AUTHOR=Ge Chenglong , Deng Fuxing , Chen Wei , Ye Zhiwen , Zhang Lina , Ai Yuhang , Zou Yu , Peng Qianyi TITLE=Machine learning for early prediction of sepsis-associated acute brain injury JOURNAL=Frontiers in Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.962027 DOI=10.3389/fmed.2022.962027 ISSN=2296-858X ABSTRACT=Background

Sepsis-associated encephalopathy (SAE) is defined as diffuse brain dysfunction associated with sepsis and leads to a high mortality rate. We aimed to develop and validate an optimal machine-learning model based on clinical features for early predicting sepsis-associated acute brain injury.

Methods

We analyzed adult patients with sepsis from the Medical Information Mart for Intensive Care (MIMIC III) clinical database. Candidate models were trained using random forest, support vector machine (SVM), decision tree classifier, gradients boosting machine (GBM), multiple layer perception (MLP), extreme gradient boosting (XGBoost), light gradients boosting machine (LGBM) and a conventional logistic regression model. These methods were applied to develop and validate the optimal model based on its accuracy and area under curve (AUC).

Results

In total, 12,460 patients with sepsis met inclusion criteria, and 6,284 (50.4%) patients suffered from sepsis-associated acute brain injury. Compared other models, the LGBM model achieved the best performance. The AUC for both train set and test set indicated excellent validity (Trainset AUC 0.91, Testset AUC 0.87). Feature importance analysis showed that glucose, age, mean arterial pressure, heart rate, hemoglobin, and length of ICU stay were the top 6 important clinical factors to predict occurrence of sepsis-associated acute brain injury.

Conclusion

Almost half of patients admitted to ICU with sepsis had sepsis-associated acute brain injury. The LGBM model better identify patients with sepsis-associated acute brain injury than did other machine-learning models. Glucose, age, and mean arterial pressure were the three most important clinical factors to predict occurrence of sepsis-associated acute brain injury.