plot for cardiovascular
mortality and hospitalization for all participants during the 2-
year follow-up period, with stratification for sarcopenia and low
handgrip strength. The differences in cardiovascular mortality and
hospitalization rates between the participants with and without
sarcopenia were non-significant (p = 0.191 for cardiovascular
mortality; p = 0.094 for hospitalization). Conversely, the participants
with low handgrip strength experienced significantly more
hospitalizations (p = 0.02) during the 2-year follow-up period
than the patients with normal handgrip strength did. Nevertheless,
cardiovascular mortality rates were similar in the participants with
and without low handgrip strength (p = 0.084).

3.3. Indoxyl sulfate was associated with
low handgrip strength and clinical
outcomes

An ROC curve for predicting sarcopenia or low handgrip
strength was used to investigate the relationship between myokine
and indoxyl sulfate concentrations. Figures 2, 3 present the ROC
curves for predicting sarcopenia and low handgrip strength based
on myokine and indoxyl sulfate in the total population. Figure 2
illustrates the ROC curve for predicting sarcopenia. On the basis of
this model, the concentrations of indoxyl sulfate, irisin, myostatin,
and interleukin-6 were not predictive of sarcopenia (indoxyl sulfate:
AUC: 0.642, 95% CI: 0.489–0.795, p = 0.071; irisin: AUC: 0.361, 95%
CI: 0.208–0.513, p = 0.076; myostatin: AUC: 0.426, 95% CI: 0.269–
0.0.583, p = 0.345; interleukin-6: AUC: 0.578, 95% CI: 0.429–0.727,
p = 0.317). Figure 3 illustrates the ROC curve for predicting low
handgrip strength. The concentrations of indoxyl sulfate and irisin
were predictive of low handgrip strength in the total population
(indoxyl sulfate: AUC: 0.724, 95% CI: 0.585–0.863, p < 0.05; irisin:
AUC: 0.276, 95% CI: 0.142–0.410, p < 0.05). The concentrations
of myostatin and interleukin-6 were not predictive of low handgrip
strength (myostatin: AUC: 0.358, 95% CI: 0.208–0.508, p < 0.05;
interleukin-6: AUC: 0.578, 95% CI: 0.429–0.727, p= 0.317). The cutoff
values for irisin and indoxyl sulfate for diagnosing low handgrip
strength were 63 pg/ml and 136 µM, respectively.

TABLE 8 Correlations between indoxyl sulfate and body composition in
total population.

Indoxyl sulfate p-value

Android fat mass (kg) −0.029 0.823

Android lean mass (kg) −0.004 0.974

Android total mass (kg) −0.025 0.846

Android fat percentage (%) −0.24 0.852

Gynoid fat mass (kg) −0.248 0.052

Gynoid lean mass (kg) −0.227 0.076

Gynoid total mass (kg) −0.304 0.016

Gynoid fat percentage (%) −0.092 0.47

Android/gynoid fat ratio 0.024 0.849

The ratio of trunk/leg fat mass 0.077 0.586

The ratio of total trunk/limb mass 0.211 0.089

Lean mass/height2 0.183 0.141

Appendicular skeletal muscle/height2 0.19 0.133

Fat mass/height2
−0.215 0.083

TABLE 9 Comparison of gynoid total mass, lean mass, and fat mass in
participants with and without low handgrip strength.

With low
handgrip
strength

Without low
handgrip
strength

p-value

Gynoid fat mass (kg) 2.61 ± 0.63 3.08 ± 1.22 0.097

Gynoid lean mass (kg) 6.40 ± 1.38 7.30 ± 1.40 0.039

Gynoid total mass (kg) 9.02 ± 1.68 10.42 ± 1.97 0.017

Gynoid fat percentage (%) 29.20 ± 5.71 29.14 ± 8.65 0.98
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Table 5 illustrates the univariate and multivariate analyses of
the factors associated with low handgrip strength. A univariate
analysis was performed to investigate the odds ratios (ORs)
for low handgrip strength among groups when stratified by
demographic, hematological, and biochemical parameters
(demographic: age; history of diabetes mellitus, congestive
heart failure and hypertension; biochemical and hematological
parameters: serum albumin > 3.5 g/dL, phosphorus > 5.5 mg/dL,
hemoglobin > 12 g/dL). Irisin concentrations were also included
in this analysis due to the association with low handgrip strength.
In the univariate analysis, older age (> 65 years), higher indoxyl
sulfate concentrations (> 136 µM), and history of congestive heart
failure were associated with low handgrip strength [OR for indoxyl
sulfate: 3.485, 95% confidence interval (CI): 1.372–8.852, p = 0.02;
OR for age > 65 years: 3.136, 95% CI: 1.221–8.058, p = 0.005; OR
for congestive heart failure: 1.494, 95% CI: 1.058–2.109, p = 0.009].
Higher irisin levels (> 63 pg/ml) were negatively correlated with low
handgrip strength (OR: 0.462, 95% CI: 0.235–0.911, p = 0.019). In
the multivariate regression analysis with age, irisin, indoxyl sulfate,
congestive heart failure, higher indoxyl sulfate concentrations,
and advanced age were associated with the risk of low handgrip
strength (OR for age: 6.728, 95% CI: 1.418–31.33, p = 0.016; OR
for indoxyl sulfate: 8.525, 95% CI: 1.807–40.207, p = 0.007). To
evaluate the effect of age on the expression of myokine and handgrip
strength, we divided the subjects into quartiles based on the age
concentration (Table 6). The handgrip strength was the highest in
the 1st quartile,(31.79 ± 8.64 kg, vs. 4th quartile with 19.23 ± 9.44 kg,
p < 0.05) The irisin was also the highest in the 1st quartile
(122.39 ± 124.96 pg/ml, vs. 4th quartile with 63.33 ± 21.85 pg/ml,
p < 0.05).

Figure 4 illustrated the Kaplan–Meier curve for cardiovascular
mortality and the hospitalization based on the higher or lower
concentration of indoxyl sulfate. The concentration of participants
with higher indoxyl sulfate concentration (> 63 pg/ml) was
associated with higher incidence of cardiovascular mortality
(p = 0.03) and higher hospitalization rate (p = 0.008) under duration
of 600 days.

3.4. Indoxyl sulfate was associated with
decreased gynoid total mass

Table 7 displays the DEXA parameters of the participants in all
three groups. The appendicular skeletal muscle indices were similar
among the groups (6.89 ± 1.32, 7.14 ± 0.90, and 6.82 ± 1.20 kg/m2

for the control, CKD, and ESRD groups, respectively; p = 0.641).
The control group had the lowest android to gynoid and trunk

TABLE 10 The correlation between the concentration of indoxyl sulfate
and age, hematologic or biochemical parameters with difference between
groups in Table 3.

Correlation coefficient p-value

Age −0.179 0.263

Sodium −0.260 0.101

Phosphorus 0.363 0.018

Albumin 0.001 0.996

Hemoglobin −0.130 0.419

to limb fat mass ratios among the three groups (android/gynoid:
1.11 ± 0.31, 1.40 ± 0.30, 1.21 ± 0.18, p < 0.05; trunk/limb:
1.22 ± 0.29, 1.55 ± 0.46, 1.56 ± 0.26, p < 0.05 for the control, CKD,
and ESRD groups, respectively). Table 8 reveals the correlations
between DEXA parameters and indoxyl sulfate concentrations in the
total population. The gynoid total mass was negatively correlated
with indoxyl sulfate concentration (r = −0.304, p = 0.016). Table 9
reveals the difference in gynoid parameters between patients with
and without low handgrip strength in the total population. The total
and lean gynoid mass were lower in participants with low handgrip
strength. Table 10 illustrated the correlation between indoxyl sulfate
concentration with other hematologic or biochemical parameters
with difference between groups in Table 3. The concentration of
indoxyl sulfate was positive correlated with the concentration with
phosphorus (r = 0.363, p < 0.05). There was no other correlation
between indoxyl sulfate and other parameters.

4. Discussion

In our study, low handgrip strength was common among
patients with CKD and ESRD. We observed a correlation between
low handgrip strength and high hospitalization rates, but no such
association existed between sarcopenia and hospitalization. Indoxyl
sulfate concentration was an important factor contributing to low
handgrip strength, and the multivariate logistic regression analysis
revealed that indoxyl sulfate counteracted the protective effect of
irisin. Furthermore, the indoxyl sulfate concentration was inversely
correlated with gynoid total mass.

The DEXA scan utilized two low-dose X-ray beams of different
levels to detect fat, bone mass, and muscle mass. The results
revealed decreased appendicular skeletal muscle mass relative to
height (kg/m2), and the percentages of appendicular skeletal muscle
wasting were similar among the groups. Two diagnostic criteria
are used for identifying sarcopenia in patients receiving peritoneal
dialysis or hemodialysis: (1) an appendicular skeletal muscle index
more than two standard deviations below the reference index for
healthy young adults (26–28) and (2) an appendicular lean mass
index at least 20 percentiles below the general population (28).
The incidence of sarcopenia varies from 20 to 73.5% depending
on the diagnostic criteria. DEXA serves as an important tool for
diagnosing sarcopenia, but several factors can impair the diagnostic
efficacy in patients with CKD. Nevertheless, variations in fat, bone
mass, and muscle mass were noted in the DEXA results. In non-
dialysis CKD, visceral adipose tissue is highly associated with
obesity, and adipose tissue is associated with metabolic syndrome
or cardiovascular complications such as coronary artery calcification
(29, 30). In patients undergoing dialysis, hydration status and the
modality of renal replacement therapy influence the results of
body composition scans. In patients receiving peritoneal dialysis,
the amount of peritoneal dialysate might influence the patient’s
hydration status and result in an overestimation of muscle mass (31).
Therefore, sarcopenia diagnoses can be inconsistent across study
groups. Our study demonstrated that low handgrip strength was a
more reliable predictor of hospitalization and poor clinical outcomes
during the 2-year follow-up than radiologically diagnosed sarcopenia,
as Figure 1 illustrated. Low handgrip strength was associated with
higher mortality and the development of chronic illnesses such
as malignant cancer among patients in all age groups (32–34).
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FIGURE 4

Kaplan–Meier curve for the cardiovascular mortality (A) and the hospitalization (B) based on the IS level (higher than 63 pg/ml or not).

Although the ability of handgrip strength to represent overall muscle
strength has not been determined, handgrip strength can serve as
an indicator of cardiovascular fitness (35–36). In CKD patients,
low handgrip strength was associated with comorbidities such as
hypernatremia (19) and poor renal outcomes (37). Besides, several
comorbidities common in CKD/ESRD could influence the handgrip
strength, such as anemia (38, 39). The accumulation of uremic
toxin, such as indoxyl sulfate, could also influence overall fitness
vial influencing ventricular remodeling or impairment of immunity
(40, 41). Therefore the concentration of indoxyl sulfate also reflected
the 2-year cardiovascular mortality and the hospitalization in our
study (Figure 4). The overall fitness, indicated by lower handgrip
strength, was associated with the higher hospitalization by infection
as previous reports (42, 43). Therefore, the overall decreased fitness,
rather than the severe decrease in skeletal mass by DEXA parameters,
was more associated the clinical outcome in vulnerable subjects, such
as CKD patients.

Indoxyl sulfate is a protein-bound uremic toxin derived from
tryptophan. After tryptophan is ingested, it is transformed into
indole derivatives and indoxyl sulfate by the hepatic cytochrome
P450 2E1. The organic anion transporter (OAT) within the renal
proximal tubules normally governs the excretion of indoxyl sulfate,
but in patients with CKD, tubulointerstitial fibrosis decreases OAT
function and leads to increased plasma concentrations of indoxyl
sulfate (16, 4). Indoxyl sulfate causes cellular damage either through
direct generation of oxidative stress or by modulating transcription
factors such as aryl hydrocarbon receptors (44). In patients receiving
maintenance hemodialysis or peritoneal dialysis (45, 46), indoxyl
sulfate could not be removed effectively, and the toxic effect of
indoxyl sulfate on skeletal muscle has been demonstrated in vivo
and in vitro. As the Figure 4 illustrated, the higher concentration
of indoxyl sulfate was associated higher cardiovascular mortality
and hospitalization in total population. Based on the previous
study, the indoxyl sulfate might influence the handgrip strength
vial: (1) the decrease ATP generation in mitochondria by inducing
the endoplasmic reticulum stress in skeletal by dysregulating
tricarboxylic acid cycle (17); (2) inducing the myogenesis by arousing
the unfolded protein response in endoplasmic reticulum (6); (3)
influencing the overall fitness vial the decrease cardiac function,
impairment of the hematopoiesis, or angiogenesis of peripheral
arterys (47, 40, 48). We noticed that the indoxyl sulfate concentration

was negatively associated with total gynoid mass. Additionally, low
handgrip strength was correlated with low gynoid total and lean mass.
This finding corresponds to the findings of Chao et al. who reported
that lower total body mass and lean mass were associated with frailty
in patients undergoing dialysis. Chao et al. also noted that appendix
fat, in contrast with trunk fat, was higher in patients with frailty
(49). A decrease in weight-bearing capacity might further impair
the cardiovascular fitness of patients with CKD and ESRD (50). In
light of our results, we believe that protein-bound uremic toxins such
as indoxyl sulfate might influence the weight-bearing lean skeletal
muscle mass of the gynoid area. However, further research into the
pathophysiological mechanisms is needed to verify this theory.

Irisin is the myokine released from skeletal muscle during
exercise. Irisin expression is regulated by the peroxisome proliferator-
activated receptor γ (PPARγ) coactivator 1α (PGC-1α) and
fibronectin type III domain containing 5 (FNDC5) axis (51). After
being released from skeletal muscle, irisin modulates the energy
expenditure in adipose tissue by stimulating the expression of brown
preadipose genes in beige precursor fat cells (52). Additionally, irisin
could activate osteoblast differentiation (53) or inhibit the apoptosis
of osteoblasts by reducing the generation of inflammasomes (54).
Irisin also maintains osteocytic survival by binding to the αV
class of integrins (55). Furthermore, irisin could modulate the
expression of mitochondrial uncoupling protein 2 to reduce oxidative
stress after ischemia or reperfusion injury. Because obesity and
metabolic syndrome develop before ESRD, irisin could counteract
the hazard of obesity and therefore provide renoprotection (56).
Serum concentrations of irisin decrease in patients with CKD. Wen
et al. demonstrated that serum irisin concentration was negatively
associated with the serum concentrations of blood urea nitrogen and
creatinine (57, 58). A lower concentration of irisin was associated
with cardiovascular mortality in patients with CKD (59). Our study
is the first to demonstrate that irisin concentration is negatively
correlated with lower muscle strength in patients with CKD
without influence on lean muscle mass composition. As mentioned,
protein-bound uremic toxins such as indoxyl sulfate might hamper
mitochondrial ATP generation, counteracting the protective effect
of irisin in several aspects. Patients with CKD have several risk
factors that dysregulate the PGC-1α–FNDC5 axis, such as vitamin D
deficiency and the accumulation of protein-bound uremic toxins (60,
61). An in vitro study demonstrated that indoxyl sulfate dysregulated
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the expression of PPARγ in C2C12 cells and therefore increased
autophagy levels (62). On the basis of this evidence, we believe that
indoxyl sulfate might counteract the effect of irisin and contributed to
the lower muscle strength observed in patients with CKD and ESRD.
Nevertheless, further investigation is needed to clarify the detailed
mechanisms of irisin expression and to explore possible interventions
for patients with low handgrips, such as vitamin D supplements or
exercise (63, 64). In contrast to the situation regarding irisin, we
observed no relationship between myostatin alone and low handgrip
strength in this cohort study, and the concentration of myostatin was
even higher in control group (without statistic difference). Myostatin,
as part of the TGF-beta superfamily, is secreted from skeletal muscle
and serves as the negative regulator of myocytes. The active form of
myostatin inhibits the phosphoinositide 3-kinase–protein kinase B
signaling pathway of skeletal muscle (65) and induces apoptosis of
myocytes through regulation of gene-expressed autophagy. Notably,
apoptosis and myostatin mRNA are upregulated in the skeletal
muscle of patients with CKD (66). A possible mechanism is that
the percentage of congestive heart failure is higher in CKD and
ESRD group. It has been noticed that the myostatin serves as the
inhibitor to alleviate the development of the cardiac fibrosis, and
the origin of myostatin might be derived from the cardiac and
adipose tissue (67, 68). Therefore, the influence of myostatin on
sarcopenia was equivocal in the patients with CKD and ESRD (69,
70). We also observed that the concentration of interleukin-6 was
lower in the control group without statistic difference. Interleukin-
6 has been linked to lower handgrip strength in other studies because
the concentration reflected the inflammatory status along with the
aging process (71, 72). The mean value was higher in the subjects
with higher handgrip strength without statistic difference. A possible
explanation was the difference in gender. Miko et al. demonstrated
that the higher plasma IL-6 concentration in male gender was
associated with better skeletal muscle condition (73). The female
percentage was higher in the control group, and therefore the IL-6
concentration might be lower in the control group. The interactions
of anabolic or catabolic myokines with the regulators for myokines in
patients with CKD warrant further advanced study. On the basis of
our results, we believe the protective effect of irisin might be mitigated
by factors other than myokines.

Hypoalbuminemia has been noticed as a possible factor
contributing to lower handgrip strength in our study.
Hypoalbuminemia and other indicators for malnutrition are
associated with cardiovascular events in CKD patients (74). For
the CKD patients with or without dialysis, the dietary restriction of
protein and sodium might decrease the adequate calorie uptake and
therefore worsen the malnutrition (75, 76). Beyond the insufficient
calorie intake, the underlying factors such as insulin resistance,
vitamin D deficiency or excessive homocysteine (77, 78) could
worsen the inflammatory status in CKD patients and therefore
worsen the cardiovascular function. The assessment for screening
the malnutrition-inflammation-atherosclerosis syndrome (MIA
syndrome), the conventional Subjective Global Assessment or
protein energy wasting are important for the routine care in CKD
patients (79, 80). Besides, the measurement for inflammatory
indicators such as C-reactive protein might be important for caring
the CKD patients (81, 82). From our study, the body mass index was
similar between groups. Therefore the indicators for inflammation,
which were not measured in our study, and its interaction with
uremic toxin or myokine might be helpful for providing the

possible therapeutic strategies in managing sarcopenia/frailty
in CKD patients.

This study has several limitations. First, the study was initiated
in the single institute. Second, the influence of age for the lower
handgrip strength was noted in our study from the multivariate
logistic regression (odd ratio: 6.728, 95% confidence interval: 1.418–
31.33). Our data also demonstrated that the irisin concentration
was lower in the elder subjects (83). It has been noticed that the
age could influence the handgrip strength, although the factors
contributing for lower handgrip strength variated in different studies
with different designs (84–86). The influence of aging might also
be altered by increasing the sample size or altering the enrollment
criteria accordingly. Third, the measurement for indoxyl sulfate in
the study was the ELISA method. The detection of indoxyl sulfate
is mostly by the liquid chromatography - mass spectrometry (LC–
MS) and high–performance liquid chromatography (HPLC) (87,
88). Although the validation has been validated, to measure the
concentration of indoxyl sulfate with LC-MS or HPLC might provide
more direct evidence between the protein bounded uremic toxin and
clinical events. Fourth, according to the literature, handgrip strength,
in contrast with lean muscle mass, predicts clinical outcomes. Our
study revealed a cross-sectional, but not longitudinal, correlation
between uremic toxins and myokines. A longitudinal follow-up
might provide a better understanding of the variation in loss of
handgrip strength. On the basis of other studies, we speculate that
the administration of recombinant irisin might improve the muscle
expression of irisin and therefore influence skeletal muscle mass (89).
However, we still lack a specific therapeutic strategy for maintaining
grip strength as opposed to skeletal muscle mass. Further therapeutic
strategies are necessary for promoting the maintenance of muscle
strength; therefore, longitudinal studies and in vivo studies should be
initiated to research the interaction between uremic toxins and the
expression of myokines in patients with CKD.

In conclusion, low handgrip strength—but not skeletal muscle
mass—was associated with hospitalization in patients with CKD and
ESRD. Low handgrip strength was also associated with higher serum
concentrations of uremic toxins (namely, indoxyl sulfate) and lower
concentrations of irisin compared with the general population.
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