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Objective: This study aimed to identify candidate gene biomarkers associated with 
immune infiltration in idiopathic pulmonary fibrosis (IPF) based on machine learning 
algorithms.

Methods: Microarray datasets of IPF were extracted from the Gene Expression 
Omnibus (GEO) database to screen for differentially expressed genes (DEGs). The 
DEGs were subjected to enrichment analysis, and two machine learning algorithms 
were used to identify candidate genes associated with IPF. These genes were verified 
in a validation cohort from the GEO database. Receiver operating characteristic (ROC) 
curves were plotted to assess the predictive value of the IPF-associated genes. The 
cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) 
algorithm was used to evaluate the proportion of immune cells in IPF and normal 
tissues. Additionally, the correlation between the expression of IPF-associated genes 
and the infiltration levels of immune cells was examined.

Results: A total of 302 upregulated and 192 downregulated genes were identified. 
Functional annotation, pathway enrichment, Disease Ontology and gene set 
enrichment analyses revealed that the DEGs were related to the extracellular matrix and 
immune responses. COL3A1, CDH3, CEBPD, and GPIHBP1 were identified as candidate 
biomarkers using machine learning algorithms, and their predictive value was verified 
in a validation cohort. Additionally, ROC analysis revealed that the four genes had high 
predictive accuracy. The infiltration levels of plasma cells, M0 macrophages and resting 
dendritic cells were higher and those of resting natural killer (NK) cells, M1 macrophages 
and eosinophils were lower in the lung tissues of patients with IPF than in those of 
healthy individuals. The expression of the abovementioned genes was correlated with 
the infiltration levels of plasma cells, M0 macrophages and eosinophils.

Conclusion: COL3A1, CDH3, CEBPD, and GPIHBP1 are candidate biomarkers of IPF. 
Plasma cells, M0 macrophages and eosinophils may be involved in the development 
of IPF and may serve as immunotherapeutic targets in IPF.
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1. Introduction

Idiopathic pulmonary fibrosis (IPF) is not only a chronic disorder 
but also a progressive interstitial lung disease. The aetiology of IPF 
remains unclear, with its pathological presentation being usual 
interstitial pneumonia (UIP) (1). IPF is an infrequently diagnosed 
disease with an incidence of approximately 2.8–9.3 per 100,000 
population in Europe and North America. Epidemiological data on IPF 
are scarce in China; however, its incidence has remarkably increased in 
recent years (2). IPF progresses gradually at the early stage, leading to 
diffuse fibrosis of the lungs and eventually respiratory failure and death 
(3). At present, a few drugs are available for treating IPF; among which, 
pirfenidone and nintedanib have demonstrated evident curative effects. 
Traditional Chinese medicine (TCM) may play a central role in 
managing IPF (4). Owing to the limited understanding of the 
pathogenesis of IPF and the lack of early intervention strategies, IPF has 
become a serious life-threatening disease (5). The prognosis of 
individuals with IPF is poor, with an estimated median survival of 
approximately 3 years (6). Therefore, identifying new biomarkers for the 
diagnosis of IPF is important for improving its treatment and prognosis.

Early and definite diagnosis of IPF is the initial step to improving the 
clinical treatments and survival rate of patients with IPF. To date, several 
biochemical markers have been associated with the occurrence of IPF 
and used as references for its clinical diagnosis (7, 8). However, they are 
inefficient for early detection of IPF owing to their limited sensitivity and 
specificity. Genetic factors may play a key role in the pathogenesis of 
IPF. IPF is a complicated and multifactorial illness that develops through 
the synergy of genetic and environmental factors (9, 10).

The principal processes associated with the development of IPF as a 
chronic lung disorder include inflammation and fibrosis. Inflammatory 
cytokines produced by immune cells can result in fibroblast activation, 
angiogenesis and connective tissue cell proliferation (11). Additionally, 
immune dysregulation can enhance the progression of IPF and involves 
numerous biomarkers associated with the prognosis of IPF (12). Studies 
on animals and humans have demonstrated that innate and adaptive 
immune processes may exacerbate the existing fibrotic responses (13).

In recent studies, microarray technology has been used in 
combination with machine learning algorithms to discover new genes 
associated with different conditions, which may serve as diagnostic and 
prognostic biomarkers. Additionally, scholars have suggested that 
immune cell infiltration, which is closely related to these disease-
associated genes, plays a substantial role (14, 15). However, to date, only 
a few studies have employed microarray technology and machine 
learning algorithms to verify the role of immune cell infiltration in IPF 
and identify probable diagnostic markers for IPF.

In this study, three microarray datasets of IPF were extracted from 
the Gene Expression Omnibus (GEO) database and combined into a 
metadata cohort. Differentially expressed genes (DEGs) between tissues 
of patients with IPF and healthy individuals were identified using data 
from the metadata cohort. The DEGs were analysed through Gene 
Ontology (GO) functional annotation analysis, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analysis, Disease 
Ontology (DO) enrichment analyses and gene set enrichment analysis 
(GSEA). Subsequently, machine learning algorithms were used for 
identifying candidate gene biomarkers of IPF. The identified genes were 
verified in a validation cohort from the GEO database. Receiver 
operating characteristic (ROC) curves were plotted to assess the 
prognostic value of the detected biomarkers in both metadata and 
validation cohorts. The cell-type identification by estimating relative 

subsets of RNA transcripts (CIBERSORT) algorithm was used to 
evaluate the proportion of immune cells in the lung tissues of patients 
with IPF and healthy individuals based on their gene expression data. 
Additionally, the correlation between the detected biomarkers and 
infiltrating immune cells was examined.

2. Materials and methods

2.1. Microarray data

The matrix files of the GSE21369, GSE24206 and GSE110147 
datasets were acquired from the NCBI GEO database1. Data in the 
GSE21369 and GSE24206 datasets were acquired based on the GPL570 
platform of Affymetrix Human Genome U133 Plus 2.0 Array (16, 17), 
whereas data in the GSE110147 dataset were acquired based on the 
GPL6244 platform of Affymetrix Human Gene 1.0 ST Array (18). The 
GSE21369 dataset included 11 lung tissue samples from patients with 
IPF and 6 lung tissue samples from healthy individuals. The GSE24206 
dataset included 17 lung tissue samples from patients with IPF and 6 
lung tissue samples from healthy donors. The GSE110147 dataset 
included 22 lung tissue samples from the recipient organs of patients 
with IPF and 11 normal lung tissue samples from tissue flanking lung 
cancer resections.

Probes in all datasets were transformed to gene symbols using their 
probe annotation files. The probe average was determined as the final 
expression value of genes if more than one probe corresponded to the 
same gene symbol. The three datasets were combined to obtain a 
metadata cohort for subsequent integrative analysis.

In addition, the GSE53845 dataset based on the GPL6480 platform 
of the Agilent-014850 Whole Human Genome Microarray 4x44K 
G4112F was used as the validation cohort. It included lung tissue 
samples from 40 patients with IPF and 8 healthy individuals (19).

2.2. Processing of data and screening of 
DEGs

The ‘SVA’ package in R was used to pre-process data in the metadata 
cohort and eliminate batch effects (20). The ‘limma’ package in R was 
used for data normalisation, background correction and identification 
of DEGs between 50 patients with IPF and 23 healthy individuals in the 
metadata cohort (21). Adjusted (adj) p-values of <0.05 and |log2 fold 
change (FC)| values of >1 were considered the threshold values for 
identifying significant DEGs. The ‘pheatmap’ package was used to 
construct a heatmap for demonstrating the expression levels of the 
identified DEGs.

2.3. Enrichment analyses of DEGs

The ‘clusterProfiler,’ ‘DOSE’ and ‘GSEABase’ packages were used for 
GO functional annotation, KEGG pathway enrichment and DO 
enrichment analyses and GSEA to examine substantial functions of the 
DEGs (22–25).

1 http://www.ncbi.nlm.nih.gov/geo/
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GO analysis incorporates three aspects, namely, molecular 
functions (MFs), cellular components (CCs) and biological 
processes (BPs). The ‘c2.cp.kegg.v7.0.symbols.gmt’ gene set from 
the Molecular Signatures Database (MSigDB)2 was used as a 
reference for GSEA (26, 27). The primary finding of GSEA is the 
enrichment score (ES), which indicates the extent to which a gene 
set is overexpressed at either the top or bottom of a list of ranked 
genes. Positive and negative ESs demonstrate gene set enrichment 
at the top and bottom of the ranked list, respectively. In this study, 
genes with |normalised ESs (NESs)| of >1, p-values of <0.05 and adj 
p-values of <0.25 were considered remarkedly enriched.

2.4. Screening of candidate gene biomarkers

To identify remarkable predictive variables, two machine learning 
algorithms were used to screen for genes associated with IPF. Least absolute 
shrinkage and selection operator (LASSO) is an algorithm of regression 
analysis that uses regularisation to enhance the reliability of predictions 
(28). LASSO analysis was performed using the ‘glmnet’ package in R to 
identify genes associated with the diagnosis of IPF (29). Support vector 
machine (SVM) is a supervised and extensively used machine-learning 
approach that functions in not only classification but also regression (30). 
To alleviate overfitting, the recursive feature elimination (RFE) algorithm 
was used to select optimal genes from the metadata cohort (31). To identify 
genes with the highest discriminative power, SVM–RFE was implemented 
using the ‘e1071’ and ‘kernlab’ packages in R (32, 33).

The overlapping genes between the two algorithms were defined as 
candidate gene biomarkers. Thereafter, the expression of these genes was 
verified in the GSE53845 dataset.

2.5. Diagnostic value of the identified gene 
biomarkers in IPF

To investigate the predictive value of the identified gene biomarkers, 
ROC curves were plotted based on the mRNA expression data of 50 
patients with IPF and 23 healthy individuals in the metadata cohort. The 
area under the ROC curve (AUC) was evaluated to determine the 
diagnostic value of the genes. The AUC value was subsequently verified 
in the GSE53845 dataset.

2.6. Determination of immune cell subtypes

The CIBERSORT algorithm3, a bioinformatic analytical tool, was used 
to evaluate the relative proportion of infiltrating immune cells based on the 
gene expression data of patients with IPF and healthy individuals. The 
CIBERSORTx tool from the Alizadeh Lab and Newman Lab is used to 
impute gene expression profiles and estimate the abundance of member 
cell types in a mixed cell population using the gene expression data (34, 35). 
In this study, the CIBERSORTx tool was used to evaluate the abundance of 
22 types of immune cells (reference set that had 1,000 permutations in the 
LM22 Signature Matrix file downloaded from CIBERSORTx).

2 http://www.gsea-msigdb.org/gsea/msigdb

3 https://cibersortx.stanford.edu/

Thereafter, the ‘corrplot’ in R was used to assess the distribution of 
the abundance of the 22 types of infiltrating immune cells and the 
correlation among them. The ‘vioplot’ package in R was used to 
construct violin plots for demonstrating differences in immune cell 
infiltration between patients with IPF and healthy individuals.

2.7. Analysis of the correlation between 
infiltrating immune cells and candidate 
genes

The correlation between the expression of candidate genes and the 
infiltration levels of immune cells was investigated through Spearman’s 
rank correlation analysis in the R program. The ‘ggplot2’ package was 
used to visualise the resulting relationships (36).

2.8. Statistical analysis

The R software (version: 4.0.3) was used for all statistical analyses. 
Continuous variables were compared between groups using two tests: 
The Student’s t-test was used to compare normally distributed variables, 
whereas the Mann–Whitney U test was used to compare abnormally 
distributed variables. The ‘glmnet’ package was used for LASSO 
regression analysis, whereas the ‘e1071’ and ‘kernlab’ packages in R were 
used for SVM–RFE. ROC curves were plotted and AUC values were 
evaluated to assess the diagnostic efficacy of the candidate gene 
biomarkers. Spearman’s correlation analysis was performed to examine 
the correlation between the expression of candidate genes and the 
infiltration levels of immune cells. All statistical tests were two-sided, 
and p-values of <0.05 were considered significant. For screening DEGs 
between patients with IPF and healthy individuals, adj p-values of <0.05 
and |log2 FC| values of >1 were defined as the threshold values. For GO, 
KEGG and DO enrichment analyses, adj p-values of <0.05 were 
considered significant. For GSEA, genes with |NESs| of >1, p-values of 
<0.05 and adj p-values of <0.25 were considered significantly enriched.

3. Results

3.1. Detection of DEGs

The gene expression data of 50 patients with IPF and 23 healthy 
individuals in the metadata cohort (GSE21369, GSE24206 and 
GSE110147) were retrospectively analysed (Supplementary File 1). After 
eliminating batch effects, DEGs between patients with IPF and healthy 
individuals were identified using the ‘limma’ package. Based on the 
threshold of adj p-values of <0.05 and |log2FC| values of >1, 494 DEGs 
were identified, including 302 upregulated (log2FC > 1) and 192 
downregulated (log2FC < −1) genes (Supplementary File 2). A volcano 
plot and heatmap demonstrating the expression of these DEGs are 
shown in Figures 1A,B, respectively.

3.2. Enrichment analyses

GO analysis revealed that the DEGs were remarkably enriched in 
BPs such as extracellular matrix (ECM) organisation, extracellular 
structure organisation, detoxification of copper ions, stress response to 

https://doi.org/10.3389/fmed.2023.1001813
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://www.gsea-msigdb.org/gsea/msigdb
https://cibersortx.stanford.edu/


Zhang et al. 10.3389/fmed.2023.1001813

Frontiers in Medicine 04 frontiersin.org

copper ions, detoxification of inorganic compounds and other related 
processes. Additionally, the DEGs were substantially enriched in CCs 
such as collagen-containing ECM, endoplasmic reticulum lumen, ciliary 
plasm, axoneme and plasmalemma-bound cell projection cytoplasm 
and MFs such as ECM structural constituents, integrin binding, ECM 
structural constituent contributing to tensile strength, dynein light 
intermediate chain binding and adenosine triphosphate (ATP)-
dependent/minus-end-directed microtubule motor activity 
(Supplementary File 3). The top 10 GO terms ranked based on their adj 
p-values are shown in Figure 2A.

KEGG pathway enrichment analysis revealed that the DEGs were 
remarkedly enriched in pathways associated with mineral absorption, 
interleukin 17 (IL-17) signalling, advanced glycation end product (AGE) 
receptor (RAGE) signalling in diabetic complications, protein digestion and 
absorption, relaxin signalling, TNF signalling, malaria, ECM–receptor 
interaction and rheumatoid arthritis (Supplementary File 4). The top nine 
KEGG pathways ranked based on their adj p-values are shown in Figure 2B.

DO enrichment analysis was also performed to determine the 
functions of the DEGs. The results revealed that the DEGs were 
primarily associated with various illnesses (Supplementary File 5); 
among which, sarcoidosis, collagen disease, rheumatic disease, 
interstitial lung disease and pulmonary fibrosis are associated with 
IPF. The 20 DO terms ranked based on their adj p-values are shown in 
Figure 2C, and the 10 main diseases associated with IPF are shown in 
chord plots with the related genes in Figure 2D.

GSEA revealed that the DEGs were enriched in pathways associated 
with cytokine–cytokine receptor interaction, ECM–receptor interaction, 
Janus-activated kinase signal transducers, activators of transcription (JAK–
STAT) signalling, mitogen-activated protein kinase (MAKP) signalling and 
focal adhesion (Supplementary File 6). The 5 gene sets enriched at the top 
of the ranked list (NES > 1) ranked based on their p-values are shown in 
Figure 2E, whereas the 5 gene sets enriched at the bottom of the ranked list 
(NES < −1) ranked based on their p-values are shown in Figure 2F.

3.3. Identification and validation of 
candidate gene biomarkers

Two algorithms were used to screen for potential diagnostic 
biomarkers for IPF. The DEGs were screened using the LASSO 
regression algorithm, resulting in the identification of 18 variables as 
diagnostic biomarkers (Table 1; Figure 3A). A subset of eight genes 
among the DEGs was determined using the SVM–RFE algorithm 
(Table 2; Figure 3B). The four overlapping genes between these two 
algorithms were eventually identified as candidate diagnostic 
biomarkers, including collagen type III alpha 1 chain (COL3A1), 
cadherin 3 (CDH3), CCAAT enhancer-binding protein delta (CEBPD) 
and glycosylphosphatidylinositol-anchored high-density lipoprotein-
binding protein 1 (GPIHBP1) (Figure 3C).

To assess the reliability and accuracy of the four candidate genes, 
their expression was verified in the GSE53845 dataset 
(Supplementary File 7). The expression of COL3A1 and CDH3 was 
higher in the lung tissues of patients with IPF than in those of healthy 
individuals (p < 0.05; Figures 4A,B), whereas the expression of CEBPD 
and GPIHBP1 was remarkably lower in the lung tissues of patients with 
IPF than in those of healthy individuals (p < 0.05) (Figures 4C,D). These 
results were consistent with those of differential expression analysis in 
the metadata cohort. Therefore, the four genes were considered 
candidate diagnostic biomarkers for further analysis.

3.4. Diagnostic efficiency of the four 
candidate biomarkers in IPF

ROC curves were plotted to examine the efficiency of the four 
biomarkers in distinguishing patients with IPF from healthy individuals. 
The AUC values of COL3A1, CDH3, CEBPD, and GPIHBP1 were 0.996 
(95% CI, 0.984–1.000) (Figure  5A), 0.980 (95% CI, 0.948–1.000) 

A B

FIGURE 1

DEGs between patients with IPF and healthy individuals. (A) Volcano plot of DEGs identified based on the threshold of |log2FC| values of >1 and adj p-
values of <0.05; the green (Down) and red (Up) dots represent downregulated and upregulated genes in patients with IPF, respectively; the black dots (Not) 
represent genes that are not differentially expressed between patients with IPF and healthy individuals. (B) Heatmap demonstrating the expression levels of 
the DEGs in 23 healthy individuals (Con) and 50 patients with IPF (IPF); red represents high expression, and blue represents low expression.
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(Figure 5B), 0.982 (95% CI, 0.952–1.000) (Figure 5C) and 0.946 (95% 
CI, 0.851–0.998) (Figure  5D), respectively, indicating that the four 
biomarkers had satisfactory diagnostic value. Additionally, the 
biomarkers had adequate discriminative capability in the GSE53845 
dataset, with an AUC value of 0.825 (95% CI, 0.597–0.981) for COL3A1 
(Figure 5E), 0.969 (95% CI, 0.897–1.000) for CDH3 (Figure 5F), 0.766 
(95% CI, 0.634–0.887) for CEBPD (Figure  5G) and 0.917 (95% CI, 
0.819–0.988) for GPIHBP1 (Figure 5H). These results suggest that the 
four candidate biomarkers have high diagnostic capability.

3.5. Immune cell infiltration

The CIBERSORT algorithm was used to evaluate the abundance 
of immune cells based on data extracted from the LM22 signature 
matrix file (Supplementary File 8). The results are shown in 
Supplementary File 9.

The distribution of 22 types of infiltrating immune cells in the IPF 
and control groups is demonstrated in Figure 6A. The correlation among 
the infiltration levels of 22 types of immune cells is demonstrated in 

A B

C D

E F

FIGURE 2

Enrichment analyses of DEGs. (A) The top 10 GO terms ranked based on their adj p-values. BP, biological process; CC, cellular component; MF, molecular 
function. (B) The nine enriched KEGG pathways. (C) The top 20 DO terms ranked based on their adj p-values. (D) Chord plot demonstrating the 10 main 
enrichments associated with IPF based on DO analysis, and gene names with the connection represent their enriched genes. (E) The 5 enriched gene sets 
at the top of the ranked list (NES > 1) indicate higher expression in IPF. (F) The 5 enriched gene sets at the bottom of the ranked list (NES < −1) indicate lower 
expression in IPF.
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Figure 6B (regulatory T cells [Tregs] were not correlated with any other 
cell and are hence not shown).

The abundance of resting natural killer (NK) cells (p < 0.001), M1 
macrophages (p = 0.049) and eosinophils (p < 0.001) was lower in the 
lung tissues of patients with IPF than in those of healthy individuals. 
However, the abundance of plasma cells (p = 0.002), M0 macrophages 
(p < 0.001) and resting dendritic cells (DCs) (p = 0.008) was higher in the 
lung tissues of patients with IPF than in those of healthy individuals 
(Figure 6C).

3.6. Correlation between candidate 
biomarkers and infiltrating immune cells

Spearman’s rank correlation analysis was performed to examine and 
visualise the correlation between the expression of the four candidate 
genes and the infiltration levels of immune cells (Supplementary File 10).

COL3A1 expression was positively correlated with the infiltration 
levels of M0 macrophages (r = 0.38, p = 0.001), plasma cells (r = 0.33, 
p = 0.005) and activated NK cells (r = 0.26, p = 0.024) and negatively 
correlated with the infiltration levels of resting NK cells (r = −0.48, 
p < 0.0001), eosinophils (r = −0.48, p < 0.001), activated DCs (r = −0.34, 
p = 0.003), neutrophils (r = −0.27, p = 0.020) and monocytes (r = −0.25, 
p = 0.036). The detailed results are shown in Figure 7A.

CDH3 expression was positively correlated with the infiltration 
levels of M0 macrophages (r = 0.54, p < 0.001), plasma cells (r = 0.53, 
p < 0.001), resting DCs (r = 0.49, p < 0.001) and memory B cells (r = 0.37, 
p = 0.002) and negatively correlated with the infiltration levels of 
eosinophils (r = −0.44, p < 0.001), resting NK cells (r = −0.44, p < 0.001), 
M1 macrophages (r = −0.28, p = 0.016) and monocytes (r = −0.24, 
p = 0.044). The detailed results are shown in Figure 7B.

CEBPD expression was positively correlated with the infiltration 
levels of resting NK cells (r = 0.44, p < 0.001), activated DCs (r = 0.39, 

p < 0.001), eosinophils (r = 0.35, p = 0.002), neutrophils (r = 0.31, 
p = 0.009) and monocytes (r = 0.28, p = 0.018) and negatively correlated 
with the infiltration levels of activated NK cells (r = −0.41, p < 0.001), M0 
macrophages (r = −0.38, p = 0.001), M2 macrophages (r = −0.36, 
p = 0.002), resting DCs (r = −0.35, p = 0.002), memory B cells (r = −0.26, 
p = 0.026) and plasma cells (r = −0.25, p = 0.035). The detailed results are 
shown in Figure 7C.

GPIHBP1 expression was positively correlated with the infiltration 
levels of M1 macrophages (r = 0.25, p = 0.033) and eosinophils (r = 0.24, 
p = 0.041) and negatively correlated with the infiltration levels of M0 
macrophages (r = −0.49, p < 0.001), resting DCs (r = −0.29, p = 0.015) 
and plasma cells (r = −0.27, p = 0.021). The detailed results are shown in 
Figure 7D.

4. Discussion

IPF is an interstitial condition characterised by UIP. At present, IPF 
cannot be cured and often has an unsatisfactory prognosis. Although 
numerous related studies have been reported, the mechanisms underlying 
the onset and development of IPF remain unclear (37). Epithelial–
mesenchymal transition, ECM deposition and lung remodelling may 
be involved in the onset and progression of IPF (38–40).

Owing to the lack of biomarkers for early diagnosis of IPF, patients 
often miss the best opportunity for treatment, leading to progressive 
disease progression. Therefore, it is important to investigate the 
molecular mechanisms of biomarkers associated with the onset and 
development of IPF and identify therapeutic targets. Additionally, 
studies have reported that immune cell infiltration can clear ageing 
alveolar epithelial cells and play a role in the occurrence and 
development of IPF (41, 42). Therefore, the relationship between 
IPF-associated genes and infiltrating immune cells should be examined 
to improve the prognosis of IPF.

TABLE 1 Identification of 18 variables using the LASSO regression algorithm.

Gene symbol Description

COL3A1 Collagen type III alpha 1 chain

CDH3 Cadherin 3

ST20 Suppressor of tumorigenicity 20

CEBPD CCAAT enhancer-binding protein delta

CRTAC1 Cartilage acidic protein 1

HEPH Hephaestin

DZIP1 DAZ-interacting zinc finger protein 1

MS4A15 Membrane spanning 4-domains a15

LOC100131541 Not applicable

GPIHBP1 Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1

IRS2 Insulin receptor substrate 2

SCARNA17 Small Cajal body-specific RNA 17

LRRN1 Leucine-rich repeat neuronal 1

MYOCD Myocardin

FNDC1 Fibronectin type III domain containing 1

CHI3L2 Chitinase 3-like 2

LYVE1 Lymphatic vessel endothelial hyaluronan receptor 1

TSPAN11 Tetraspanin 11
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Recent studies have reported that IPF-related microRNAs (miRNAs) 
play an important role in the diagnosis and treatment of IPF (43–45). In 
previous studies, we have constructed a modulatory network of putative 

IPF-related miRNAs and messenger RNAs (mRNAs), which validates 
some miRNA–mRNA axes with TCM treatment of a bleomycin-induced 
IPF mouse model (4, 46). However, a few studies have examined the 

A B

C

FIGURE 3

Screening of candidate gene biomarkers using two machine learning algorithms. (A) Tuning feature selection using the LASSO algorithm. (B) A plot of 
biomarker selection using the SVM-RFE algorithm. (C) Venn diagram demonstrating the four diagnostic markers (COL3A1, CDH3, CEBPD, and GPIHBP1) 
shared by the LASSO and SVM-RFE algorithms.

TABLE 2 Identification of eight variables using the SVM–RFE algorithm.

Gene symbol Description

COL3A1 Collagen type III alpha 1 chain

TSHZ2 Teashirt zinc finger homeobox 2

COL1A2 Collagen type I alpha 2 chain

CDH3 Cadherin 3

PSD3 Pleckstrin and Sec7 domain-containing 3

CEBPD CCAAT enhancer-binding protein delta

PTGFRN Prostaglandin F2 receptor inhibitor

GPIHBP1 Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1
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relationship between abnormally expressed genes and immune 
infiltration in IPF. In this study, we identified candidate gene biomarkers 
for the diagnosis of IPF and examined their correlation with immune 
cell infiltration in IPF.

First, three microarray datasets were extracted from the GEO 
database and merged into a metadata cohort, which included 50 
patients with IPF and 23 healthy individuals. A total of 494 DEGs were 
identified, including 302 upregulated and 192 downregulated genes. 
GO analysis revealed the DEGs were significantly enriched in BPs such 
as ECM organisation, extracellular structure organisation, 
detoxification and stress response to copper ions and detoxification of 
inorganic compounds; CCs such as collagen-containing ECM, 
endoplasmic reticulum lumen, ciliary plasm, axoneme and 
plasmalemma-bound cell projection cytoplasm and MFs such as ECM 
structural constituent, integrin binding, ECM structural constituent 
conferring tensile strength, dynein light intermediate chain binding 
and ATP-dependent/minus-end-directed microtubule motor activity. 
The functions of DEGs were primarily related to ECM, indicating that 

the DEGs are closely related to ECM and participate in the development 
of IPF (38–40). KEGG analysis revealed that the DEGs were 
significantly enriched in pathways associated with absorption of 
minerals, IL-17 signalling, AGE–RAGE signalling in diabetic 
complications, protein digestion and absorption, relaxin signalling, 
TNF signalling, malaria, ECM–receptor interaction and rheumatoid 
arthritis. These pathways are primarily related to ECM and immune 
responses. DO enrichment analysis revealed that the DEGs were 
mainly associated with sarcoidosis, collagen disease, rheumatic disease, 
interstitial lung disease and pulmonary fibrosis. These diseases are 
associated with IPF and share some pathological characteristics with 
IPF. GSEA revealed that the DEGs were enriched in pathways 
associated with cytokine–cytokine receptor interaction, JAK–STAT 
signalling, ECM–receptor interaction, MAKP signalling and focal 
adhesion. These pathways are related to ECM, inflammation and 
immune responses. These findings are consistent with those of previous 
studies, indicating that inflammatory responses involving cytokines 
play a role in the pathogenesis of IPF (47–50).

A B

C D

FIGURE 4

Validation of the expression of candidate genes in the GSE53845 dataset. (A) The expression of COL3A1 was higher in the lung tissues of patients with IPF 
(IPF) than in those of healthy individuals (Con). (B) The expression of CDH3 was higher in the lung tissues of patients with IPF than in those of healthy 
individuals. (C) The expression of CEBPD was lower in the lung tissues of patients with IPF than in those of healthy individuals. (D) The expression of 
GPIHBP1 was lower in the lung tissues of patients with IPF than in those of healthy individuals.
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FIGURE 5

ROC curves demonstrating the diagnostic efficiency of the four candidate biomarkers. (A) ROC curve of COL3A1 after fitting to one variable in the 
metadata cohort. (B) ROC curve of CDH3 after fitting to one variable in the metadata cohort. (C) ROC curve of CEBPD after fitting to one variable in the 
metadata cohort. (D) ROC curve of GPIHBP1 after fitting to one variable in the metadata cohort. (E) ROC curve of COL3A1 after fitting to one variable in the 
GSE53845 dataset. (F) ROC curve of CDH3 after fitting to one variable in the GSE53845 dataset. (G) ROC curve of CEBPD after fitting to one variable in the 
GSE53845 dataset. (H) ROC curve of GPIHBP1 after fitting to one variable in the GSE53845 dataset.

A B

C

FIGURE 6

Distribution of infiltrating immune cells and the correlation among their infiltration levels. (A) Relative abundance of 22 immune cell subtypes in patients 
with IPF (IPF) and healthy individuals (Con). (B) Correlation among the infiltration levels of 21 immune cell subtypes (Tregs are not shown); both horizontal 
and vertical axes demonstrate immune cell subtypes. Red, blue and white represent higher, lower and the same correlation levels, respectively. 
(C) Comparison of the abundance of 22 immune cell subtypes between patients with IPF and healthy individuals. Blue and red colours represent the 
infiltration levels of healthy individuals and patients with IPF, respectively.
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With the significant advancement of science and technology, 
machine learning algorithms are widely used for identifying gene 
biomarkers and predicting disease status (51, 52). The LASSO algorithm 
uses regularisation to enhance the predictive accuracy (53). SVM has 
better performance in classification and prediction and is extensively 
used in disease diagnosis or medical assistance. However, it is only 
useful for two-group classification tasks. To avoid overfitting, the RFE 
algorithm can be used. Therefore, the accuracy of the classification of 
multiclass issues may be addressed using the SVM–RFE technique (54). 
CIBERSORT, a bioinformatic algorithm, is widely used to measure 
immune cell infiltration (34, 35). In this study, the LASSO and SVM–
RFE algorithms were used to determine candidate biomarkers among 
the DEGs, and the CIBERSORT algorithm was used to evaluate the 
abundance of infiltrating immune cells in IPF.

Using the two machine learning algorithms, four candidate genes 
associated with the diagnosis of IPF were identified, including two 
upregulated genes, namely, COL3A1 and CDH3, and two downregulated 
genes, namely, CEBPD and GPIHBP1. The expression of these genes was 
verified in the validation (GSE53845) cohort. Significant differences 
were observed in the expression of the four genes between patients with 
IPF and healthy individuals in the validation cohort. These results were 
consistent with those of differential expression analysis in the metadata 

cohort. Additionally, ROC analysis revealed that the genes had a high 
diagnostic capability. The GSE53845 dataset contains gene expression 
data derived from the lung tissue samples of 40 patients with IPF and 8 
healthy individuals. Because these data are derived from clinical 
patients, they are valid and reliable. Therefore, the abovementioned four 
genes were identified as candidate gene biomarkers.

COL3A1 encodes the pro-alpha 1 chains of type III collagen, 
which is a type of fibrillar collagen distributed in extensible 
connective tissues, including the skin, uterus, intestine, lung, and the 
vascular system, usually in association with type I  collagen (55). 
CDH3 is a cadherin superfamily member that encodes cadherin. 
Multiple transcript variants are produced as a result of alternative 
splicing, and at least one of them encodes a preproprotein that is 
processed proteolytically to form a final glycoprotein. Five 
extracellular cadherin repeats, a greatly conserved cytoplasmic tail 
and a transmembrane region comprise the calcium-dependent cell–
cell adhesion protein encoded by CDH3 (56). CEBPD, an intron-less 
gene, encodes a transcription factor with a leucine zipper domain 
that can attach as a homodimer to a particular DNA regulatory 
segment. It can also form heterodimers with CEBP-alpha, a related 
protein. The encoded protein plays an essential role in modulating 
genes involved in immune and inflammatory responses and may 

A B

C D

FIGURE 7

Correlation between candidate genes and infiltrating immune cells in IPF. (A) Correlation between COL3A1 expression and the infiltration levels of immune 
cells in IPF. (B) Correlation between CDH3 expression and the infiltration levels of immune cells in IPF. (C) Correlation between CEBPD expression and the 
infiltration levels of immune cells in IPF. (D) Correlation between GPIHBP1 expression and the infiltration levels of immune cells in IPF.
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be involved in the modulation of genes associated with macrophage 
activation and/or differentiation (57). GPIHBP1 is a protein that 
enhances the lipolytic digestion of triglyceride-rich lipoproteins in 
capillary endothelial cells. It is a glycosylphosphatidylinositol-
anchored lymphocyte antigen-6 family member that plays a critical 
role in delivering lipoprotein lipase from the subendothelial regions 
to the capillary lumen (58).

Dysregulated expression of COL3A1 may affect the development of 
IPF through regulation of IPF-related biological processes, and the 
expression level of COL3A1 is correlated with the prognosis of IPF (59). 
COL3A1 is a potential biomarker for assessing the progression of IPF 
and non-small cell lung cancer (NSCLC). It may help to elucidate 
molecular mechanisms underlying the progression of IPF and NSCLC 
and serve as a potential therapeutic target for IPF (60). CEBP 
homologous protein (CHOP) enhances alveolar epithelial cell (AEC) 
senescence through the nuclear factor-kappa B (NF-κB) pathway in 
pulmonary fibrosis (61). Additionally, it enhances the production of 
sonic hedgehog in type II AECs and stimulates the hedgehog signalling 
pathway in fibroblasts in pulmonary fibrosis (62). Hypoxia-inducible 
factor 1 alpha (HIF1A) can trigger endoplasmic reticulum stress and 
CHOP-mediated apoptosis in AECs, thereby playing a role in the 
development of IPF (63). Therefore, the four candidate genes as well as 
the abovementioned non-IPF-related genes warrant further 
intensive investigation.

CIBERSORT was used to evaluate the infiltration levels of immune 
cells in patients with IPF and healthy individuals. Several immune cell 
subtypes were found to be involved in key biological processes associated 
with IPF. The infiltration levels of plasma cells, M0 macrophages and 
resting DCs were higher and those of resting NK cells, M1 macrophages 
and eosinophils were lower in patients with IPF than in healthy 
individuals. These cells may be  associated with the onset and 
progression of IPF.

Inflammatory and immune cells play an important role in the 
progression of IPF. Some results of this study are consistent with those 
of previous studies. The expression of FK506-binding protein (FKBP) 
prolyl isomerase 11 (FKBP11) is elevated in the lung tissues of patients 
with IPF, and FKBP11 specifically localises to antibody-producing 
plasma cells (64). In a study, compared with control mice, bleomycin-
treated mice had an increased proportion of pulmonary IgA(+) 
germinal centres and plasma cells, and autoreactive IgA was identified 
as a diagnostic biomarker for IPF (65). M1 macrophages play a crucial 
role in wound healing following alveolar epithelial damage, whereas 
M2 macrophages are necessary for resolving inflammatory responses 
that develop in the lung. IPF is a pathological outcome resulting from 
disrupted wound healing in response to repeated injury to the lung 
(66). NF-κB facilitates the production of proinflammatory cytokines 
to exacerbate M1 macrophage polarisation (67). Pirfenidone 
suppresses transforming growth factor-β, which is associated with M2 
macrophage polarisation and fibroblast activation and has anti-fibrotic 
properties (68). Polarised M1 macrophages can be converted to M0 
macrophages after 12 days of incubation in a cytokine-insufficient 
medium or re-differentiated into a different cell phenotype after being 
cultured further in a different polarising medium (69). DCs are major 
contributors to the pathogenesis of IPF (70). In bleomycin models, 
lung DCs are important proinflammatory cells that maintain 
pulmonary inflammation and fibrosis (71). Fms-related receptor 
tyrosine kinase 3 ligand is overexpressed in the serum and lung tissues 
of patients with IPF and may facilitate the accumulation of lung DCs 
during pulmonary fibrogenesis (72). The proportion of resting NK 

cells is lower in the lung tissues of patients with IPF than in those of 
healthy individuals (73). Eosinophil is a principal source of several 
crucial pro-fibrogenic cytokines, especially in the initial stages of 
fibrosis (74).

COL3A1 may serve as a molecular biomarker for assessing 
prognosis and immune infiltration in pan-cancer (75). Collagen 
genes play an important role in regulating the immunosuppressive 
microenvironment and epithelial–mesenchymal transition in 
glioma and may serve as therapeutic targets for glioma (76). 
Biomarkers associated with collagen synthesis and degradation 
have the potential to enhance clinical trials in IPF and may be used 
for prognostic assessment and therapeutic decision-making in 
clinical settings (77). CDH3 is associated with immune infiltration 
in papillary thyroid carcinoma (78). CEBPD has been identified as 
a diagnostic biomarker for nonalcoholic fatty liver disease using 
machine learning algorithms and is associated with immune cell 
infiltration (79). In this study, the expression of COL3A1, CDH3, 
CEBPD and GPIHBP1 was correlated with the abundance of 
various immune cells including plasma cells, M0 macrophages and 
eosinophils. In particular, the expression of CDH3, CEBPD and 
GPIHBP1 was correlated with the abundance of resting DCs; the 
expression of COL3A1, CDH3 and CEBPD was correlated with the 
abundance of resting NK cells and the expression of CDH3 and 
GPIHBP1 was correlated with the abundance of M1 macrophages. 
The relationship of the four genes with these immune cells has been 
reported in some related studies. The infiltration of plasma cells 
has been associated with the expression of CDH3 and CEBPD (80, 
81), whereas that of macrophages has been associated with the 
expression of COL3A1, CDH3 and CEBPD in multiple diseases (80, 
82–84). In-depth experimental studies should be  conducted to 
investigate the relationship between the four genes and immune 
cells in IPF.

Although this study was rigorous, its limitations should also 
be acknowledged. Although we collected as many samples as possible 
by combining the three datasets, the sample size of the metadata cohort 
is small. Additionally, the sample size of the validation cohort is also 
small. Because the role of the four biomarkers and infiltration of 
immune cells in IPF were examined using bioinformatic algorithms, 
in-depth studies with large sample size should be conducted to validate 
the findings. We will verify the results in a clinical cohort in future 
studies, with immunohistochemical detection of lung transplant 
specimens. Additionally, we will perform single-cell RNA sequencing 
on lung tissue and blood samples to verify whether the expression of the 
four genes is altered in immune cell clusters.

5. Conclusion

COL3A1, CDH3, CEBPD, and GPIHBP1 are potential biomarkers 
for the diagnosis of IPF. Plasma cells, M0 macrophages and eosinophils 
(associated with these four genes) may be involved in the development 
of IPF and serve as immunotherapeutic targets for the treatment of IPF.
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