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Introduction: Electroencephalography (EEG) signals contain transient oscillation
patterns commonly used to classify brain states in responses to action, sleep, coma
or anesthesia.

Methods: Using a time-frequency analysis of the EEG, we search for possible
causal correlations between the successive phases of general anesthesia. We
hypothesize that it could be possible to anticipate recovery patterns from the
induction or maintenance phases. For that goal, we track the maximum power
of the α−band and follow its time course.

Results and discussion: We quantify the frequency shift of the α−band during
the recovery phase and the associated duration. Using Pearson coe�cient and
Bayes factor, we report non-significant linear correlation between the α−band
frequency and duration shifts during recovery and the presence of the δ or the α

rhythms during the maintenance phase. We also found no correlations between
the α−band emergence trajectory and the total duration of the flat EEG epochs
(iso-electric suppressions) induced by a propofol bolus injected during induction.
Finally, we quantify the instability of the α−band using the mathematical total
variation that measures possible deviations from a flat line. To conclude, the
present correlative analysis shows that EEG dynamics extracted from the initial and
maintenance phases of general anesthesia cannot anticipate both the emergence
trajectory and the extubation time.

KEYWORDS

EEG segmentation, optimal fit, correlation analysis, time-frequency analysis, alpha

rhythms, iso-electric suppressions, Bayesian statistics

1. Introduction

Time-frequency analysis (1, 2) applied to the electroencephalography (EEG) signal has

revealed persistent and transient oscillatory bands that are used to classify the brain states (3).

Often used to quantify the different oscillatory bands, signal processing parameters include

the power spectrum (4), the energy of each band (2), but also the duration of iso-electric

suppressions (IES) or α−band suppressions (5), that are segments where the amplitude is

below a given threshold. These quantifications benefited from wavelet approaches (6–9) to

filter the EEG in real time or to remove noisy perturbations or artifacts (10, 11).

The paradigm shift from EEG correlative and statistical analysis to a predictive approach

has relied on the maturation of machine learning approaches (12). Thus, predicting brain

sensitivity during general Anesthesia (GA) became possible by quantifying the abundance of

IES, markers of a deep sedation or a “vulnerable brain” (13).

These local flat EEG events could be anticipated by the dynamics of α−band

suppressions (5), or by combining first passage events, such as the first occurrence time when

IES appeared (14). Low frontal α power was also found to be associated with an increase
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probability of finding IES and Burst-Suppression in the EEG signal

(13, 15). These results called for more correlations between the

three stages of GA consisting in (1) induction, (2) maintenance, and

(3) recovery.

First, the induction phase recapitulates the beginning of

hypnotic drug administration, such as propofol or sevoflurane

(16–18). These drugs create an artificial and reversible coma

preventing brain memorization of surgical events. Induction is

the transition period from an awake to a sedative state. The

initial hypnotic dosage is often calibrated on patient age and is

proportional to the weight (19). This phase lasts from few to

around 10 min, as long as necessary to adjust the patient into a

stable sedative state. Induction is also associated with a change

of the EEG spectral frequency bands with the appearance of a

stable α−oscillation in the 8–12 Hz frequency band characterizing

this loss of consciousness (LOC). Second, during the maintenance

phase, the anesthetic dosage is often adjusted on monitoring

machines to maintain the EEG frequencies with the presence of

δ and α rhythms during the entire surgical procedure. However,

the α−band can sometimes disappear and periods of IES and

Burst-Suppression could accumulate over time. It remains an open

question to anticipate the brain propensity to generate these EEG

instabilities from the induction phase, that could be interpreted as

a sign of excessive anesthesia depth. Finally, the recovery phase

is associated to the return to consciousness once the anesthetic

dosage is gradually cut off. The EEG spectrogram shows a shift

toward higher frequency bands (β and γ ) and the spectral analysis

reveals a stereotype "zip"-shape signature, where the maximum

power frequency within the α−band increases during the recovery

of consciousness (ROC), while the δ−band decreases until it

disappears (20, 21). However, the EEG signal during recovery is not

the reversal of the one recorded during induction, as it is controlled

by neuronal circuit recovery due to hypnotic elimination, while the

time scale of LOC is associated to dominance of cortical inhibitory

neuronal synchronization (22–24).

Previous works (5, 14) showed that the statistics of αS

during induction correlates with the appearance of IES during

maintenance. We explore in the present manuscript, whether other

correlations could exist between the three phases of GA. For

example, a sensitivity detected during induction could lead to many

IES and thus overdosage, leading ultimately to a possible longer

time for ROC. Finding further correlations requires to analyze the

dynamics of the α−band by computing mathematical indices such

as the total variation Vα of the maximum α−oscillations (2). This

total variation measures the deviation of α−oscillations maximum

amplitude from a flat line. We will develop a fitting procedure for

this band and estimate the duration of the α−band emergence

trajectory, during which the frequency shifts significantly upwards

after the hypnotic injection is stopped. We use these parameters

to study the possible correlations between the recovery and the

previous phases of anesthesia. We quantify the duration and

frequency shifts of the α−band emergence trajectory for the ROC

by fitting the power of the α−band with a sigmoid function. Finally,

exploring whether there are correlations in the EEG signal between

Abbreviations: EEG, electroencephalogram; GA, General anesthesia; IES, Iso-

electric suppression; ROC, Recovery Of consciousness.

the three phases of GA could be used to anticipate the next phase

from the previous ones. We report here mostly weak correlations

between the various indices. These results suggest that the sedation

depth of the brain should be constantly monitored toward an

optimal state: neither too deep nor too light, which remains to be

formulated in mathematical terms.

2. Materials and methods

2.1. EEG recordings and preprocessing

EEGmonitoring was performed by theMasimoRoot R© monitor

with four frontal electrodes F7, Fp1, Fp2, F8 in the 10–20 system.

We segmented motion-induced mechanical noise using the EEG

signal power within a sliding window of length 10 s and 50%

overlap. When the signal power within a window Pi exceeds three

times the median absolute value

MAD = median(| Pi −median(P) |), (1)

For i = 1, 2, ..,N, where N is the number of windows, we label

this event as an artifact. The artifact segments are then corrected

using the Wavelet Quantile Normalization algorithm (10, 11).

2.2. Quantification of the α−band
emergence trajectory

To quantify the emergence trajectory of the α−band from

the EEG, we introduced two reference time points tin and tout to

characterize the beginning and the end for the EEG change during

the recovery phase (Figure 1). The detection procedure of the these

time points started with applying a Fourier transform on a 20 s

sliding window and 75% overlap to obtain the spectrogram of the

EEG signal from the four frontal electrodes PFp1, PFp2, PF7 and PF8
(Figures 1A–C).

To account for the predominant role of the frontal cortex in

the genesis of the α−band during GA (25, 26), we averaged the

spectrograms with different weights: we halved the contribution of

electrodes F7 and F8 (Figures 1, 2). We then followed the α−band

power Pα and δ−band power Pδ . The signal power within a band

Pband(t) is equal to the area under the curve Pav(f , t), where the

frequency f varies in a given band, as shown in Figures 1, 2.

Specifically,

Pδ(t) =

∫
f∈[0.1,4]

Pav(f , t) df . (2)

Pα(t) =

∫
f∈[8,12]

Pav(f , t) df . (3)

We fitted separately the powers Pδ , Pα with a sigmoid function

Sk(t) =
a

1+ exp(c(t − t0))
+ b, (4)
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FIGURE 1

Emergence phase detection. (A) EEG signal. (B) Frontal electrodes. (C) 1- Power of a weighted average of the four EEG channels. 2- Spectrogram
visualization for a single patient during general anesthesia. (D) 1-α−band power Pα and δ−band power Pδ 2- Power Pα and Pδ computed from the
spectrogram 20 min before the end of anesthesia. (E) 1- Sigmoid function Sband used to fit Pα and Pδ during the recovery phase. Definition of the final
time tin (resp. tout) for which the fit Sδ (resp. Sα ) reaches for the first time the threshold aλin + b (resp. aλout + b). 2- Fit examples and detection of tin
and tout. (F) 1- Maximum power frequency fmax and definition of the duration and frequency shifts during recovery. 2- Extracted fmax and positioned
tin and tout on the associated spectrogram.
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where k = δ or α) (Figures 1, 2). The parameters a, b, c and t0
are estimated by minimizing error integral

{â, b̂, ĉ, t̂0} = argmin
a,b,c,t0

∫ Tf

Tf−20
|Sband(s)− Pband(s)|

2 ds, (5)

Where Tf is the last time where the EEG recordings terminates.

The time point tin is defined as the first time where the sigmoid

curve Sδ crosses the threshold y = âλin + b̂ with λin = 0.05.

Equivalently, Sδ(tin) = âλin + b̂, thus

tin =
1

ĉ
ln(

1

λin
− 1)+ t̂0. (6)

We also determined the frequency curve fmax with maximal

power in the range (8-30) Hz (Figures 1, 2) using

fmax(t) = argmax
f∈[8,30]

Pav(f , t). (7)

Similarly, we define the time point tout as the first time where Sδ

crosses y = âλout + b̂ with λout = 0.95, thus

tout =
1

ĉ
ln(

1

λout
− 1)+ t̂0. (8)

Using these two reference points tin and tout , we deduced the

duration and the frequency shifts associated with the α−band

emergence trajectory (Figures 1, 2)

1tROC = tout − tin (9)

1fROC = fmax(tout)− fmax(tin). (10)

2.3. Segmenting IES and α suppressions

The IES segmentation procedure follows the steps presented in

Sun and Holcman (14) that we briefly recall. We first filter the EEG

signal S(t) in the range [8,16] Hz to get Sα(t).We normalize Sα(t) by

its Root-Mean-Square to obtain Ŝα(t). We then estimated the upper

and lower envelops of S(t) and Ŝα(t) by interpolating their local

maxima and minima. We applied the difference D(t) and Dα(t)

between the respective upper and lower envelops, and defines two

threshold values for the IES:

TIES = min(8, median(D(t))) (11)

Tα = min(0.25, median(Dα(t))). (12)

We then define the IES (resp. αS) time segment as the ensemble

satisfying the conditions

�IES = {t such that | S(t) |< TIES and | Ŝα(t) |< Tα}. (13)

�αS = {t such that | S(t) |> TIES and | Ŝα |< TαS}. (14)

Finally, we aggregate the time intervals of �IES and �αS into

segments such that each pair of consecutive points of the segment

matches with the known sampling frequency. To smooth the effect

of the hard thresholding, we used morphological erosion and

dilation operations (27) to obtain the IES and αS duration intervals.

2.4. Mathematical indicators associated to
iso-electric suppressions, α and δ bands

• The total time spent in IES is the sum of time segments during

induction in �IES. For each ith segment Ti which starts (resp.

ends) at time Ti,start (resp. Ti,end), we defined

SIES =
∑

{Ti∈�IES}

| Ti,end − Ti,start | . (15)

• The longest IES event is equal to the maximum of the duration

present in �IES during induction.

LIES = max
Ti∈�IES

| Ti,end − Ti,start | . (16)

• The α−band relative power Pα(t) at time t describes the

proportion of energy in the range [8, 12] Hz with respect to

[0.1, 45] Hz, as defined by

Pα(t) =

∫
f∈[8,12] Pav(f , t) df∫
f∈[0.1,45] Pav(f , t) df

. (17)

To compute the mean value of the relative α−band

power Pα during maintenance, we use the discretized sum

approximation

Pα =
1

n+ 1

n∑
i=0

Pα(ti). (18)

• The mean value of the δ−band relative power Pδ is obtained

following the procedure of Pδ .

• The maximum power frequency αmax within the α− band is

the frequency for which the power is maximal and defined

outside of IES or αS regions.

αmax(t) = fα(t) · 1�IES ∪�αS
(t), (19)

where

fα(t) = argmax
f∈[8,12]

Pav(f , t). (20)

The maximum frequency αmax(t) contains multi-scale

oscillations that do not necessarily reflect physiological

information. We thus decided to smooth αmax(t) using the

adaptive Savitzky-Golay smoothing filter (28) to keep lower

frequencies (Figure 2A). We used a sliding window of 2 min

and 5 s step size with order 1 polynomial regression. We

denote αSG
max(t) the resulting filtered signal.

• The fluctuations of the α−band dominant frequency are

measured using the total variation Vα of the function αSG
max(t)

(Figure 2B). This quantity sums the cumulated amplitude of

local oscillations in each time intervals and thus measures the

deviation of the maximum α−band frequency dynamics with

a flat line.

The total variation is computed over a total ofM periods of

time, where the α−band is present. We apply the sum of the

absolute difference between two consecutive frequency time
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points over the M time segments. For the kth time segment,

we use the local maxima and minima time discretization

(t
(k)
0 , ..t

(k)
n ), (see Figure 2B) so that

Vα =
1∑M

k=1 t
(k)
n − t

(k)
0

M∑
k=1

n−1∑
i=0

| αmax(t
(k)
i+1)− αmax(t

(k)
i ) | .(21)

• The δ−band total variation Vδ is computed with the same

computational steps as the α−band with the maximum power

frequency δmax defined by

δmax(t) = fδ(t) · 1�IES
(t), (22)

where

fδ(t) = argmax
f∈[0.1,4]

Pav(f , t). (23)

We compare the spectral properties of the signal before

and after filtering (Figure 2C).

2.5. Pearson linear correlation coe�cient
and Bayes factors

The Pearson correlation coefficient rxy is used to evaluate

the correlation between two variables, x = (x1, .., xn) and y =

(y1, .., yn), in a sample of n points, defined by

rxy =

∑n
k=1(xi − x)(yi − y)

(
∑n

k=1(xi − x)2)1/2(
∑n

k=1(yi − y)2)1/2
, (24)

where the sample mean is x = 1
n

∑n
k=1 xi with similar

definition for y.

The null hypothesis H0 is defined as no correlation between

x and y, while H1 hypothesis postulate that a correlation exists

(29). To provide evidences in favor of the null hypothesis, we use

the Bayes factor BF01 by evaluating the ratio of the conditional

probability of the observable y given the hypothesis H0 given by

BF10 =
P(y | H1)

P(y | H0)
. (25)

We shall now rewrite each hypothesis in terms of linear

regression by considering

H0 : y = a+ ǫ and (26)

H1 : y = a+ bx+ ǫ, (27)

where (α,β) are the regression estimates and ǫ ∼ N(0, σ 2I),

where the constant σ is fixed. The marginal probabilities can be

written

P(y | Hγ ) =

∫
θγ

P(y | θγ ,Hγ )P(θγ | Hγ )dθγ (28)

Where γ = 0 or 1 and θγ are the model parameters (a, b, σ 2).

For we add a scalar g in the model parameters. When γ = 1, we

have

y | θ1,H1 = y | a, b, σ 2, x

∼ N(a+ bx, σ 2I), (29)

and

θ1 | H1 = a, b, σ 2, g | x

= (b | a, σ 2, g, x) ∗ (a, σ 2 | g) ∗ (g). (30)

Thus the probability is given by

P(θ1 | H1) = P(b | a, σ 2, g, x)P(a, σ 2 | g)P(g). (31)

We follow the steps described in Liang et al. (30) based on

Zellner g-priors to get an expression for these probabilities

b | g, σ 2, x ∼ N(0, gσ 2(xTx)−1), (32)

P(a, σ 2) =
1

σ 2
, (33)

P(g) =
(n/2)1/2

Ŵ(1/2)
g−3/2e−n/(2g). (34)

After integrating out all the parameters, we obtain the analytical

expression for the Bayes factor

BF10 =
(n/2)1/2

Ŵ(1/2)

∫ ∞

0
(1+ g)(n−p−1)/2

(1+ (1− r2xy)g)
−(n−1)/2g−3/2e−n/(2g)dg, (35)

which depends on p is the number of covariates in H1 (30–32).

2.6. Partial correlation

The partial correlation coefficient rxy|z measures the correlation

between the data x and y while controlling for z. It is defined by

rxy|z =
rxy − rxzryz

(1− r2xz)
1/2(1− r2yz)

1/2
. (36)

The corresponding Bayes factor compares the models

H0 : y = a+ bx+ ǫ (37)

H1 : y = a+ bx+ b′z + ǫ. (38)

The associated Bayes factor is given by Liang et al. (30), Wetzels

and Wagenmakers (31) and Rouder et al. (32)

BF10 =

∫ ∞
0 (1+ g)(n−p′−1)/2(1+ (1− R21)g)

−(n−1)/2π(g) dg∫ ∞
0 (1+ g)(n−p−1)/2(1+ (1− R20)g)

−(n−1)/2π(g) dg
,

(39)

where (R0,R1) are the coefficients of determination in (H0,H1),

(p, p′) are the number of covariates in (H0,H1).

3. Results

To search for possible causal correlation in the EEG between

the induction, maintenance phases and the recovery phase of

anesthesia, we shall apply the indices presented in the Section

2. We start by estimating the time and frequency shifts of the

α−band trajectory during recovery and use them to explore the
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FIGURE 2

Total variation Vα analysis associated to the α−band. (A) Maximum power frequency αmax of the α−oscillations before (top) and after (bottom)
applying the Savitzky-Golay (SG) filter to remove the high frequencies. (B) Reduction of the local minima and maxima variations of the αmax from the
initial signal (top) to the filtered one (bottom). (C) Power spectra of αmax before (blue) and after (red) SG filtering showing that only the slowest
oscillations remain in the filtered signal.

possible correlations with the total time spent in suppression (iso-

electric EEG), a marker of brain sensitivity (5). We will also

consider the possible correlation of the frequency shift with respect

to the longest suppression induced by a propofol bolus during

induction. Finally, we will assess the possible correlation using the

total variation, which measures the variation of the band frequency

maximum amplitude over time.

3.1. Duration and frequency shifts during
the α−band emergence trajectory

The EEG signal in themaintenance phase are dominated by two

frequency bands: δ−band (0.1–4 Hz) and α−band (8–12 Hz) as

depicted in Figures 1A–C. Once the hypnotic injection is stopped,

the first step of the recovery phase is characterized by a successive

decay of the delta and alpha activity decay. To quantify the time and

spectral changes occurring in the EEG during the recovery phase,

we shall detect two reference time points tin and tout , associated

with the maximum power frequency within the α−band. The

first time tin is the first instant where the δ−band disappears

from the continuous steady-state regime of the maintenance phase.

Thereafter, the time tout corresponds to the instant where the

α−band power reaches a lower plateau threshold value.

We identify tin by applying an optimal fitting procedure of the

power Pδ (Equation 2) with a sigmoid curve Sδ (Equation 4) and we

deduce the first time where Sδ has reached the threshold λin = 95%

of the transient trajectory (see Section 2 and Figure 1D).

Similarly, we fitted the power Pα (Equation 3) with a sigmoid

curve Sα (Equation 4) and defined the time tout as the first instant

where Sα has reached λout = 5% of the transient trajectory left to

cross (Figure 1E).

Finally, we use this time identification to deduce the duration

shift of the α−band emergence trajectory for two population

cohorts: for the children cohort, we found the duration is

given by 1tROC = 7.8 [4.2, 10.2] (Median [IQR]) min and the

associated frequency shift is given by 1fROC = 3.3 [1.8, 5.0] Hz.
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TABLE 1 Patients demographic information.

Cohort Children Adults

Number 50 27

Age (median [IQR]) 5 [4–9] yr 37 [28–48] yr

Age (range) 2–15 yr 16–58 yr

Gender (female/male) 48%/52% 67%/36%

Weight (median [IQR]) 20 [16.9–32] kg 85.5 [68–93] kg

For the adult cohort, we found 1tROC = 7.3 [5.8, 10.4] min

and 1fROC = 1.9 [1.3, 2.5] Hz. Interestingly, the distribution

of duration 1tROC is similar for both adults and children

(Table 1).

3.2. Stability of the α−band measured by
the total variation

To quantify the stability of the α−band, we estimated how

it varies vary from a straight line by using the total variation,

a quantity that accounts for any form of oscillation. However, a

correlation analysis revealed that the total variation of the α−band

is independent of the presence of any suppression patterns such as

IES or αS. Indeed, the time spent in suppressions is uncorrelated

to the α−band total variation (Figures 3A, B). This result suggests

that the IES and total variation can be treated as independent

variables in the EEG analysis. The correlation coefficients for the

α−suppression (resp. IES) were r = 0.04, p = 0.83 and the

Bayesian factor BF01 = 6.6 (resp. r = −0.06, p = 0.75, BF01 = 6.4).

We thus reject with moderate evidence the hypothesis that high

oscillations of the α−band would be correlated to αS.

3.3. α−band and IES during induction and
maintenance are not correlated with
α−band emergence trajectory

3.3.1. Statistical correlations for the children
cohort

To determine whether the statistical properties of the recovery

phase can be anticipated, we first examined possible correlations

from the different variables that we extracted and in particular from

the IES for children. We studied the total time spent in IES during

maintenance and the IES duration induced by a strong propofol

bolus at the end of induction (Figures 4A–D).

We found that (see Section 2.4) the total time spent in IES

SIES = 1.2 [0.4, 1.9] min and the longest time spent in IES (induced

by propofol bolus) LIES = 0.3 [0.1, 0.7] min.

Secondly, we quantified the Pearson correlation (Figure 5A)

along with its p-value and found that the total duration of the

IES (resp. longest IES) is not correlated neither to the duration

of recovery 1tROC [r = −0.27, p = 0.06 (resp. r = −0.08,

p = 0.57)] nor to the frequency shift 1fROC [r = −0.13, p = 0.37

(resp. r = −0.06, p = 0.70)], as shown in Figure 5. At this stage,

we conclude that no significant correlations are revealed by the

transient parameters associated with the electrical absence of the

EEG signal.

To further study the possible correlations, we computed the

mean power Pα of the α−band during the maintenance and the

total variation Vα which measures the deviation of the maximum

frequency fα of the α−oscillations from a flat curve (Figures 4C,

D). We reported that the mean power Pα = 11.7 [8.4, 17.4]%

and Vα = 0.64 [0.56, 0.80] Hz/min. We estimated the correlations

between Pα (resp. Vα) and either 1tROC [r = 0.09, p = 0.53 (resp.

r = −0.09, p = 0.53)] or 1fROC [r = 0.11, p = 0.43 (resp.

r = −0.16, p = 0.27)], but found insignificant outcome.

We repeated the procedure with the same parameters derived

from the δ−band and obtained Pδ = 66.5 [60.3, 74.0]% and Vδ =

0.65 [0.54, 0.72] Hz/min. Similarly, the correlations between Pδ

(resp. Vδ) and either 1tROC (r = −0.18, p = 0.21 (resp. r = 0.20,

p = 0.17)) or 1fROC (r = −0.16, p = 0.2 (resp. r = 0.05, p = 0.73)

remained non-significant.

However, in our current state, we only failed to reject the

null hypothesis of no correlation when obtaining a p-value greater

than the 5% acceptance level. To support the null hypothesis H0,

we computed the associated Bayes factor (30, 31, 33) BF01 which

is the ratio of the probability between the null hypothesis and

the alternative one H1 considering our data points. According to

Jeffreys evidence category scheme (29) for the Bayes factor, our

data mostly shows moderate evidence for H0 as shown in Table 2.

We found an anecdotal evidence for H0 between the total time

spent in IES SIES and the duration shift 1tROC. To conclude, the

statistics associated with the presence or absence of the α−band

do not show any significant correlation with the frequency and

duration shifts of the α−band emergence dynamics. In particular,

an unstable α−band does not necessarily lead to a longer time of

return to consciousness.

3.3.2. Statistical correlations in the adults cohort
We applied the same procedure for adults sedated with

propofol target controlled infusion (TCI) protocol. Having, SIES =

0.1 [0, 0.6] min and LIES = 0.03 [0, 0.09] min, we report with

moderate evidence that the total time in IES (resp. longest IES)

was not correlated neither to the duration shift 1tROC [r = −0.09,

p = 0.65, BF01 = 6.1 (resp. r = −0.12, p = 0.54, BF01 = 5.6)] nor

the frequency shift 1fROC [r = 0.02, p = 0.88, BF01 = 6.7 (resp.

r = −0.05, p = 0.81, BF01 = 6.5)] (Figures 6A, B).

We also report the values for the mean power

Pα = 11.4 [9.0, 16.1]%, Vα = 0.8 [0.7, 0.9] Hz/min,

Pδ = 67.7 [61.7, 75.8]% and Vδ = 0.33 [0.27, 0.46] Hz/min.

We found again moderate evidence of null correlations between

the power Pα (resp. Vα) and neither 1tROC [r = −0.11, p = 0.59,

BF01 = 5.8 (resp. r = 0.11, p = 0.59, BF01 = 5.8)] nor 1fROC
[r = −0.05, p = 0.81, BF01 = 6.6 (resp. r = −0.14, p = 0.50,

BF01 = 5.4)].

However, for the δ−band parameters, the correlation between

Vδ and 1tROC was significant (r = −0.44, p = 0.02, BF01 = 0.5)

but the evidence for the alternative hypothesis H1 was anecdotal.

For the remaining parameters, moderate evidence of no significant

statistical correlations were found.
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FIGURE 3

Correlation between the time spent in suppressions and the total variation of the α−band (adult population). Scatter plots and correlations (Pearson
r, p-value p) between the α−band total variation Vα and (A) the total time spent in α−suppressions (frequency loss in the α−band), (B) the total time
spent in IES SIES.

FIGURE 4

Pearson correlation analysis of the three phases of general anesthesia. (A) Spectrogram (time-frequency) representation of the EEG signal during the
three phases: induction (blue), maintenance (green), recovery (red). (B) Statistical parameters collected during induction: 1- Total time in IES SIES, 2-
Longest IES duration LIES. (C) Statistical parameters collected during maintenance: 3- Mean α−band power Pα , 4- α−band total variation Vα , 5- Mean
δ−band power Pδ , 6- δ−band total variation Vδ . (D) Statistical parameters collected during recovery: 7- Duration shift 1tROC, 8- Frequency shift 1fROC.

We conclude using a statistical approach estimated

over two cohorts of adults and children that the duration

of the emergence trajectory, characterized by a shift of

the maximum α−band is not significantly correlated

neither with the fraction of iso-electric suppression nor

with the α−band or δ−band dynamics measured by its

power and total variation. Thus, these EEG parameters

obtained during induction and maintenance of GA cannot
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FIGURE 5

Correlations analysis of induction and maintenance with recovery for 50 children. (A) Summary of the statistical parameters collected from the
induction and maintenance phases (total time in IES SIES, bolus IES duration LIES, mean α−band power Pα and α−band total variation Vα ) and the
recovery phase markers (duration shift 1tROC and frequency shift 1fROC). (B) Scatter plots and Pearson (coe�cient r, p-value p, Bayes factor BF01)
correlations between 1tROC (1fROC) and SIES, LIES (first column), Pα , Pα (second column), Vα , Vδ (third column).
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TABLE 2 Medians, inter-quartile ranges, Pearson correlations, and Bayes factor of EEG statistical features.

Measure Median Q1 Q3 Pearson r Bayes Factor BF01

1. 2. 1. 2.

Children

1. 1tROC (min) 7.8 4.2 10.2

2. 1fROC (Hz) 3.3 1.8 5.0

3. SIES (min) 1.2 0.4 1.9 −0.27 −0.13 1.5 6.1+

4. LIES (min) 0.3 0.1 0.7 −0.08 −0.06 7.7+ 8.4+

5. Pα (%) 11.7 8.4 17.4 0.09 0.11 7.4+ 6.6+

6. Vα (Hz/min) 0.64 0.56 0.8 −0.11 −0.19 6.9+ 3.9+

7. Pδ (%) 66.5 60.3 74.0 −0.18 −0.16 4.1+ 5.0+

8. Vδ (Hz/min) 0.65 0.54 0.72 0.20 0.05 3.6+ 8.5+

Adults

1. 1tROC 7.3 5.8 10.4

2. 1fROC 1.9 1.3 2.5

3. SIES 0.1 0 0.6 −0.09 0.03 6.1+ 6.7+

4. LIES 0.03 0 0.09 −0.12 −0.05 5.6+ 6.5+

5. Pα 11.4 9.0 16.1 −0.11 −0.05 5.8+ 6.6+

6. Vα 0.8 0.7 0.9 0.11 −0.14 5.8+ 5.4+

7. Pδ 67.7 61.7 75.8 0.03 0.10 6.7+ 5.9+

8. Vδ 0.33 0.27 0.46 −0.44∗ 0.02 0.5 6.7+

∗p < 0.05, +BF = 3− 10.

be directly used to explain the duration of the α−band

emergence trajectory.

3.3.3. Demographic factors provide insignificant
role in the correlations analysis

To account for the impact of demographic factors, the

correlations of our features were computed while controlling for

age, gender, andweight as covariates. By doing so, we eliminated the

effect of confounding covariates that could be numerically related

to our features of interest. The partial correlation coefficients and

their Bayes factors (see Section 2) are shown in Table 3. A significant

partial correlation (r = −0.29, p < 0.05) was found between

the total time spent in IES and the duration shift for the children

cohort, though the Bayes factor BF01 = 475 suggests decisive

evidence forH0. In the adult cohort, a moderate but non-significant

correlation (r = −0.37, p = 0.07) between the δ total variation

and the duration shift was found, with decisive evidence for H0

(BF01 = 257). For the remaining parameters, the Bayes factors

support at least very strongly the null hypothesis H0.

3.4. Clinical recovery duration are
uncorrelated with the IES and bands
parameters

To compare with the results described in the above subsections,

we defined the clinical recovery duration from the instant where the

hypnotic injection is turned off to the extubation time, where the

patient showed the first signs of awareness or recovery of effective

spontaneous ventilation. We report with moderate evidence, no

correlations between IES total (resp. longest bolus) duration and

the extubation time [r = −0.02, p = 0.88, BF01 = 8.8 (resp.

r = −0.09, p = 0.53, BF01 = 7.3)] (Figures 7A, B). Additionally, a

moderate evidence of insignificant correlation for the α−band total

variation was found (r = −0.01, p = 0.97, BF01 = 8.9). For the

remaining band parameters, only anecdotal evidences for the null

hypothesis were found despite the moderate correlation obtained

(Pα : r = −0.24, p = 0.10, BF01 = 2.2; Pδ : r = 0.25, p = 0.09,

BF01 = 2.2; Vδ : r = −0.29, p = 0.04, BF01 = 1.1).

3.5. Bayesian inferences shows that longer
emergence duration is unlikely to follow
long IES duration

To investigate whether a long cumulated IES duration could

predict a long α−band emergence duration, we computed the

associated empirical conditional probability Pr{tROC > TROC |

SIES > TIES}. Using the distribution shown in Table 2, we set a

threshold at the 70th percentile, resulting in TROC = 10s and

TIES = 1.8 s for the children cohort. We found that P(tROC >

TROC | SIES > TIES) = 0.21, while for the adult population, the

appropriate threshold changed to TIES = 0.5 s and the conditional

probability was 0.25.
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FIGURE 6

Correlations analysis of induction and maintenance with recovery for 27 adults. (A) Summary of the statistical parameters collected during induction
and maintenance phases (SIES, LIES, Pα and Vα ) and the recovery phase (1tROC and 1fROC). (B) Scatter plots and Pearson (coe�cient r, p-value p,
Bayes factor BF01) correlations between 1tROC (1fROC) and SIES, LIES (first column), Pα , Pα (second column), Vα and Vδ (third column).
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TABLE 3 Partial correlations and Bayes factor of EEG statistical features.

Measure Pearson r Bayes Factor BF01

1. 2. 1. 2.

Children

1. 1tROC (min)

2. 1fROC (Hz)

3. SIES (min) −0.29∗ −0.18 4752 1232

4. LIES (min) −0.10 −0.05 1242 1012

5. Pα (%) 0.08 0.07 1302 1262

6. Vα (Hz/min) −0.05 −0.13 1402 2022

7. Pδ (%) −0.17 −0.12 2222 1622

8. Vδ (Hz/min) 0.20 0.08 2442 971

Adults

1. 1tROC

2. 1fROC

3. SIES −0.10 −0.01 441 411

4. LIES −0.12 −0.13 471 471

5. Pα −0.10 −0.02 461 441

6. Vα 0.10 −0.13 441 431

7. Pδ −0.01 0.13 401 551

8. Vδ −0.37 −0.04 2572 471

∗p < 0.05, 1BF = 30− 100, 2BF > 100.

In the children population, we further computed the

conditional probability of a long cumulative IES duration when

a long IES duration was caused by a propofol bolus. Setting

a threshold TBOL = 0.5 for deciding of the population

associated with a long bolus suppression, we found the

P{SIES > TIES | LIES > TBOL} = 0.64. To conclude, a

Bayesian conditional approach reveals that longer emergence

duration is unlikely to follow long IES duration. However, there is

a relatively high probability that a longer cumulative IES duration

will follow a long IES bolus duration.

4. Discussion

In the present study, we used several mathematical indices to

quantify the δ and α−bands and to explore the possible correlations

of these parameters computed during induction and maintenance

with the recovery phase. During induction, we considered the

longest IES (induced by a bolus of propofol in children). While

adults underwent intravenous hypnotic injection, induction with

children starts with inhalation of sevoflurane followed by a bolus of

propofol to avoid oro-tracheal intubation complications (34, 35).

During maintenance, we computed the mean power Pα of the

α−band and the total variation Vα (Equation 21), a measure of the

α−oscillations maximum amplitude instability. Small values of Vα

are associated with low fluctuations around a flat line. Conversely,

the higher Vα , the larger is the deviation. Thus, a high value of

Vα characterizes a global instability during anesthesia. During both

the induction and maintenance phases, we estimated the total time

spent in IES. Finally, during the recovery phase, we estimated the

frequency and duration shifts associated to the α−band emergence

trajectory from the EEG time-frequency representation, as reported

in previous research (25).

The present analysis revealed in general no relationship

between the parameters we introduced (Figures 5, 6) in the different

phases. These results invalidate our hypothesis concerning a

possible correlation between the longest or total IES duration and a

longer duration of the α−band emergence trajectory.

Furthermore, our results indicate that the IES durations are

not only unrelated with the α−band emergence trajectory, but also

with the clinical recovery duration, starting from the instant the

hypnotic injection is turned off to the extubation time (Figure 7),

where the patient showed first signs of awareness or recovery of

spontaneous ventilation and which does not directly follow the

end of the emergence trajectory. These findings are consistent

with the results reported in Shortal et al. (36), where IES duration

was also found to be uncorrelated with the degree of cognitive

impairment after anesthesia, as measured by fitting the decay of

expired isoflurane to a single exponential.

In addition to the lack of correlation between IES duration

and the α−band emergence trajectory in the EEG time-frequency

representation, our results also indicate that the α−band dynamics

do not show further correlations as revealed by the total variation

(Equation 21) of the α−band maximum frequency αmax. Previous
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FIGURE 7

Pearson correlations between the induction/maintenance phases and the extubation time after the sevoflurane has stopped (children cohort). (A)
Extubation time after the administration of sevoflurane has stopped vs. SIES, LIES, Pα and Vα collected during induction and maintenance. (B) Scatter
plots and Pearson correlations (coe�cient r, p-value p) between the extubation time and SIES, LIES (first column), Pα , Vα (second column), Pδ and Vδ

(third column).

research has suggested that a high total variation could reflect

a constant re-adjustment that could be induced by real-time

hypnotic concentration variation (37, 38). However, our results,

which show insignificant correlation between the time spent in

suppressions and the α−band total variation (Figure 3), reject

this hypothesis. The total variation Vα could either increase

due to a change in the hypnotic concentration or due to

the intrinsic response of the brain to a fixed concentration.

In the latter case, these changes could represent an instability

of thalamo-cortical neuronal networks to converge to a stable

constant α−oscillations, which are considered as a marker of brain

synchronization (20).

Moreover, the mean α−band power Pα has been used to

monitor the depth of anesthesia and as a possible predictor

for the arrival of IES (5, 13). Lower values of the power

Pα reflects a vulnerable brain and could have been associated

to a longer time of emergence. However, this hypothesis was

not confirmed in our analysis (Figure 7) where we found

insignificant correlation between the mean power Pα and the

extubation time.

Based on these findings, it is plausible to suggest that the

recovery of the brain from constant anesthetic injection is a

memoryless process. Considering that propofol and sevoflurane,

both of which are GABAergic agonists (39), enhance the role of

inhibitory neurons, the level of neuronal activity mainly depends

on the speed at which the hypnotic is absorbed (induction) or

eliminated (recovery) by the brain. Indeed, general anesthesia

causes thalamic neurons to intrinsically change states (40).

During induction, these neurons typically switch from spiking

to bursting, while during recovery the switch is from bursting

to fast spiking. This is consistent with the changes seen in

EEG, where a decrease in the δ (0.1–4 Hz) power and an

increase of β (12–30 Hz) power indicate a return to normal

neuronal activity (25). During the maintenance phase, the brain has

theoretically acclimated to the hypnotics by displaying steady-state

neural dynamics.
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Statistical analysis

In this study, statistical analysis was conducted using MATLAB

R2021a software. A significance level of α = 0.05 was used

throughout the analysis. Qualitative variables were expressed

as percentages and quantitative variables were expressed as

the median (Inter-Quartile Range: [IQR]). Correlations between

variables were determined using the Pearson (r) correlation test.

To provide evidence in favor of the null hypothesis, Bayes factor

(BF01) was used. No statistical outliers were found or removed in

the correlation analyses.

General statement about general
anesthesia

This study is a prospective observational study that included

patients who underwent elective procedures requiring standardized

general anesthesia procedure. The EEG data used in the study

were collected from Louis-Mourier Hospital in Colombes, France

between October 2019 and September 2021, in compliance with the

evaluation of clinical practice and included a total of 77 patients (50

children and 27 adults), along with their demographic factors and

other clinical information. Patients with incomplete or corrupted

data were not included in the study. For adult patients, general

anesthesia was induced through the intravenous administration of

either sufentanil in iterative bolus doses between 5 and 15 gamma

or TCI remifentanil ranging from 2.5 to 6 ng.ml−1 for the opioid

agent, and propofol for the hypnotic agent with a TCI ranging

from 3 to 10 µg.ml−1 (19). Patients were then intubated following

curarization with rocuronium (0.5–0.7mg.kg−1).

For children, the hypnotic agent sevoflurane was administered

through inhalation with an initial concentration of 6%. Following

insertion of the intravenous line, the children received 0.1 µg.kg−1

of sufentanil or 15 µg.kg−1 of alfentanil. Propofol was then

administered in one or more bolus doses until the appearance of

iso-electric suppressions for oro-tracheal intubation. The initial

quantity of propofol was calibrated according to the child’s weight

using a 2 mg.kg−1 rule. The anesthesiologist made adjustments

to the concentrations depending on the patient’s reaction and the

anesthesia phase. Additional drugs were given at the discretion

of the anesthesiologist as long as the standard of care was

respected. Finally, to prepare for the recovery and extubation phase,

the concentration of sevoflurane was typically lowered to values

between 0.5 and 2.5% 5 to 10 min before complete shut off.
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