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Background: We aimed to investigate the e�ects of blood lipids and

lipid-lowering agents on osteoarthritis (OA) risk.

Materials and methods: We performed Mendelian randomization (MR)

analyses to estimate the causal e�ect of blood low-density lipoprotein

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and

triglyceride (TG) levels on knee and hip OA. Single nucleotide polymorphisms

(SNPs) were selected from large genome-wide association studies (GWASs)

of individuals of European ancestry as genetic instruments for blood lipid

levels. The associations of selected genetic instruments with knee and hip OA

were estimated in a recent GWAS of the UK Biobank and arcOGEN datasets.

Univariate and multivariate MR analyses were performed to detect and adjust

for potential pleiotropy. Furthermore, genetic instruments inHMGCR,NPC1L1,

and PCSK9 regions were used to mimic LDL-C-lowering e�ects of statin,

ezetimibe, and evolocumab, respectively.

Results: Genetically determined LDL-C increments led to reduced risks of both

knee OA (OR = 0.91 per 1-SD increment, 95% CI: 0.86–0.95, P = 6.3 × 10−5)

and hip OA (OR = 0.92, 95% CI: 0.85–0.99, P = 0.027). Multivariate MR analysis

proved that the e�ect was independent of HDL-C, TG, and body mass index.

TG increment was associated with reduced risks of hip OA in the univariate

MR analysis; however, this was not supported by the multivariate MR analysis.

Genetically proxied LDL-C-lowering e�ects of statins are related to increased

risks of knee OA but not hip OA.

Conclusions: The findings suggested that LDL-C increments have

independent protective e�ects on both knee and hip OA. LDL-C-lowering

e�ects of statins may increase the risk of knee OA.

KEYWORDS

osteoarthritis, statins, Mendelian randomization, ezetimibe, blood lipid

Frontiers inMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2022.990569
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2022.990569&domain=pdf&date_stamp=2022-11-11
mailto:orthoyixin@yahoo.com
https://doi.org/10.3389/fmed.2022.990569
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmed.2022.990569/full
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Wang et al. 10.3389/fmed.2022.990569

Introduction

Osteoarthritis (OA) is the most common form of arthritis; it
affects more than 5% of people worldwide, and its prevalence
is growing (1). OA is characterized by articular cartilage
degeneration, chronic pain, joint deformities, and eventual
disability (2). Although the etiology of OA is not well-
understood, it is considered a metabolic syndrome-associated
disease rather than a purely age- or weight-related disease
(3). Experimental studies and a recent meta-analysis of
observational studies showed that dyslipidemia is involved in
OA pathophysiology (4, 5). However, the causal effect of blood
lipid profile, particularly low-density lipoprotein cholesterol
(LDL-C), on the risk of developing OA remains unclear.

Statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme
A reductase (HMGCR), are the most frequently prescribed
cholesterol-lowering drugs. These drugs are recommended
as first-line therapy to reduce the risk of atherosclerotic
cardiovascular disease (ASCVD) (6). To date, the effects of
statins on OA have aroused great interest from researchers;
however, results are conflicting and vary from reduced risk
to no effect or even an increased risk of OA (3, 7).
Nevertheless, the current evidence is limited to observational
studies and is inevitably affected by confounding factors,
making it difficult to clarify the causal relationship. In
recent years, in addition to statins, newer lipid-lowering
agents acting on different mechanisms, including ezetimibe
or anti-proprotein convertase subtilisin/kexin type 9 (PCSK9)
monoclonal antibodies (evolocumab), have been widely used to
achieve LDL-C targets in the secondary prevention of ASCVD
(8). However, the effects of these drugs on OA have not
been reported.

Therefore, we aimed to use a Mendelian randomization
(MR) approach to investigate the effect of blood lipid profiles
and lipid-lowering agents on OA risk. Because MR employs
genetic variants associated with the target of cholesterol-
lowering agents, which are random with respect to potential
confounding factors, our study will help clarify the causal
relationship among blood lipids, lipid-lowering agents, and OA.

Materials and methods

This study was performed according to the guidelines
of the Strengthening the Reporting of Observational
Studies in Epidemiology using Mendelian Randomization
(STROBE-MR) (9).

Genetic instruments for blood lipids

Single nucleotide polymorphisms (SNPs) for plasma
LDL-C, high-density lipoprotein cholesterol (HDL-C), and

triglyceride (TG) were selected as instrumental variables.
Data on these variables were obtained from the genome-wide
association studies (GWASs) of the Global Lipids Genetics
Consortium (10), which included 188,578 individuals
with European ancestry and excluded those receiving
lipid-lowering treatment. The included SNPs need to be
significantly associated with the trait at the genome-wide
level (P < 5 × 10−8) and independent of each other
(r2 < 0.001). Among the included SNPs, 81, 89, and 55
were associated with LDL-C, HDL-C, and TG, respectively
(Supplementary Tables S1–S3).

Assessment of knee and hip OA

The associations between the selected genetic instruments
and knee and hip OA were estimated in a recent GWAS
meta-analysis of the UK Biobank and Arthritis Research
UK Osteoarthritis Genetics (arcOGEN) datasets (77,052 cases
and 378,169 controls) (11), which also included individuals
with European ancestry. The UK Biobank is a cohort based
on 22 assessment centers in the UK that includes 500,000
participants aged 40–69 years and recruited from 2006 to
2010 (12). The diagnosis of hip and knee OA was based
on self-reports and hospital records in the UK Biobank. The
arcOGEN dataset includes unrelated UK-based knee and hip
OA cases from the ArcOGEN Consortium (13). Knee and hip
OA were diagnosed if the individual underwent total joint
replacement or had radiographic evidence of OA (Kellgren–
Lawrence grade ≥2).

Two-sample MR

We conducted two-sample MR analysis using the
“TwoSampleMR” package in the R software (version 4.1.2).
First, we performed a harmonization process to ensure that
the effect alleles of SNPs were the same for exposure and
outcome. Palindromic SNPs were aligned if the minor allele
frequency was <0.3. As a result, two LDL-C SNPs and three
HDL-C SNPs were excluded because they were palindromic
with intermediate allele frequencies. To estimate the individual
effect of each SNP, the Wald ratio was calculated by dividing
the SNP-outcome association by the SNP-exposure association.
We primarily estimated the causal effect of blood lipids on
OA using the random-effect inverse variance-weighted (IVW)
method. Estimates of causal effects were reported as odds ratios
(ORs) per one standard deviation (SD) increase in LDL-C,
HDL-C, and TG. The weighted median, MR-Egger regression,
weighted mode, and Mendelian Randomization Pleiotropy
RESidual Sum and Outlier (MR-PRESSO) outlier-corrected
methods were used for additional sensitivity analyses. The
weighted median method can provide an unbiased estimate
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TABLE 1 Univariate Mendelian randomization analysis results.

Exposure Outcome Methods Number of SNPs OR (95% CI) P-value

LDL-C Knee OA Inverse variance weighted 79 0.91 (0.86–0.95) 6.3× 10−5

MR Egger 79 0.92 (0.86–0.99) 0.022

Weighted median 79 0.91 (0.85–0.97) 0.003

Weighted mode 79 0.90 (0.85–0.96) 9.4× 10−4

MR-PRESSO outlier-corrected 79 (1 outlier SNP) 0.91 (0.87–0.95) 1.3× 10−4

LDL-C Hip OA Inverse variance weighted 79 0.92 (0.85–0.99) 0.027

MR Egger 79 0.89 (0.79–0.99) 0.038

Weighted median 79 0.90 (0.83–0.97) 0.006

Weighted mode 79 0.90 (0.84–0.96) 0.003

MR-PRESSO outlier-corrected 79 (3 outlier SNPs) 0.91 (0.85–0.97) 0.006

HDL-C Knee OA Inverse variance weighted 86 0.99 (0.90–1.09) 0.835

MR Egger 86 1.10 (0.93–1.30) 0.277

Weighted median 86 0.99 (0.90–1.08) 0.793

Weighted mode 86 1.05 (0.96–1.14) 0.309

MR-PRESSO outlier-corrected 86 (6 outlier SNPs) 1.01 (0.94–1.09) 0.771

HDL-C Hip OA Inverse variance weighted 86 1.00 (0.92–1.08) 0.968

MR Egger 86 1.08 (0.93–1.26) 0.313

Weighted median 86 1.13 (1.02–1.25) 0.025

Weighted mode 86 1.09 (0.98–1.22) 0.112

MR-PRESSO outlier-corrected 86 (2 outlier SNPs) 1.02 (0.95–1.10) 0.585

TG Knee OA Inverse variance weighted 55 0.94 (0.86–1.02) 0.135

MR Egger 55 0.96 (0.84–1.11) 0.584

Weighted median 55 0.88 (0.80–0.96) 0.005

Weighted mode 55 0.93 (0.86–1.02) 0.136

MR-PRESSO outlier-corrected 55 (3 outlier SNPs) 0.93 (0.87–1.00) 0.072

TG Hip OA Inverse variance weighted 55 0.91 (0.84–0.98) 0.017

MR Egger 55 0.91 (0.80–1.03) 0.149

Weighted median 55 0.91 (0.81–1.02) 0.106

Weighted mode 55 0.89 (0.80–1.00) 0.053

MR-PRESSO outlier-corrected 55 (0 outlier SNPs) 0.91 (0.84–0.98) 0.021

OA, Osteoarthritis; SNP, single nucleotide polymorphisms; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; MR-PRESSO,
Mendelian Randomization Pleiotropy RESidual Sum and Outlier.

of the causal effect even if half of the SNPs exhibit pleiotropy
(14). The MR-Egger method adds a non-zero intercept to
allow directional horizontal pleiotropy (15). It makes the
assumption that horizontal pleiotropic effects are independent
of SNP-exposure effects, which is also known as the InSIDE
assumption. In addition, the MR-Egger regression intercept
value was used to estimate the degree of horizontal pleiotropic
effects. The weighted mode method groups SNPs according
to the similarity of their effects and estimates the causal effect
based on the largest cluster of SNPs. Therefore, it can provide
an unbiased causal effect estimate as long as the largest cluster
of SNPs is valid (16). The MR-PRESSO method can reduce
the heterogeneity of the estimate by correcting the effects
of outlier SNPs (17). We conducted MR-PRESSO analysis
using the MR-PRESSO R package and set the number of

distributions to 10,000 and the significance threshold to 0.05.
For additional sensitivity analyses, we used forest plots for
visual inspection of potential pleiotropy. Cochran’s Q statistics
were calculated to assess the extent of heterogeneity, with
P-values < 0.05 indicating significant heterogeneity. The causal
direction between exposure and outcome was determined
using the Steiger test, which compares the extent of outcome
variance and exposure variance explained by instrumental
variables (16).

Multivariable MR

As the included instrument SNPs may be associated
with multiple lipid fractions and body mass index (BMI), we
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performed multivariable MR to estimate the independent
effect of each lipid. Multivariable MR analysis was
conducted using the IVW method. Instrumental SNPs
for BMI were selected from a GWAS meta-analysis of
European ancestry conducted by the Genetic Investigation
of ANthropometric Traits (GIANT) Consortium (18)
(Supplementary Table S4).

Estimating the e�ect of lipid-lowering
therapy on OA risk

Three sets of SNPs within the HMGCR, Niemann-
Pick C1-Like 1 (NPC1L1), and PCSK9 genes were used
to mimic the LDL-C-lowering effect of statins, ezetimibe,
and evolocumab, respectively, as used in previous studies
(10, 19–23) (Supplementary Table S5). Because some SNPs
were not completely independent (r2 value for linkage
disequilibrium <0.3), we estimated the causal effect of
lipid-lowering therapy on OA using the random-effect
IVW method that accounted for the correlation among
variants, provided by the Mendelian Randomization
R package (24). The linkage disequilibrium matrix for
SNPs was extracted from the European 1,000 genome
data (25).

Results

Causal e�ects of blood LDL-C on OA risk

IVW MR suggested that LDL-C increment was associated
with reduced risks of knee OA (OR = 0.91, 95% CI:
0.86–0.95, P = 6.3 × 10−5) and hip OA (OR = 0.92,
95% CI: 0.85–0.99, P = 0.027). The MR-Egger, weighted
median, weighted mode, and MR-PRESSO outlier-corrected
methods yielded similar results (Table 1). The Cochrane Q
statistic suggested significant heterogeneity (knee OA, Q =

113.77, P = 0.005; hip OA, Q = 180.24, P < 0.001).
The MR-Egger regression showed no evidence of horizontal
pleiotropy for knee OA (Egger intercept = −0.001, P =

0.589) or hip OA (Egger intercept = 0.003, P = 0.410)
(Figures 1A,D). Visual inspection of the funnel plots revealed
no signs of horizontal pleiotropy (Supplementary Figures S1,
S2). The MR-PRESSO analysis identified one outlier and
three outliers for knee and hip OA, respectively. However,
these outliers did not influence the effect estimates for knee
OA (MR-PRESSO distortion test P-value = 0.846) or hip
OA (P = 0.708). In addition, the Steiger test demonstrated
a causal relationship between exposure and outcome (P
< 0.001).

Causal e�ects of blood HDL-C on OA risk

IVW MR revealed no evidence of the association between
HDL-C levels and OA risk (Table 1). The Cochrane Q statistic
suggested significant heterogeneity (knee OA: Q = 273.34,
P < 0.001; hip OA: Q = 142.05, P < 0.001). The MR-
Egger regression showed no evidence of horizontal pleiotropy
for knee OA (Egger intercept = −0.006, P = 0.157) or hip
OA (Egger intercept = −0.004, P = 0.223) (Figures 1B,E).
Visual inspection of funnel plots revealed no horizontal
pleiotropy (Supplementary Figures S3, S4). The MR-PRESSO
analysis revealed six outliers and two outliers for knee and
hip OA, respectively. However, these outliers did not influence
the effect estimates for knee OA (P = 0.132) and hip OA (P
= 0.201).

Causal e�ects of blood TG on OA risk

IVW MR revealed that TG increment was associated
with reduced risks of hip OA (OR = 0.91, 95% CI: 0.84–
0.98, P = 0.017) but not knee OA (OR = 0.94, 95% CI:
0.86–1.02, P = 0.135) (Table 1). The effect of TG on hip
OA was reproduced using the MR-PRESSO method (OR =

0.91, 95% CI: 0.84–0.98, P = 0.021). Weighted mode MR
also showed a trend toward reduced risks of hip OA (OR
= 0.89, 95% CI: 0.80–1.00, P = 0.053). However, the MR-
Egger regression and weighted median MR did not show
any association. The Cochrane Q statistic suggested significant
heterogeneity in the association between TG and knee OA
(Q = 125.11, P < 0.001) but not between TG and hip OA
(Q = 64.85, P = 0.148). The MR-Egger regression showed
no evidence of horizontal pleiotropy for knee OA (Egger
intercept=−0.002, P = 0.635) and hip OA (Egger intercept=0,
P = 0.994) (Figures 1C,F). Visual inspection of funnel plots
revealed no horizontal pleiotropy (Supplementary Figures S5,
S6). The MR-PRESSO analysis identified three outliers for
knee OA. However, these outliers did not influence the effect
estimates (P= 0.930). In addition, the Steiger test demonstrated
a causal relationship between exposure and outcome (P
< 0.001).

Multivariable MR

Multivariable MR revealed a protective effect of LDL-C
increment on the risk of knee OA (OR = 0.93, 95% CI: 0.87–
0.99, P = 0.021) and hip OA (OR = 0.91, 95% CI: 0.84–0.98,
P = 0.009) independent of HDL-C, TG, and BMI (Table 2).
The estimated OR was comparable to that obtained using
univariate MR analyses (Figure 2). Multivariable MR analysis
revealed that neither HDL-C nor TG level was associated with
OA risk.
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FIGURE 1

Scatter plots of MR analyses for the causal e�ect of LDL-C, HDL-C, and TG on knee (A–C) and hip (D–F) OA risk.
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TABLE 2 Multivariate Mendelian randomization analysis results.

Exposure Outcome Number of SNPs OR (95% CI) P-value

LDL-C Knee OA 38 0.93 (0.87–0.99) 0.021

HDL-C Knee OA 50 1.03 (0.95–1.11) 0.532

TG Knee OA 27 0.99 (0.90–1.08) 0.755

BMI Knee OA 360 2.14 (1.95–2.34) 6.4× 10−61

LDL-C Hip OA 38 0.91 (0.84–0.98) 0.009

HDL-C Hip OA 50 1.02 (0.92–1.12) 0.717

TG Hip OA 27 1.00 (0.90–1.12) 0.942

BMI Hip OA 360 1.54 (1.38–1.72) 5.3× 10−15

OA, Osteoarthritis; SNP, single nucleotide polymorphisms; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; TG, triglyceride; BMI, body
mass index.

FIGURE 2

Forest plot comparing causal e�ect estimates of serum lipid levels on knee (A) and hip (B) OA risk using univariate and multivariable MR analyses.

Odds ratios (ORs) with 95% confidence intervals (CIs) are scaled to 1-SD increment in blood lipid level.

Causal e�ects of lipid-lowering therapy
on OA risk

LDL-C increment determined by six SNPs in the HMGCR

region was significantly associated with a reduced risk of knee
OA (OR = 0.76, 95% CI: 0.60–0.96, P = 0.024) but not hip
OA (OR = 1.00, 95% CI: 0.75–1.34, P = 0.994) (Table 3,
Figure 3), suggesting that the LDL-C-lowering effect of statins
is related to increased risks of knee OA. In contrast, the
LDL-C-lowering effect of ezetimibe and evolocumab had no
influence on OA risk (Table 3). There was some evidence of
heterogeneity across the effects of SNPs in the NPC1L1 region
(P= 0.013).

Discussion

We performed this two-sample MR study to investigate the
effects of blood lipids and cholesterol-lowering agents on the risk
of knee and hip OA. We found that an increase in LDL-C levels
was associated with reduced risks of both knee and hip OA.
MultivariateMR analysis proved that this effect was independent
of HDL-C level, TG level, and BMI. There was some evidence
(from IVW and MR-PRESSO method) that TG increment was
associated with reduced risks of hip OA; however, this was not
reproduced in the multivariate MR. Another important finding
was that the genetically proxied LDL-C-lowering effect of statins
was related to increased risks of knee OA but not hip OA.
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TABLE 3 Estimates of the e�ect of LDL-C on OA risk using SNPs in specific genes.

Gene Outcome Number of SNPs OR (95% CI) P-value P for heterogeneity

HMGCR Knee OA 6 0.76 (0.60–0.96) 0.024 0.610

NPC1L1 Knee OA 5 1.44 (0.81–2.56) 0.219 0.091

PCSK9 Knee OA 7 0.94 (0.78–1.13) 0.512 0.665

HMGCR Hip OA 6 1.00 (0.75–1.34) 0.994 0.621

NPC1L1 Hip OA 5 1.47 (0.59–3.67) 0.411 0.013

PCSK9 Hip OA 7 0.83 (0.63–1.09) 0.184 0.226

OA, Osteoarthritis; SNP, single nucleotide polymorphisms; HMGCR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; NPC1L1, Niemann-Pick C1-Like 1; PCSK9, proprotein
convertase subtilisin/kexin type 9.

In contrast, the genetically proxied effects of ezetimibe and
evolocumab had no influence on OA risk.

In the current study, we performed two-sample MR analyses
using different methods under different assumptions, including
MR-PRESSO and multivariate MR, which yielded consistent
causal effect estimates. Previous studies also investigated the
effect of increased LDL-C levels on OA risk using MR analyses
(26–28). However, several major differences existed between
these existing studies and the current study in terms of analyses
and results. Hindy et al. (26) conducted one- and two-sample
MR studies based on the Malmö Diet and Cancer Study
(MDCS) cohort, which included ∼30,000 adults. They found
that increased LDL-C levels were associated with reduced overall
OA risk (OR = 0.83). Gene-specific subgroup analysis revealed
a trend toward reduced OA risk using SNPs within the HMGCR

gene, but this did not reach statistical significance. However,
their sample size was lower than that of the current study. In
addition, they did not evaluate site-specific OA risk (26) unlike
the present study, wherein we showed the different effects of
statin on knee and hip OA. Gill et al. (27) performed a two-
sample MR analysis and reported OR estimate for OA risk
per 1-SD increment of LDL-C similar to our study (OR =

0.94); however, they did not adjust for other lipids, which could
be potential sources of pleiotropy. In addition, they did not
investigate site- and gene-specific OA risk. Recently, Meng et al.
(28) conducted a two-sample MR analysis and demonstrated
that LDL-C increment was associated with reduced risks of both
knee OA (OR = 0.899) and hip OA (OR = 0.870). However,
they used the same database to estimate SNP-exposure and SNP-
outcome association, which could introduce bias in the two-
sample MR owing to significant sample overlap (29). Therefore,
we believe that our study provides a more robust and specific
estimate of the causal effect than previous studies.

Although LDL-C plays a critical role in the pathogenesis
of atherosclerosis, its role in OA has received relatively
little attention. Since both obesity and hyperlipidemia are
manifestations of metabolic syndrome and obesity is a well-
recognized risk factor for OA, it is natural to assume that
increased LDL-C is also a risk factor for OA (30). Evidence
from animal experiments also supports this assumption. In

FIGURE 3

Forest plot comparing causal e�ect estimates of LDL-C on OA

risk restricted to three sets of SNPs within HMGCR, NPC1L1 and

PCSK9 regions. Odds ratios (ORs) with 95% confidence intervals

(CIs) are scaled to 1-SD increment in LDL-C level.

a hyperlipidemic mouse model, Gierman et al. (31) found
that a high-cholesterol diet could lead to the development
of both OA and atherosclerosis. Interestingly, administration
of atorvastatin can suppress the development of both OA
and atherosclerosis, whereas ezetimibe only has an effect on
atherosclerosis. It was found that lipid deposits in osteoarthritic
cartilage and chondrocytes at an early stage of OA, which
may trigger the development of OA (32). In addition, oxidized
LDL participates in cartilage destruction by activating synovial
cells, thereby promoting the release of growth factors and
proinflammatory cytokines (30). Nevertheless, our MR results
provide an alternative hypothesis that genetically predicted
lower LDL-C levels are associated with increased risks of OA.
Further research is warranted to explain the discrepancies
between animal and human genetic studies.

In line with the effect of LDL-C on OA risk, our MR results
suggested that the LDL-C-lowering effect of statins increased the
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risk of knee OA. Many observational studies have investigated
the association between statin use and OA risk; however,
conflicting results have been reported (33–40). In a prospective
cohort study of 5,674 women, Beattie et al. (33) found that
statin use was associated with increased risks of incidental hip
OA but not with the progression of hip OA. Eymard et al.
(34) performed a post-hoc analysis of 336 patients from the
SEKOIA trial and found an independent association between
statin use and radiological progression of knee OA (OR = 1.49,
P = 0.010) after adjusting for potential confounding factors.
Makris et al. (35) conducted a 1:1 propensity score matching
study that included 6,728 statin users and 6,728 non-users.
They concluded that statin use led to an increased risk of non-
traumatic arthritis (OR = 1.17, 95% CI: 1.09–1.25). In contrast,
Clockaerts et al. (36) conducted a prospective cohort study of
2,921 participants and revealed that statin use led to a 50%
reduction in overall knee OA progression, as assessed using the
Kellgren and Lawrence score. Haj-Mirzaian et al. (37) conducted
a retrospective cohort study stratifying participants based on
the existence of Heberden nodes (HNs) and found a protective
effect of statin use on the progression of radiographic knee
OA in HN-positive participants. Other studies have found no
effect of statin use on the risk or progression (38–40). A recent
meta-analysis of observational studies found high heterogeneity
among studies on the effect of statins on the progression of OA
(7). Nevertheless, observational studies are inevitably affected
by confounding factors, and more importantly, by indication
bias (41), which has been well-discussed in studies evaluating
statin use and colorectal cancer risk (42). Because of indication
bias, observational studies may falsely show a protective effect of
statins if hyperlipidemia is related to a lower risk of the disease,
which is exactly the current situation since we proved that LDL-
C increment was associated with reduced risks of knee and hip
OA. According to Mendel’s law of inheritance, alleles obtained
by individuals in an SNP are random with respect to potential
confounding factors. Using SNPs as instrumental variables, MR
studies can mimic the effect of randomized controlled trials
(43) and can thus provide causal effect estimation closer to the
real situation. In addition to statins, ezetimibe and evolocumab
are commonly used LDL-C-lowering drugs. However, to the
best of our knowledge, no previous study has reported its
effects on OA. Further studies need to compare the effects
of statins, ezetimibe, and evolocumab on OA, which may
overcome the potential indication bias of previous observational
studies (44).

The limitations of this study are as follows. First, the MR
methodology requires the absence of horizontal pleiotropy, and
instrumental variables affect outcomes only through their effect
on exposure. In the current study, potential pleiotropy may be
due to the effect of instrumental SNPs on other lipids and body
weight. Nevertheless, we conducted sensitivity MR analyses
using different methods under different assumptions, including
MR-Egger regression, which showed no evidence of directional

horizontal pleiotropy. We also performed multivariate MR
wherein all the analyses yielded similar causal effect estimates.
Second, the analyses were conducted based on European
ancestry. Therefore, these results may not be applicable
to other populations as well. Thirdly, estimates of causal
effects were reported as OR per one SD increase in LDL-
C, therefore, we could not assess the actual dose-response
effect of increasing LDL-C levels and risk of OA. Fourthly,
sex may modify the correlation between blood lipid and OA.
Future study may stratify male and female individuals to
identify this effect. Finally, we used SNPs within HMGCR,

NPC1L1, and PCSK9 to mimic the LDL-lowering effect of
statins, ezetimibe, and evolocumab. There may be differences
between the genetically proxied effect and the real drug effect.
In addition, we could not compare the effects of different types
of statins.

Conclusions

In conclusion, our MR study suggests that genetic
predisposition to higher blood LDL-C levels may decrease the
risk of both knee and hip OA. This effect was independent
of HDL-C level, TG level, and BMI. The genetically proxied
LDL-C-lowering effects of statins may increase the risk of
knee OA but not hip OA. Further studies are needed
to reveal the mechanisms underlying the effect of LDL-C
and statin on OA and its potential role in treating and
preventing OA.
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