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Even in the era of precision medicine, with various molecular tests based on

omics technologies available to improve the diagnosis process, microscopic

analysis of images derived from stained tissue sections remains crucial for

diagnostic and treatment decisions. Among other cellular features, both nuclei

number and shape provide essential diagnostic information. With the advent of

digital pathology and emerging computerizedmethods to analyze the digitized

images, nuclei detection, their instance segmentation and classification can

be performed automatically. These computerized methods support human

experts and allow for faster and more objective image analysis. While

methods ranging from conventional image processing techniques to machine

learning-based algorithms have been proposed, supervised convolutional

neural network (CNN)-based techniques have delivered the best results. In

this paper, we propose a CNN-based dual decoder U-Net-based model to

perform nuclei instance segmentation in hematoxylin and eosin (H&E)-stained

histological images. While the encoder path of the model is developed to

perform standard feature extraction, the two decoder heads are designed to

predict the foreground and distance maps of all nuclei. The outputs of the two

decoder branches are then merged through a watershed algorithm, followed

by post-processing refinements to generate the final instance segmentation

results. Moreover, to additionally perform nuclei classification, we develop an

independent U-Net-based model to classify the nuclei predicted by the dual

decoder model. When applied to three publicly available datasets, our method

achieves excellent segmentation performance, leading to average panoptic

quality values of 50.8%, 51.3%, and 62.1% for the CryoNuSeg, NuInsSeg,

and MoNuSAC datasets, respectively. Moreover, our model is the top-ranked

method in the MoNuSAC post-challenge leaderboard.
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1. Introduction

Evaluation of images obtained from tissue sections stained

with hematoxylin and eosin (H&E) has long been the gold

standard method in medicine for disease diagnosis, cancer

grading, and treatment decisions (1). While at some point it

was predicted that molecular biology would replace traditional

histopathology, even in the era of precision medicine, where an

ever-growing list of molecular tests based on omics technologies

is available to support precision oncology, microscopic analysis

and interpretation of the information contained in H&E-stained

tissue sections provides critical information for diagnostic and

treatment decisions. It is time- and cost-efficient, and can be

applied to small amounts of tissue, while rapid intra-operative

tissue analysis based on H&E staining of cryosections remains

indispensable to assist surgeons in deciding how to proceed

with surgery. H&E-stained histological image analysis also

provides valuable information formedical scientists studying the

pathophysiology of diseases (2, 3).

Interpretation of H&E-stained images by experts such as

pathologists, clinicians, or scientists is however the bottleneck of

the common manual analysis as it is time-consuming and prone

to inter-observer differences. With the advent of microscopy-

based slide scanners that acquire and digitize histological images,

computer-aided image analysis systems have been introduced

to support human experts and to make the process faster and

more objective (4). Computerized methods and in particular

deep neural network (DNN)-based algorithms have been shown

to be capable of providing diagnostic interpretation with

similar accuracy to medical experts (5, 6), while computer-

aided analysis can also enable the extraction of quantitative and

complex qualitative features that are not recognized by human

experts (7).

The nuclei are the most prominent cell organelles. Since

they are present in almost all eukaryotic cells, their detection

enables cell localization. Various intra- and extra-cellular factors

determine the nuclear shape. This results in a physiologic

variation of nucleus shapes that can be used to identify

sub-populations of cells (8). Moreover, there are significant

morphological alterations of nuclei in diseases. Cancer, for

example, is known to alter nuclear parameters such as size

and shape. These variations are thus an important piece of

information contributing to tumor diagnosis and grading (9).

Consequently, automated detection, segmentation and in some

cases classification of nuclei are important processing steps of

computer systems used in histological image analysis in the

clinical and scientific context.

Various computer-assisted approaches have been proposed

for nuclei instance segmentation, ranging from conventional

image processing techniques to classical machine learning

and advanced deep learning-based approaches (10–12).

Image processing techniques such as adaptive thresholding

or watershed segmentaion are still widely used for

non-sophisticated images. Open-source software packages,

such as ImageJ2 (13) or CellProfiler (14) have in-built image

processing engines that can be used for microscopic image

analysis, for example, for the segmentation of cell nuclei.

However, for tissue samples where the nuclei are close together

or even overlap or show considerable differences in intensity,

such methods generally do not perform well (15, 16). For

more complex images, machine learning, and in particular

convolutional neural network (CNN)-based approaches,

can be exploited (12). In the medical domain where access

to fully annotated dataset is limited, more and more semi-

supervised and unsupervised approaches are being used

to deal with this issue (17, 18). However, supervised deep

learning (DL) and specially CNN-based approaches still

deliver the best performances in most cases. Supervised CNN

algorithms have shown excellent detection, segmentation

and classification performance for a range of medical image

modalities such as COVID-19 detection in X-ray images (19),

cervical cell classification or pollen grain classification in

microscopic images (20–22) or foot ulcer segmentation in

clinical images (23). CNN-based techniques for nuclei instance

segmentation (and classification) can be broadly classified

into two main categories, detection-based methods such as

Mask R-CNN (24), and encoder-decoder-based approaches

such as the U-Net model and its variants (25–27), while more

recently, hybrid approaches have also been proposed to perform

nuclei instance segmentation in H&E-stained histological

images (28–30). Although these methods have shown significant

improvement compared to other non-DL-based approaches,

a robust and accurate model for the segmentation of nuclei of

multiple cell types in different organs that generalizes well for

different datasets is still challenging to achieve.

In this paper, we propose a novel architecture, consisting

of one encoder and two decoders, to perform nuclei instance

segmentation in H&E-stained histological images. While the

encoder performs standard feature extraction, the decoders

are designed to predict image foreground and distance maps

of all nuclei. To verify robustness and generalisability of our

segmentation model, we test it on three publicly available

datasets and demonstrate it to achieve excellent instance

segmentation performance. Moreover, to perform nuclei

classification, we develop an independent U-Net-based model

that classifies the objects detected by the dual decoder model.

Applied on the CryoNuSeg (31) and NuInsSeg (32) datasets

(both datasets for instance segmentation of cell nuclei) and the

MoNuSAC dataset (16) (a dataset for instance segmentation and

classification of cell nuclei), our method yields average panoptic

quality (PQ) scores of 50.8%, 51.3%, and 62.1%, respectively.

Furthermore, it is the top ranked entry in the MoNuSAC post-

challenge leaderboard1.

1 https://monusac-2020.grand-challenge.org/Results/.
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FIGURE 1

Generic workflow of the proposed method. The blue and green parts represent the nuclei instance segmentation and nuclei classification

components, respectively.

2. Method

Our approach is inspired by our previous work on nuclei

instance segmentation in H&E-stained histological images

in Mahbod et al. (27). However, in contrast to there, where two

separate models were designed to predict nuclei foreground and

nuclei distance maps, a single model performs both tasks in our

proposed approach. In addition, we also present an independent

classification model to extend the workflow to also perform

nuclei classification (if required). Figure 1 illustrates the generic

workflow of our proposed model for performing nuclei instance

segmentation (blue sections) and classification (green sections).

In the following, we describe the details of the utilized datasets,

our proposed model, and the experimental setup.

2.1. Datasets

We use four datasets of H&E-stained histological images,

namely the CryoNuSeg (31), NuInsSeg, MoNuSeg (15), and

MoNuSAC (16) datasets. Details on how we exploit these

datasets in different experiments are given in Section 2.6.

CryoNuSeg, NuInsSeg, and MoNuSeg are manually

annotated datasets for nuclei instance segmentation. The

CryoNuSeg dataset contains 30 image patches of 512 × 512

pixels from 10 different human organs, NuInSeg comprises

667 image patches of the same size from 31 human and

mouse organs, while MoNuSeg contains 44 images of size of

1, 000× 1, 000 pixels from 9 human organs.

MoNuSAC is a manually annotated dataset for nuclei

instance segmentation and classification and has 209 and 101

image patches in the training and test set, respectively. The

images are of varying sizes, ranging from 82 × 35 to 1, 422 ×

2, 162 pixels, and are derived from four human organs. Four

nuclei classes are manually labeled, namely epithelial (21,752

nuclei), lymphocyte (23,460 nuclei), neutrophil (803 nuclei), and

macrophage (894 nuclei).

Further details of the datasets can be found in Table 1 and

the respective publications/repositories.

2.2. Pre-processing

Considering the dataset and the task (either nuclei

instance segmentation or nuclei instance segmentation and

classification), we apply the following pre-processing steps:

• Intensity normalization: we normalize the intensity values

of the images in all datasets to the standard range of [0; 1]

as normalization has shown to be an important step in

training a CNN nuclei segmentation model (33).

• Augmentation: we apply various forms of morphological

and color augmentations during the training phase

including random horizontal/vertical flipping, random

scaling and random contrast as well as brightness shifts.

• Generating additional ground truth masks: we create

refined binary masks and elucidation distance maps from

the provided manual binary annotations in all datasets to

train the dual decoder segmentation model. To generate

a refined binary masks, we remove the touching borders

between the overlapping nuclei and then apply an erosion

operation to obtain a better distinction between close
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TABLE 1 Details of the utilized datasets.

# patches # nuclei Magnification # organs Patch size # classes Source

CryoNuSeg 30 7,596 40× 10 512× 512 - TCGA

NuInsSeg 665 30,698 40× 31 512× 512 - IPA

MoNuSeg 44 28,846 40× 9 1, 000× 1, 000 - TCGA

MoNuSAC 310 46,909 40× 4 82× 35− 1422× 2, 162 4 TCGA

TCGA=The Cancer Genome Atlas; IPA= Institute for Pathophysiology and Allergy Research, Medical University of Vienna.

FIGURE 2

Image examples from the employed datasets (first row), the

refined masks generated from ground truth annotations (second

row), and the obtained distance maps (third row).

objects as suggested in Mahbod et al. (27). Examples of

generated masks for each dataset are shown in Figure 2.

For the MoNuSAC training data, we also create multi-

class labeled masks to train the classification model. The

generated refined binary and labeled masks are only used

in the training phase, and for performance evaluation,

the originally labeled masks are compared with the

model’s predictions.

2.3. Model

Our proposed method for nuclei instance segmentation is

a dual decoder U-Net-based model. The generic architecture

of the developed model is shown in Figure 3. The encoder

part of the model has a similar architecture as the original

U-Net model, with five convolution blocks, followed by max-

pooling layers to extract deep features from the images. In

contrast to the original U-Net architecture, we also add drop-

out layers between convolutional layers as regularisers (with a

rate of 0.1). The generated features in the encoder are then

fed to the two decoder paths to predict nuclei foreground and

nuclei elucidation distance maps, respectively. The architectures

of these two decoders are identical except for the last layer.

Both have five convolutional layers, which are equipped with

drop-out layers similar to the encoder, and we use transposed

convolutional layers in the decoders to up-sample the feature

maps. The last activation functions in the first (distance map)

and second (binary mask) decoders are linear and sigmoid

activations, respectively. We use 3 × 3 convolutional kernels

and ReLu activation layers in all other layers, both for encoder

and decoder. The loss function of the distance map head is a

mean squared error loss function, while the loss function of the

binary mask head is a combination of Dice loss and binary cross-

entropy loss. We merge the three losses, giving equal weight to

each loss term.We utilize the Adam optimiser (34) and an initial

learning rate of 0.001 to train the dual decoder model. We train

the model for 120 epochs while dropping the learning rate by a

factor of 0.1 after every 20 epochs. The model is trained from

scratch after Xavier initialization (35) of the weights.

To obtain the final instance segmentation results, the

outputs of the dual decoder models are merged as shown

in Figure 1. We first calculate the average nucleus size from

the semantic segmentation results (binary mask head), and

then apply a Gaussian smoothing filter to the distance map

predictions with the kernel size of the file derived from the

average nucleus size. Finally, we identify the local maxima from

the filtered predicted distance maps and use them as seed points

for a marker-controlled watershed algorithm (36) to produce the

labeled segmented masks.

To perform nuclei classification as required in the

MoNuSAC challenge, we design an independent U-Net-based

classification model to the workflow. The generic architecture

of the developed classification model is shown in Figure 4. The

encoder and decoder of the classificationmodel are similar to the

dual decoder model but with a unique decoder with a softmax

activation in the last layer. Moreover, in contrast to the dual

decoder model, here we generate four output masks, one for

each nucleus class. We use a combination of categorical cross-

entropy andDice loss (with equal weights) as loss function, while

the other parameters are identical to the dual decoder model.

The output from the classification network is used to determine

the nuclei classes of the predicted objects by the dual decoder

model. We use a majority voting approach based on the output
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FIGURE 3

The architecture of the proposed dual decoder model for nuclei instance segmentation. The two decoders are designed to perform binary

segmentation and distance map prediction, respectively. For simplicity, skip connections between the encoder and two decoders are not shown.

FIGURE 4

The architecture of the classification model for nuclei instance categorization. The di�erent colors in the output represent the nuclei classes in

the MoNuSAC dataset. For simplicity, skip connections between the encoder and two decoders are not shown.

of the classification model to choose the nucleus type for each

object.

2.4. Post-processing

We remove tiny detected objects (with an area less

than 30 pixels) from the segmentation masks during post-

processing. Any holes inside detected nuclei are filled using

morphological operations.

For the MoNuSAC experiments, we also remove the vague

areas from the final instance segmentation and classification

masks. The challenge organizers provide these vague areas for

the entire test set images. We use a five-fold cross-validation

model ensemble and test-time augmentation (TTA) for our

finalized submission for the MoNuSAC post-challenge phase,

as these methods have been shown to boost the segmentation

performances in other studies (37) including our own (38).

We use 90-degree rotated and horizontally flipped images

for TTA.
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2.5. Evaluation

To evaluate the results for the nuclei instance segmentation

tasks (CryoNuSeg and NuInsSeg), we use Dice score, aggregate

Jaccard Index (AJI), and the panoptic quality (PQ) score. While

the Dice score characterizes the general semantic segmentation

performance, AJI and PQ score also evaluate a model’s

ability to separate touching objects and thus quantify instance

segmentation performance. A higher Dice score, higher AJI and

higher PQ score indicate better performance; further details

about the evaluation indices can be found in Graham et al. (39)

and Kirillov et al. (40). We also perform statistical Wilcoxon

signed-rank test method (37, 41) for each of the evaluation index

to compare our model with other approaches.

For the combined nuclei instance segmentation and

classification task (MoNuSAC), we use the average PQ score per

nuclei class for evaluation. The MoNuSAC challenge organizers

performed the evaluation based on the 101 test images of the

challenge dataset. Further details about the submission process

and multi-class mask format for evaluation can be found on the

challenge website2 and in Verma et al. (16).

2.6. Experimental setup

We conduct three experiments to evaluate the performance

of our proposed method. In the first two experiments, we

use the CryoNuSeg and NuInsSeg datasets, respectively, to

evaluate nuclei instance segmentation performance. In the

third experiment, we assess nuclei instance segmentation and

classification performance using the MoNuSAC and MoNuSeg

datasets with the MoNuSeg dataset only being used for training

but not for evaluation purposes. We run our experiments

with an identical setup to the one proposed in the reference

studies (16, 31) to compare our results with other state-of-the-

art algorithms.

For the CryoNuSeg experiment, we follow the 10-fold cross-

validation (10CV) scheme proposed in the original study (31),

for which the dataset (30 images) is divided into 10-folds (each

containing three images) based on the organs. Then, in each CV

fold, the images from nine organs are used for training, while the

images from the remaining organ are used for testing. We use

full-sized images of 512×512 pixels both for training and testing.

For the NuInsSeg experiment, we use a 5-fold cross-

validation scheme as suggested in the NuInsSeg repository3.

Full-sized images of 512 × 512 pixels are used for training

and testing. We utilize an identical suggested random state to

generate the folds.

For the MoNuSAC experiment, we use images of size 256×

256 randomly cropped from the MoNuSeg dataset to pre-train

2 https://monusac-2020.grand-challenge.org/.

3 https://www.kaggle.com/datasets/ipateam/nuinsseg.

the dual decoder model. Then, we utilize 256 × 256 cropped

images from the MoNuSAC training set to fine-tune the model.

Since some MoNuSAC images are smaller than 256 × 256

pixels, we use white pixel padding to create 256 × 256 pixel

images. To train the classification model, we extract overlapping

patches from the MoNuSAC training images.To address the

class imbalance in the dataset, we extract more patches from

the underrepresented classes, taking into account the number of

nuclei in each class in the training set. In total, 14,862 patches

are generated to train the classification model. To evaluate the

performance, we use the test set of the MoNuSAC challenge.

The test images are first padded (white pixel padding) to create

square images and then resized to suitable image sizes (the

closest size divisible by 32). We apply the inverse steps to the

predicted results to have the final segmentation masks identical

to the original MoNuSAC test image sizes. It should be noted

that the evaluation in this experiment was performed directly by

the challenge organizers.

All experiments are performed on a single workstation with

an Intel Core i7-8700 3.20 GHz CPU, 32 GB of RAM and a

TITIAN V NVIDIA GPU card with 12 GB of installed memory.

Matlab software (version 2020a) is used to prepare the datasets

and generate segmentationmasks, while the Tensorflow (version

2.4) and Keras (version 2.4) deep learning frameworks are used

for model training and testing.

3. Results and discussion

The nuclei instance segmentation results on the CryoNuSeg

dataset are given in Table 2, which lists the Dice score, AJI and

PQ score of our proposed model as well as of several other

approaches. The comparative results are split into three sections.

The first section (first row) compares our method (row

8) with a standard image processing technique using the

StrataQuest (SQ) software (version 7.1) 4. We use SQ’s pre-built

image processing engines to derive the results. We use adaptive

thresholding, local maxima detection, Watershed algorithm and

morphological operations to derive the results. The results show

that our model delivers a much better performance considering

all three evaluation indices.

The second section (rows 2–4) is an ablation study.

This section shows the performance of a single semantic

segmentation U-Net (row 2), a single distance U-Net (row 3),

and two independent models for semantic segmentation and

distance map prediction (row 4) as suggested in Mahbod et al.

(27). The results of the ablation study confirm the superior

performance of our proposed dual decoder approach (row 8)

compared to the sub-models for all three evaluation indices.

4 TissueGnostics GmbH https://tissuegnostics.com/products/

contextual-image-analysis/strataquest.
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TABLE 2 Nuclei instance segmentation results on CryoNuSeg dataset

based on 10CV configuration from Mahbod et al. (31).

Dice [%)] AJI [%)] PQ [%)]

Standard image processing 71.9 (*) 39.9 (*) 32.0 (*)

U-Net+Watershed (25, 36) 79.3 (*) 47.8 (*) 40.4 (*)

Distance U-Net+Watershed (27, 42) 74.7 (*) 48.6(*) 37.5 (*)

Two-stage U-Net (27) 80.3 (*) 52.5 (*) 47.7 (*)

Attention U-Net (43) 79.4 (*) 48.2 (*) 41.7 (*)

Residual attention U-Net (43, 44) 79.8 (*) 49.1 (*) 42.7 (*)

CellPose (45) 77.6 (*) 52.6 50.9

Proposed dual decoder U-Net 81.5 54.1 50.8

(*) signs for each evaluation index show statistical differences (p < 0.05) between our

proposed method and other approaches.

The third section (rows 5–7) compares the performance

of our method (row 8) with other state-of-the-art DL-based

algorithms. As is evident from the ablation study and reported

results in the table, our proposed dual decoder U-Net-based

model outperforms the other approaches based on the Dice

score and AJI and delivers very competitive performance based

on the PQ score.

It should be noted that for all reported results in the table

(besides the standard image processing technique where a set

of fixed empirically-driven parameters are used), we utilize the

exact same 10CV folds suggested in Mahbod et al. (31). These

results confirm our proposed algorithms’ excellent semantic

and instance segmentation performances. Examples of this

performance are given in Figure 5, which shows nuclei instance

segmentation results for some CryoNuSeg images.

We report the results of instance segmentation of our model

and several others on the NuInsSeg dataset in Table 3, all based

on identical 5CV folds as defined in the repository. Similar

to the previous experiments for the CryoNuSeg dataset, we

report the results in three sections for comparison to standard

image processing technique (first row), ablation study (rows 2-

4) and comparison to other deep learning- based approaches

(rows 5-7). The results in the first two sections confirm the

superior performance of our proposed method compared to

standard image processing and sub-models derived from our

dual decoder architecture.

As we can see in the third section, our proposed model

(row 8) clearly achieves the best instance-based segmentation

performance (i.e., the highest AJI and PQ score), while

delivering slighlty inferior semantic segmentation performance

based on the Dice score. In Figure 6, we show some examples of

the automatic segmentations obtained from our approach.

The results in Tables 2, 3 also show that the majority

of the DL-based results are superior in comparison to the

applied standard image processing approach by a large margin,

FIGURE 5

Example results on CryoNuSeg test images, selected from

adrenal gland (top), larynx (middle), and lymph node (bottom)

samples.

TABLE 3 Nuclei instance segmentation results on NuInsSeg dataset

based on the 5CV configuration from the repository.

Dice [%)] AJI [%)] PQ [%)]

Standard Image processing 47.8 (*) 23.6 (*) 10.7 (*)

U-Net+Watershed (25, 36) 78.8 50.5 (*) 42.8 (*)

Distance U-Net+Watershed (27, 42) 74.1 (*) 50.3 (*) 41.0 (*)

Two-stage U-Net (27) 76.6 (*) 52.7 (*) 47.2 (*)

Attention U-Net (43) 80.5 (*) 45.7 (*) 36.4 (*)

Residual attention U-Net (43, 44) 81.4 (*) 46.2 (*) 36.9 (*)

CellPose (45) 74.7 (*) 52.8 (*) 48.0 (*)

Proposed dual decoder U-Net 79.4 55.9 51.3

(*) signs for each evaluation index show statistical differences (p < 0.05) between our

proposed method and other approaches.

especially in Table 3 (minimum difference of 26.3%, 22.1%, and

25.7% for the Dice, AJI and PQ score, respectively).

The results obtained on the MoNuSAC dataset are given in

Table 4. Since the results are directly provided by the challenge

organizers and they only report results in terms of average PQ

scores, we do so also in the table. It should be noted that the

results are slightly different from the original report in Verma

et al. (16) since the authors of Verma et al. (16) detected a bug

in the evaluation code; the official updated results (identical to

those in Table 4) are available in Verma et al. (46), while further

details about the evaluation error can be found in Foucart

et al. (47).

Our proposed method is top-ranked in the MoNuSAC post-

challenge leaderboard and would be ranked second considering
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both legacy and post-challenge phases. For nuclei class-

dependent scores, our model achieves the second, second, fourth

and second rank for the epithelial, lymphocyte, neutrophil, and

macrophage class, respectively. While our method yields very

competitive scores in comparison to the top-ranked approach,

the results are not directly comparable since the latter used the

PanNuke dataset of about 200,000 segmented nuclei (48), i.e., a

vastly larger dataset, for pre-training. Samples results from the

MoNuSAC experiment are shown in Figure 7.

In general, our results in Tables 2–4 show superior or at least

very competitive nuclei instance segmentation performance of

our model in comparison to other state-of-the-art methods.

Multi-task learning in encoder-decoder-based architectures has

become more popular in recent years. Works such as DDU-

Net (49) for small-size road detection in high-resolution remote

sensing images, ADU-Net (50) for rain and haze removal in

FIGURE 6

Example results on NuInsSeg test images, selected from human

brain (top), human cardia (middle), and human cerebellum

(bottom) samples.

natural images or two-stage and dual-decoder convolutional

U-Net (51) ensembles for vessel and plaque segmentation

in ultrasound images are examples of multi-task models for

semantic segmentation or image reconstruction. In our study,

we propose a novel dual-task model for a new application, i.e.,

nuclei instance segmentation in histological images.

While here we report results on datasets that mainly

serve for development and benchmarking purposes, our final

intention is to make use of our method in either clinical

or research applications. Automatic nuclei segmentation and

classification are essential tasks in digital pathology; they

enable nuclei morphology analysis, cell type classification, as

well as cancer detection and grading. Our model can add to

the qualitative and quantitative analyses of cells in cancer-

affected tissues whenever H&E-stained tissue sections are part

of the diagnostic pipeline. For example, in the histopathologic

examination of prostate tissue biopsies, nuclei segmentation

is still a decisive factor for diagnosing and grading prostate

FIGURE 7

Example results on MoNuSAC images. The colors in the ground

truth and segmentation masks represent the di�erent nuclei

types (red = epithelial, yellow = lymphocyte, blue = neutrophil,

and green = macrophage).

TABLE 4 Nuclei instance segmentation and classification results on the MoNuSAC challenge test data in terms of average PQ scores for di�erent

nucleus classes.

Team Epithilial cells Lymphocytes Macrophages Neutrophils Average Rank

TIA-Lab 60.3 63.5 63.1 66.5 65.8 L1

SJTU-426 62.2 56.0 61.2 63.0 61.8 L2

IIAI 60.1 55.6 60.5 61.3 60.5 PL2

Sharif_hooshpardaz 55.2 54.5 50.2 60.0 58.2 PL3

IVG 56.7 45.8 51.2 60.0 55.3 L3

Proposed 61.0 57.1 55.4 65.2 62.1 PL1

In the rank column, L represents the legacy leaderboard, while PL refers to the post-challenge leaderboard.
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cancer. A concentration of epithelial nuclei on the prostate

gland’s boundaries indicates an intact tissue structure (the tissue

is thus benign). On the other hand, spreading of epithelial nuclei

with irregular shapes across the stroma areas suggests that the

biopsy sample is malignant (52, 53). Following the detection and

segmentation of nuclei with our proposed model for instance

segmentation, the classification component of our model

could thus be trained to distinguish healthy and malignant

nuclei shapes.

Previous work has suggested that the same trained

algorithms often yield different performance metrics for

tissues from different organs (54, 55). Thus, effective nuclei

segmentation methods which can be generalized across various

cell, tissue and organ types are required. Our model has

demonstrated to perform very well on different datasets

containing various organs generated by different laboratories

or clinics. Another application scenario is pharmacological

research, where imaging technologies have become essential

tools for drug development. Here, our method could enable

rapid and accurate evaluation of in vivo experiments, where the

effect of certain drugs on cell number (i.e., nuclei number) or

the shape and size of the nuclei should be tested, specifically

in organs with a high density of nuclei. If, in this context,

it is required to evaluate the effect of the drug on certain

cell types, such as immune cells or cancer cells, further

training of the classification component of our model might

be required.

Last no least, some recent work, such as low-cost U-

Net (56) and pruned models (57), introduce computationally

less expensive models to reduce inference time and make the

CNN-based algorithm more applicable in a real clinical setting,

and we aim to extend our work in this direction in our

future research.

4. Conclusions

Nuclei instance segmentation and classification are essential

in analyzing H&E-stained whole slide histological images. In

this paper, we have proposed a multi-task encoder-decoder-

based model to identify, segment, and if additionally required

classify nuclei in histological image patches. The proposed

model is demonstrated to yield excellent performance on three

benchmark datasets and shown to outperform other state-of-

the-art approaches.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found below: https://github.

com/masih4/dual_decoder_nuclei_segmentation.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent for

participation was not required for this study in accordance

with the National Legislation and the institutional requirements.

Ethical review and approval was not required for the animal

study because this study was conducted retrospectively using

human and animal subject data made available through open

access. Ethical approval was not required as confirmed by the

license attached with the open access data.

Author contributions

AM and IE: conceptualization, methodology, and writing–

review and editing. GD, RE, and IE: funding acquisition. AM:

investigation. IE and SH: supervision. AM, GS, and SH: writing–

original draft. All authors read and agreed to the published

version of the manuscript.

Funding

This work was supported by the Austrian Research

Promotion Agency (FFG), No. 872636.

Acknowledgments

The authors would like to thank TissueGnostics’s Research

and Development team for valuable inputs and suggestions.

Moreover, we thank NVIDIA corporation for the generous GPU

donation.

Conflict of interest

Author RE was employed by TissueGnostics GmbH.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of

interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inMedicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2022.978146
https://github.com/masih4/dual_decoder_nuclei_segmentation
https://github.com/masih4/dual_decoder_nuclei_segmentation
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mahbod et al. 10.3389/fmed.2022.978146

References

1. Chan JKC. The wonderful colors of the hematoxylin-eosin stain
in diagnostic surgical pathology. Int J Surg Pathol. (2014) 22:12–32.
doi: 10.1177/1066896913517939

2. Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how deep
learning is poised to revitalize histomorphology for personalized cancer care. NPJ
Prec Oncol. (2017) 1:1–5. doi: 10.1038/s41698-017-0022-1

3. Angerilli V, Galuppini F, Pagni F, Fusco N, Malapelle U, Fassan M. The role of
the pathologist in the next-generation ERA of tumor molecular characterization.
Diagnostics. (2021) 11:339. doi: 10.3390/diagnostics11020339

4. Wu Y, Cheng M, Huang S, Pei Z, Zuo Y, Liu J, et al. Recent advances of deep
learning for computational histopathology: principles and applications. Cancers.
(2022) 14:1199. doi: 10.3390/cancers14051199

5. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.
Dermatologist-level classification of skin cancer with deep neural networks.
Nature. (2017) 542:115–8. doi: 10.1038/nature21056

6. Zhang Z, Chen P, McGough M, Xing F, Wang C, Bui M, et al. Pathologist-level
interpretable whole-slide cancer diagnosis with deep learning. Nat Mach Intell.
(2019) 1:236. doi: 10.1038/s42256-019-0052-1

7. Dong F, Irshad H, Oh EY, Lerwill MF, Brachtel EF, Jones NC,
et al. Computational pathology to discriminate benign from malignant
intraductal proliferations of the breast. PLoS ONE. (2014) 9:e114885.
doi: 10.1371/journal.pone.0114885

8. Skinner BM, Johnson EE. Nuclear morphologies: their diversity and functional
relevance. Chromosoma. (2017) 126:195–12. doi: 10.1007/s00412-016-0614-5

9. Dey P. Cancer nucleus: morphology and beyond. Diagn Cytopathol. (2010)
38:382–90. doi: 10.1002/dc.21234

10. Kumar N, Verma R, Sharma S, Bhargava S, Vahadane A, Sethi
A. A dataset and a technique for generalized nuclear segmentation for
computational pathology. IEEE Trans Med Imaging. (2017) 36:1550–60.
doi: 10.1109/TMI.2017.2677499

11. Hayakawa T, Prasath V, Kawanaka H, Aronow BJ, Tsuruoka S. Computational
nuclei segmentation methods in digital pathology: a survey. Arch Comput Methods
Eng. (2021) 28:1–13. doi: 10.1007/s11831-019-09366-4

12. Hollandi R, Moshkov N, Paavolainen L, Tasnadi E, Piccinini F, Horvath
P. Nucleus segmentation: towards automated solutions. Trends Cell Biol. (2022)
32:295–310. doi: 10.1016/j.tcb.2021.12.004

13. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET,
et al. ImageJ2: Imagej for the next generation of scientific image data. BMC
Bioinformatics. (2017) 18:1–26. doi: 10.1186/s12859-017-1934-z

14. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O,
et al. CellProfiler: image analysis software for identifying and quantifying cell
phenotypes. Genome Biol. (2006) 7:R100. doi: 10.1186/gb-2006-7-10-r100

15. Kumar N, Verma R, Anand D, Zhou Y, Onder OF, Tsougenis E, et al. A
multi-organ nucleus segmentation challenge. IEEE Trans Med Imaging. (2020)
39:1380–91. doi: 10.1109/TMI.2019.2947628

16. Verma R, Kumar N, Patil A, Kurian NC, Rane S, Graham S, et al.
MoNuSAC2020: A multi-organ nuclei segmentation and classification challenge.
IEEE Trans Med Imaging. (2021) 40:3413–23. doi: 10.1109/TMI.2021.3085712

17. Alemi Koohbanani N, Jahanifar M, Zamani Tajadin N, Rajpoot N. NuClick: a
deep learning framework for interactive segmentation of microscopic images.Med
Image Anal. (2020) 65:101771. doi: 10.1016/j.media.2020.101771

18. Raza K, Singh NK. A tour of unsupervised deep learning
for medical image analysis. Curr Med Imaging. (2021) 17:1059–77.
doi: 10.2174/1573405617666210127154257

19. Rahaman MM, Li C, Yao Y, Kulwa F, Rahman MA, Wang Q, et al.
Identification of COVID-19 samples from chest X-Ray images using deep learning:
a comparison of transfer learning approaches. J Xray Sci Technol. (2020) 28:821–39.
doi: 10.3233/XST-200715

20. Liu W, Li C, Xu N, Jiang T, Rahaman MM, Sun H, et al. CVM-Cervix:
a hybrid cervical Pap-smear image classification framework using CNN, visual
transformer and multilayer perceptron. Pattern Recognit. (2022) 130:108829.
doi: 10.1016/j.patcog.2022.108829

21. Rahaman MM, Li C, Yao Y, Kulwa F, Wu X, Li X, et al. DeepCervix:
A deep learning-based framework for the classification of cervical cells using
hybrid deep feature fusion techniques. Comput Biol Med. (2021) 136:104649.
doi: 10.1016/j.compbiomed.2021.104649

22. Mahbod A, Schaefer G, Ecker R, Ellinger I. Pollen grain microscopic image
classification using an ensemble of fine-tuned deep convolutional neural networks.
In: International Conference on Pattern Recognition. Springer (2021). p. 344–56.

23. Wang C, Mahbod A, Ellinger I, Galdran A, Gopalakrishnan S, Niezgoda
J, et al. FUSeg: the foot ulcer segmentation challenge. arXiv preprint
arXiv:220100414. (2022). doi: 10.48550/arXiv.2201.00414

24. Johnson JW. Adapting mask-RCNN for automatic nucleus segmentation.
arXiv preprint arXiv:180500500. (2018) doi: 10.1007/978-3-030-177
98-0_32

25. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Munich (2015). p. 234–41.
doi: 10.1007/978-3-319-24574-4_28

26. Zeng Z, Xie W, Zhang Y, Lu Y. RIC-Unet: an improved neural network
based on Unet for nuclei segmentation in histology images. IEEE Access. (2019)
7:21420–8. doi: 10.1109/ACCESS.2019.2896920

27. Mahbod A, Schaefer G, Ellinger I, Ecker R, Smedby Ö, Wang C.
A two-stage U-Net algorithm for segmentation of nuclei in H&E-stained
tissues. In: European Congress on Digital Pathology. Warwick (2019). p. 75–82.
doi: 10.1007/978-3-030-23937-4_9

28. Vuola AO, Akram SU, Kannala J. Mask-RCNN and U-Net ensembled for
nuclei segmentation. In: International Symposium on Biomedical Imaging. Venice
(2019). p. 208–12. doi: 10.1109/ISBI.2019.8759574

29. Bancher B, Mahbod A, Ellinger I, Ecker R, Dorffner G. Improving
mask R-CNN for nuclei instance segmentation in hematoxylin & eosin-stained
histological images. In: MICCAI Workshop on Computational Pathology. vol. 156.
Strasbourg (2021). p. 20–35. Available online at: https://proceedings.mlr.press/
v156/bancher21a.html

30. Xu Z, Sobhani F, Moro CF, Zhang Q. US-Net for robust and efficient
nuclei instance segmentation. In: International Symposium on Biomedical Imaging.
Venice (2019). p. 44–7. doi: 10.1109/ISBI.2019.8759530

31. Mahbod A, Schaefer G, Bancher B, Löw C, Dorffner G, Ecker R, et al.
CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned
H&E-stained histological images. Comput Biol Med. (2021) 132:104349.
doi: 10.1016/j.compbiomed.2021.104349

32. Mahbod A. NuInsSeg A Fully Annotated Dataset for Nuclei Instance
Segmentation in H&E-Stained Images. (2022). Available online at: https://www.
kaggle.com/datasets/ipateam/nuinsseg (accessed November 2, 2022).

33. Mahbod A, Schaefer G, Löw C, Dorffner G, Ecker R, Ellinger I. Investigating
the impact of the Bit depth of fluorescence-stained images on the performance
of deep learning-based nuclei instance segmentation. Diagnostics. (2021) 11:967.
doi: 10.3390/diagnostics11060967

34. Kingma DP, Ba J. Adam: a method for stochastic optimization. In:
International Conference on Learning Representations. California (2015). Available
online at: https://dblp.org/rec/journals/corr/KingmaB14.html

35. Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward
neural networks. In: International Conference on Artificial Intelligence and
Statistics. Sardinia (2010). p. 249–56. Available online at: https://proceedings.mlr.
press/v9/glorot10a/glorot10a.pdf

36. Yang X, Li H, Zhou X. Nuclei segmentation using marker-controlled
watershed, tracking using mean-shift, and Kalman filter in time-lapse
microscopy. IEEE Trans Circ Syst I Regul Pap. (2006) 53:2405–14.
doi: 10.1109/TCSI.2006.884469

37. Moshkov N, Mathe B, Kertesz-Farkas A, Hollandi R, Horvath P. Test-time
augmentation for deep learning-based cell segmentation on microscopy images.
Sci Rep. (2020) 10:1–7. doi: 10.1038/s41598-020-61808-3

38. Mahbod A, Ecker R, Ellinger I. Automatic foot Ulcer segmentation using
an ensemble of convolutional neural networks. arXiv preprint arXiv:210901408.
(2021).

39. Graham S, Vu QD, Raza SEA, Azam A, Tsang YW, Kwak JT, et al.
Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue
histology images. Med Image Anal. (2019) 58:101563. doi: 10.1016/j.media.2019.1
01563

40. Kirillov A, He K, Girshick R, Rother C, Dollar P. Panoptic Segmentation.
In: Conference on Computer Vision and Pattern Recognition. California (2019). p.
9404–13. Available online at: https://openaccess.thecvf.com/content_CVPR_2019/
html/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.html

Frontiers inMedicine 10 frontiersin.org

https://doi.org/10.3389/fmed.2022.978146
https://doi.org/10.1177/1066896913517939
https://doi.org/10.1038/s41698-017-0022-1
https://doi.org/10.3390/diagnostics11020339
https://doi.org/10.3390/cancers14051199
https://doi.org/10.1038/nature21056
https://doi.org/10.1038/s42256-019-0052-1
https://doi.org/10.1371/journal.pone.0114885
https://doi.org/10.1007/s00412-016-0614-5
https://doi.org/10.1002/dc.21234
https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.1007/s11831-019-09366-4
https://doi.org/10.1016/j.tcb.2021.12.004
https://doi.org/10.1186/s12859-017-1934-z
https://doi.org/10.1186/gb-2006-7-10-r100
https://doi.org/10.1109/TMI.2019.2947628
https://doi.org/10.1109/TMI.2021.3085712
https://doi.org/10.1016/j.media.2020.101771
https://doi.org/10.2174/1573405617666210127154257
https://doi.org/10.3233/XST-200715
https://doi.org/10.1016/j.patcog.2022.108829
https://doi.org/10.1016/j.compbiomed.2021.104649
https://doi.org/10.48550/arXiv.2201.00414
https://doi.org/10.1007/978-3-030-17798-0_32
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ACCESS.2019.2896920
https://doi.org/10.1007/978-3-030-23937-4_9
https://doi.org/10.1109/ISBI.2019.8759574
https://proceedings.mlr.press/v156/bancher21a.html
https://proceedings.mlr.press/v156/bancher21a.html
https://doi.org/10.1109/ISBI.2019.8759530
https://doi.org/10.1016/j.compbiomed.2021.104349
https://www.kaggle.com/datasets/ipateam/nuinsseg
https://www.kaggle.com/datasets/ipateam/nuinsseg
https://doi.org/10.3390/diagnostics11060967
https://dblp.org/rec/journals/corr/KingmaB14.html
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://doi.org/10.1109/TCSI.2006.884469
https://doi.org/10.1038/s41598-020-61808-3
https://doi.org/10.1016/j.media.2019.101563
https://openaccess.thecvf.com/content_CVPR_2019/html/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.html
https://openaccess.thecvf.com/content_CVPR_2019/html/Kirillov_Panoptic_Segmentation_CVPR_2019_paper.html
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Mahbod et al. 10.3389/fmed.2022.978146

41. Gibbons JD, Chakraborti S. Nonparametric Statistical Inference: Revised and
Expanded. Alabama: CRC Press (2014). Available online at: http://www.ru.ac.
bd/stat/wp-content/uploads/sites/25/2019/03/501_13_Gibbons_Nonparametric_
statistical_inference.pdf

42. Naylor P, Laé M, Reyal F, Walter T. Segmentation of nuclei in histopathology
images by deep regression of the distance map. IEEE Trans Med Imaging. (2019)
38:448–59. doi: 10.1109/TMI.2018.2865709

43. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa
K, et al. Attention U-Net: learning where to look for the pancreas.
arXiv preprint arXiv:180403999. (2018). doi: 10.48550/arXiv.1804.
03999

44. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
In: Conference on Computer Vision and Pattern Recognition. Las Vegas, NV (2016).
p. 770–8. doi: 10.1109/CVPR.2016.90

45. Stringer C, Wang T, Michaelos M, Pachitariu M. Cellpose: a generalist
algorithm for cellular segmentation. Nat Methods. (2021) 18:100–6.
doi: 10.1038/s41592-020-01018-x

46. Verma R, Kumar N, Patil A, Kurian NC, Rane S, Sethi A. MoNuSAC2020:
A multi-organ nuclei segmentation and classification challenge. IEEE Trans Med
Imaging. (2022) 41:1000–3. doi: 10.1109/TMI.2022.3157048

47. Foucart A, Debeir O, Decaestecker C. Comments on “MoNuSAC2020:
a multi-organ nuclei segmentation and classification challenge”. IEEE
Trans Med Imaging. (2022) 41:997–9. doi: 10.1109/TMI.2022.31
56023

48. Gamper J, Koohbanani NA, Graham S, Jahanifar M, Khurram
SA, Azam A, et al. PanNuke dataset extension, insights and baselines.
arXiv preprint arXiv:200310778. (2020). doi: 10.48550/arXiv.2003.
10778

49. Wang Y, Peng Y, Li W, Alexandropoulos GC, Yu J, Ge D, et al.
DDU-Net: dual-decoder-U-Net for road extraction using high-resolution

remote sensing images. IEEE Trans Geosci Remote Sens. (2022) 60:1–12.
doi: 10.1109/TGRS.2022.3197546

50. Feng Y, Hu Y, Fang P, Yang Y, Liu S, Chen S. Asymmetric dual-decoder
U-net for joint rain and haze removal. arXiv preprint arXiv:220606803. (2022).
doi: 10.48550/arXiv.2206.06803

51. Xie M, Li Y, Xue Y, Huntress L, Beckerman W, Rahimi SA, et al. Two-stage
and dual-decoder convolutional U-Net ensembles for reliable vessel and plaque
segmentation in carotid ultrasound images. In: IEEE International Conference on
Machine Learning and Applications. Miami, FL: IEEE (2020). p. 1376–81.

52. Ren J, Sadimin E, Foran DJ, Qi X. Computer aided analysis of prostate
histopathology images to support a refined Gleason grading system. In: Medical
Imaging 2017: Image Processing. Vol. 10133. Florida, FL: SPIE (2017). p. 101331V.
doi: 10.1117/12.2253887

53. Ali T, Masood K, Irfan M, Draz U, Nagra AA, Asif M, et al. Multistage
segmentation of prostate cancer tissues using sample entropy texture analysis.
Entropy. (2020) 22:1370. doi: 10.3390/e22121370

54. Kang Q, Lao Q, Fevens T. Nuclei segmentation in histopathological images
using two-stage learning. In: Medical Image Computing and Computer Assisted
Intervention. Shenzhen: Springer International Publishing (2019). p. 703–11.
doi: 10.1007/978-3-030-32239-7_78

55. Cui Y, Zhang G, Liu Z, Xiong Z, Hu J. A deep learning algorithm for one-
step contour aware nuclei segmentation of histopathology images. Med Biol Eng
Comput. (2019) 57:2027–43. doi: 10.1007/s11517-019-02008-8

56. Zhang J, Li C, Kosov S, Grzegorzek M, Shirahama K, Jiang T, et al. LCU-Net:
a novel low-cost U-Net for environmental microorganism image segmentation.
Pattern Recognit. (2021) 115:107885. doi: 10.1016/j.patcog.2021.107885

57. Mahbod A, Entezari R, Ellinger I, Saukh O. Deep neural network pruning for
nuclei instance segmentation in hematoxylin and eosin-stained histological images.
In:Applications of Medical Artificial Intelligence. Cham: Springer (2022). p. 108–17.
doi: 10.1007/978-3-031-17721-7_12

Frontiers inMedicine 11 frontiersin.org

https://doi.org/10.3389/fmed.2022.978146
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/501_13_Gibbons_Nonparametric_statistical_inference.pdf
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/501_13_Gibbons_Nonparametric_statistical_inference.pdf
http://www.ru.ac.bd/stat/wp-content/uploads/sites/25/2019/03/501_13_Gibbons_Nonparametric_statistical_inference.pdf
https://doi.org/10.1109/TMI.2018.2865709
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1109/TMI.2022.3157048
https://doi.org/10.1109/TMI.2022.3156023
https://doi.org/10.48550/arXiv.2003.10778
https://doi.org/10.1109/TGRS.2022.3197546
https://doi.org/10.48550/arXiv.2206.06803
https://doi.org/10.1117/12.2253887
https://doi.org/10.3390/e22121370
https://doi.org/10.1007/978-3-030-32239-7_78
https://doi.org/10.1007/s11517-019-02008-8
https://doi.org/10.1016/j.patcog.2021.107885
https://doi.org/10.1007/978-3-031-17721-7_12
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org

	A dual decoder U-Net-based model for nuclei instance segmentation in hematoxylin and eosin-stained histological images
	1. Introduction
	2. Method
	2.1. Datasets
	2.2. Pre-processing
	2.3. Model
	2.4. Post-processing
	2.5. Evaluation
	2.6. Experimental setup

	3. Results and discussion
	4. Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


