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Pemphigus is a chronic autoimmune skin blistering disease, characterized by

acantholysis and by the production of autoantibodies directed against the

structural desmosomal proteins desmoglein 1 (DSG1) and/or DSG3. Model

systems allow the identification and testing of new therapeutic targets. Here,

we evaluated ultrastructural desmosomal morphology in the human skin

organ culture (HSOC) model injected with either anti-desmoglein (DSG)

1/3 single-chain variable fragment (scFv, termed Px4-3), Staphylococcus

aureus exfoliative toxin (ETA) as a reference and positive control, and

normal human IgG as a negative control. Each experimental condition was

evaluated in abdominal skin biopsies from five different donors. After 24 h

of incubation, we processed the samples for histological and ultrastructural

electron microscopy analyses. We found that Px4-3 or ETA induced a loss

of desmosomes and increased interdesmosomal widening, similar to patient

skin biopsies and other pemphigus models. Thus, we propose the HSOC

pemphigus model as an attractive tool to unravel novel therapeutic targets.

KEYWORDS

pemphigus, human skin organ culture, desmosome, electron microscopy,
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Introduction

Pemphigus are rare, potentially life-threatening, chronic autoimmune skin blistering
diseases, with pathogenic autoantibodies mainly directed against the structural
desmosomal proteins desmoglein 1 (DSG1) and/or DSG3 (1). Pemphigus foliaceus
(PF) presents autoantibodies against DSG1, and mucocutaneous-type pemphigus
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vulgaris (PV) autoantibodies against DSG3. Mucocutaneous
pemphigus presents reactivity against both autoantigens (1,
2). DSGs are cadherin-type Ca2+-dependent transmembrane
adhesion molecules (3). Anti-DSG1/3 IgG binding causes
acantholysis with desmosomal splitting and keratinocyte
separation, hallmarked by intraepidermal split formation,
clinically flaccid blisters and secondary erosions (1). Following
DSG1/DSG3 redistribution, desmosomal splits occur in the
mucosa and skin suprabasal stratum in PV, but solely in
the skin stratum granulosum in PF (3, 4). Corticosteroids
are the standard pemphigus treatment (5). The anti-CD20
antibody rituximab, combined with corticosteroids, further
induces complete remission off-therapy within 24 months in
89% of patients (6). Due to the extended time to achieve
remission, the necessity of new therapeutic options remains.
Model systems allow the identification and testing of new
therapeutic targets. In pemphigus, in vitro models (7) and
mouse models (8, 9) can be used to that end. While the
aforementioned in vitro models duplicate certain aspects of
pemphigus pathogenesis, mouse models are better suited
to assess the impact of an in vivo intervention. Mouse
models of pemphigus, however, are hampered by the relatively
complex experimental procedures (8, 9) or by the differences
in DSG expression patterns between mice and men (10).
Organ skin models are being increasingly used to overcome
these limitations and to implement the replace, reduce, and
refine (3R) principles of animal research, including to replace
animal experiments by appropriate alternatives (11–14). We
recently developed a highly standardized human skin organ
culture (HSOC) model of pemphigus using skin from donors
of elective surgery (15). Here, a bi-specific anti-DSG1/DSG3
single-chain antibody variable fragment (scFv) binding to both
DSG1 and 3, termed Px4-3 (16, 17), is injected into human
skin. This consistently induces intraepidermal splits and the
model is amendable for therapeutic interventions. Indeed, we
recently used this model to identify new therapeutic targets
to block acantholysis in pemphigus (18). To obtain additional
insights into the mechanisms of how Px4-3 induces split
formation, we evaluated the ultrastructural morphology of
desmossomal dissociation in the HSOC model. As a reference
and positive control, Staphylococcus aureus exfoliative toxin
(ETA), (Toxin Technology, Sarasota, Fl, USA) mimicking
DSG1 autoantibodies-mediated effects (8), was injected into
the human skin. Next, we investigated the alterations in
interdesmosomal widening, desmosome number and length
induced by either Px4-3 or ETA.

Materials and methods

The local ethics committee approved this study (06-
109), realized according to the Declaration of Helsinki.
We performed the HSOC following established protocols

(15). In brief, human skin samples were obtained from
donors without a history of skin diseases and were injected
intradermally with either 50 µL of Px4-3 (60 µg) or ETA
(100 ng). Normal human IgG was used as a control. Each
experimental condition was evaluated in abdominal skin
biopsies from five different donors. After 24 h of incubation,
we processed the samples for histological and ultrastructural
electron microscopy analyses, as described (15, 19). To
demonstrate the Px4-3 binding at the desmosomes and to
confirm epidermal split formation, we performed immunogold-
labeling (Figure 1) and hematoxylin-eosin staining (Figure 2).
For transmission electron microscopy (TEM) studies, fixation
was performed using paraformaldehyde/piperazine-N-N′ bis
(20-ethanol sulfonic acid) 5%, followed by Monti Graziadei
or polyvinylpyrolidine-saccharose. After slide processing, we
took 10 to 13 TEM pictures magnified 80,000-fold for each
condition and skin. We used the “iTEM” software to count
the desmosomes, measure their length and interdesmosomal
widening. For Gaussian-distributed data, we used one-way
ANOVA and Bonferroni post-test; for non-Gaussian-distributed
data, Kruskal–Wallis and Dunn’s post-test. P-values lower
than 0.05 were considered significant. Supplementary material
presents more detailed information.

Results

We evaluated the DSG1 and DSG3 expression to
characterize the tissue of the model. Both were detected
with immunogold-labeling and immunofluorescence staining
in intact and/or disrupted desmosomes (Figures 1A,B).
Immunogold-labeling and immunofluorescence staining
demonstrated precisely Px4-3 binding to DSG1 and DSG3 in
the PV model (Figure 1C). As expected, Px4-3 or ETA-injected
skin specimens developed split formation at the corresponding
intraepidermal layers, suprabasal stratum after Px4-3 injection
and stratum granulosum after ETA-injection (Figure 2A).
Px4-3 but not ETA injection reduced the desmosome number
compared to control skin (Figure 2B). Interdesmosomal
widening was seen in both Px4-3 or ETA injected skin and were
significantly higher in both groups compared to control skin
(Figure 2D). The length of the desmosomes does not differ
between Px4-3 and ETA injected and controls (Figure 2C).

Discussion

Consistent with our findings, Sokol et al. reported a reduced
number of desmosomes in skin biopsies of PV patients (20).
Egu et al. observed the same in human skin injected with
IgG from patients with mucocutaneous PV (DSG1 and DSG3
autoantibodies) (10). In the same study, similar with our
finds, higher interdesmosomal widening was observed (10). In
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FIGURE 1

Ultrastructural and immunopathological characterization of the human skin organ culture model for pemphigus vulgaris. (A.I) Electron
micrograph showing desmosomes. One of the desmosomes is still intact (red oval circle), while the other is disrupted (red asterisk). The big gold
particles detect DSG1. The small gold particles detect Px4-3. (A.II) Picture showing indirect immunofluorescence microscopy staining for
antibodies against DSG1. (B.I) Electron micrograph showing disrupted desmosomes. The gold particles (red arrows) mark DSG3. (B.II) Indirect
immunofluorescence microscopy with intercellular staining by antibodies to DSG3. (C.I) Electron micrograph showing a stretched desmosome.
Gold particles (red arrows) detect Px4-3 (anti-DSG1/3 scFv) within the desmosome. (C.II) Direct immunofluorescence microscopy against
Px4-3 (the blister is marked by a red asterisk). Left column: Electron micrographs (100,000-fold; scale bars 0.2 µm), right column: Micrographs
(200-fold; scale bars 100 µm).

contrast to our HSOC model, these studies reported reduced
desmosomal size, as well in a recent study (21). Van der Wier
et al. reported a reduced number of desmosomes in Nikolsky-
positive PF biopsies but no difference in Nikolsky-negative PF
biopsies compared to normal skin (22, 23). In line with our
findings, they did not find changes in the desmosomal sizes in
mucosal-dominant PV and Nikolsky-negative mucocutaneous
PV biopsies compared to controls (23). Thus, the ultrastructural
morphological features of desmosomes in the pemphigus
HSOC model are similar to patient lesions (20). However, it
does not show all of the ultrastructural hallmarks compared
to the physiological human skin. Taken together, although

desmosomal lengths differ between our model and PV/PF
biopsies and other pemphigus models (10, 20, 24), we observed
a lower number of desmosomes (10, 20) and a higher
interdesmosomal widening across our model, as well as in
patient skin biopsies (10). The usage of Px4-3 instead of PV-IgG,
which contains antibodies against other adhesion molecules,
cell membrane receptors, and mitochondrial antigens (25, 26),
may explain the absence of observations of reduced desmosomal
length in our model. The small amount of Px4-3 binding in
the desmosomes may also indicate that pathogenic effects are
caused by disturbed desmosome assembly or signaling induced
by extradesmosomal desmogleins 1 and 3 (1, 27).
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FIGURE 2

Desmosomal number, length, and interdesmosomal widening in the human skin organ culture model for pemphigus. (A) Light micrographs of
hematoxylin and eosin stainings (top Figures 200-fold, scale bar 0.5 µm, N = 5, figures below: 100-fold, scale bar 1 µm, N = 5) of human skin
organ culture specimens after injection of Px4-3, normal human IgG (negative control) or ETA (positive control and reference). (B) Electron
micrographs showing the number of desmosomes in the three different conditions. Px4-3 injected has a smaller number of desmosomes
compared to the control. (C) Electron micrographs showing the length of desmosomes. Px4-3 and ETA injected do not differ compared to the
control. (D) Electron micrographs showing interdesmosomal widening. Px4-3 injected and ETA injected show larger interdesmosomal space
than the control (80,000-fold, scale bar 0.5 µm, N = 5). ***p < 0.001.

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.997387
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-997387 November 8, 2022 Time: 15:2 # 5

Radine et al. 10.3389/fmed.2022.997387

We conclude that, although our model has only bi-
specific anti-DSG1/DSG3 scFv, some ultrastructural hallmarks
of desmosome morphology following Px4-3 binding are
reproduced in our HSOC model, reflecting the lesional skin
of pemphigus patients. The reproducibility of the HSOC
pemphigus model makes it an attractive tool to unravel novel
therapeutic targets and evaluate new treatments targeting
pemphigus pathology.
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