Renal podocyte injury, apoptosis and autophagy are involved in the occurrence and development of diabetic nephropathy (DN). Kaempferol (KPF) has the promotion of autophagy and inhibition of apoptosis properties in the development of miscellaneous diseases, but these functions in DN have not yet been elucidated.
We used
We demonstrated that KPF treatment significantly attenuated diabetes-induced albuminuria and glycolipid metabolism dysfunction. In addition, KPF alleviated mesangial matrix expansion, glomerular basement membrane thickening and loss or fusion of podocytes. Mechanistically, KPF treatment regulated the expression of autophagic proteins (upregulated LC3II, Beclin-1, Atg7 and Atg 5, and downregulated p62/SQSTM1), accompanied by inhibited renal apoptosis (downregulated Caspase 3 and Bax, and upregulated Bcl-2). KPF could significantly regulate the AMPK/mTOR signaling pathways by increasing p-AMPK and decreasing p-mTOR expressions.
In conclusion, KPF might have a protective effect on DN through reduced apoptosis and enhanced podocytes autophagy, which were correlated with regulating AMPK/mTOR pathways.