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Background: Understanding performance of convolutional neural networks

(CNNs) for binary (benign vs. malignant) lesion classification based on real

world images is important for developing a meaningful clinical decision

support (CDS) tool.

Methods: We developed a CNN based on real world smartphone images with

histopathological ground truth and tested the utility of structured electronic

health record (EHR) data on model performance. Model accuracy was

compared against three board-certified dermatologists for clinical validity.

Results: At a classification threshold of 0.5, the sensitivity was 79 vs. 77 vs.

72%, and specificity was 64 vs. 65 vs. 57% for image-alone vs. combined image

and clinical data vs. clinical data-alone models, respectively. The PPV was 68

vs. 69 vs. 62%, AUC was 0.79 vs. 0.79 vs. 0.69, and AP was 0.78 vs. 0.79 vs.

0.64 for image-alone vs. combined data vs. clinical data-alone models. Older

age, male sex, and number of prior dermatology visits were important positive

predictors for malignancy in the clinical data-alone model.

Conclusion: Additional clinical data did not significantly improve CNN image

model performance. Model accuracy for predicting malignant lesions was

comparable to dermatologists (model: 71.31% vs. 3 dermatologists: 77.87,

69.88, and 71.93%), validating clinical utility. Prospective validation of the

model in primary care setting will enhance understanding of the model’s

clinical utility.
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Introduction

Access to dermatology appointments is challenging due to
both a limited supply of dermatology providers, especially in
rural areas (1), and increasing referrals to dermatology (2).
According to a survey of dermatologists, the mean ± standard
deviation waiting time was 33 ± 32 days, with 64% of the
appointments exceeding the criterion cutoff of 3 weeks for new
patients and 63% of the appointments exceeding the criterion
cutoff of 2 weeks for established patients. Visits for high-risk
cases, such as changing pigmented lesions, could even be delayed
as long as 38 to 45 days (3). Therefore, skin lesions are often
first detected by primary care physicians (P). Up to one third of
primary care visits contend with at least one skin problem, with
skin tumors being the most common reason for dermatology
referral (4). Limited access to dermatology becomes especially
concerning when one accounts for the growing Medicare
population, which is expected to account for 1 in 5 patients by
2030 due to this population’s higher incidence of skin cancer
(5). There has also been an increasing incidence in skin cancers,
particularly a 3-fold increase in melanoma incidence, over the
past 40 years (6).

Population based skin screenings (ex. SPOTme screenings),
skin cancer awareness campaigns and technology-based
solutions (ex. smartphone mole mapping applications) have all
attempted to improve access to dermatology, none mimicking
clinical workflow. To improve the quality of care and contain
costs, screening and risk-stratification tools that provide
guidance in real time can be embedded into PCP workflows
(7). At baseline, P have variable experience and training in
dermatology (4) leading to incorrect clinical diagnoses in 56%
of cases when compared to histopathology (8). A validated
clinical decision support (CDS) system has the potential to
help mitigate this variability. Such a tool can also be used to
aid successful tele-dermatology workflows that have emerged
during the global pandemic (9, 10).

Deep learning algorithms, such as convolutional neural
networks, have been developed to classify skin lesions (11,
12). Dermoscopy-based machine learning (ML) algorithms
have reached sensitivities of 87.6% (95% CI: 72.72-100.0) and
specificities of 83.5% (95% CI: 60.92-100.0) for melanoma
diagnosis (13). Classification of squamous cell carcinoma (SCC)
and basal cell carcinomas (BCC) with larger datasets improves
performance (11, 14). Comparative studies (12, 15) show deep
learning models can also perform similarly to dermatologists
and superiorly to P and nurse practitioners (16).

However, several issues need attention while assessing
the utility of CNN-based models in the primary care
setting. Many of these models were developed with high-
quality clinical and dermoscopy photographs with limited
skin variability from curated image databases, such as
the ISIC Archive (dermoscopy), Asan dataset, Hallym
dataset, MED-NODE, and the Edinburgh dataset (14).

Dermoscopy images are generally of good quality and high
resolution with minimal background noise compared to
clinical smartphone images, which encompass a wider field
and often have lower quality and resolution. Thus, these
models may underperform in resource-limited primary
care settings lacking dermatoscopes and high-resolution
cameras. For wider utilization, smartphone-based imaging
is a more promising image capture platform, offering
several advantages such as portability, cost-effectiveness,
and connectivity to electronic medical records for secure
image transfer and storage. With the development of
dermatoscopes that can be attached to smartphones, PCPs
gain increased access to being able to take better-quality
dermatologic images. Therefore, a ML-based CDS tool that
is trained, validated, and tested on clinical and dermoscopy
images taken with smartphone cameras can democratize
screening and triage in the primary care setting with high
usability and validity.

Another issue among CNN-based models is missing
clinical context when they are tasked with classification, such
as incorporating relevant patient demographics and clinical
characteristics. Clinical context has been shown to be relevant by
Wang et al., who developed a CNN model trained solely on non-
image data and medical records, such as history of precancerous
lesions and use of certain photosensitizing medications, to
predict the development of non-melanoma skin cancer (17).
Other models demonstrated that the context of clinical data is
useful for human diagnostic prediction, changing the pretest
probability of clinical evaluation (12), as well as that the addition
of clinical data improved model performance by 3% (16) both
during training and evaluation. However, it is unclear if this
effect was noted equally in lesion and rash cases, given that
majority of top-10 clinical metadata were relevant to rash-
specific differential diagnoses (16). Akin to clinical settings, as
a patient’s medical history and physical exam are utilized into
a working diagnosis, there may be high utility in developing
a CNN model that combines both clinical and image data
to form a complete working prediction of an individual’s
risk of skin cancer.

In this study, we developed and evaluated CNN-based
models trained on smartphone based clinical and dermoscopy
images with histological ground truth, with and without
structured EHR clinical data (Figure 1). The models were
tasked with classification of skin lesions and tested against board
certified dermatologists to test clinical validity. Previous work
delineated in a complementary technical paper describing in
detail a two staged approach. Because the performance of using
a detection model + classification model is better than directly
using Faster-RCNN (additional details in technical paper
(arXiv:2104.02652, Figures 3A,B), “Malignancy” and “sub-type”
are, respectively, two-classes (malignancy and benign) Faster-
RCNN and 8-classes Faster-RCNN; the “one-class” is our two
stage model. Additionally, Xia et al. show that addition of higher
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FIGURE 1

Consort diagram of image selection. (A) Addition of labeled images past the 5,141 images that were labeled were found to not significantly
improve model performance. (B) We excluded images that were deemed not helpful for training our models based on a variety of factors,
including images deemed of unusable quality (very low pixels for the area of interest, poor light exposure) and images with predominantly rash
diagnosis.

quality images to the model training improves the classification
of the model overall, suggesting that the model learns additional
features from the higher quality dermoscopy images to better
classify clinical images.

In contrast, this paper highlights clinically-relevant aspects
of model performance. We describe image selection for training,
specific clinicodemographic features selection for training the
clinical data-alone and combined models, and the significance
of each of the clinicodemographic features in prediction of skin
malignancy. This paper also reports the models’ performance
against three board-certified dermatologists.

Materials and methods

We developed a two-stage approach to detect skin lesions
of interest in wide-field images taken from consumer grade
smartphones. The wide field images underwent an area
of interest identification task by the model, followed by
binary lesion classification into two groups, malignant vs.
benign, for all skin cancers (melanoma, BCC, and SCC)
and most common benign tumors. Ground truth malignancy
was ascertained via biopsy and pathology report. We also
sought to investigate model performance for an image-alone
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model, a structured EHR clinical data-alone model, and a
combined model, to see if the addition of clinical data
affected the image-alone model’s performance. We looked at
69 discrete clinicodemographic data, with a subset of types
represented in Table 1. Statistical significance between bening
and malignant groups was estimated via t-test and chi-square
test for continuous and discrete covariates, respectively. Lastly,
we compared the results of the best-performing model against
three board-certified dermatologists with different levels of
expertise for clinical validation in an office setting.

Image selection and identification

This was a single-institution, retrospective study utilizing
clinical and dermoscopy skin lesion images with institutional
review board approval. We reviewed all patient encounters
from patients of age 18 and older from 2013 to 2018 in
the Department of Dermatology at Duke University with
biopsies, and sorted images associated with the respective
pathology reports into a database. Images were captured
using smartphones or smart devices. Detailed information
on how images were sorted, selected, and annotated for
model development can be found in the Supplementary
materials and Methods section as well as in a footnote in
Figure 1. Image exclusion criteria are listed in a footnote in
Figure 1. For the binary classification, malignant lesions were
defined as melanoma, BCC, and actinic keratosis/Bowen’s
disease. Benign lesions included melanocytic nevus, benign
keratosis, dermatofibroma, vascular lesion, and others
(including rash images).

Demographics – Age at encounter,
gender, race

Patient encounter and medical chart data were collected
from Epic Clarity tables via Structured Query Language (SQL)
queries of a consolidated database. Specific patient encounters
and demographic data based on the encounter IDs associated
with the previously labeled clinical and dermatoscope images
was curated. A detailed list of patient race categories used
can be found in a footnote in Table 1. Encounter of interest
(EOI) is defined as the particular encounter when a skin biopsy
was performed that informed the image-only and image and
clinical models.

Prior diagnoses and surgical history

Patient diagnoses were curated using International
Classification of Diseases (ICD) 10 codes based on patient
diagnoses present in the patient’s problem list in Epic. We

then grouped the ICD codes of interest using the Clinical
Classifications Software (CCS) method1 and indicated if a
patient had a history of the disease via binary classification of a
given CCS group. We curated procedural data using Common
Procedural Terminolology (CPT) codes for procedures prior
to EOI. Prior liver, lung/cardiac, bone marrow, and kidney
transplants were noted. A detailed list of the CCS groupings
used for history of comorbidities and CPT codes used for
transplantation procedures can be found in a footnote
in Table 1.

Medications and grouper curation
process

Two types of medication lists were curated: Medication
administration record (MAR) medications, which are
administered to the patient either in an inpatient or outpatient
setting, and Medlist medications, which are present on a
patient’s medication list in Epic and represent prescribed
medications and patient-reported, typically in outpatient
setting. Details on the process used to create medication
groupers of interest can be found in the Supplementary
materials and Methods section, and a detailed list of the
medication groupers of interest can be found in a footnote
in Table 1. Each patient and EOI was linked to MAR and
Medlist medications, hence medication exposure data was
highly accurate and quantitative. For MAR medications,
medication administered could be tallied before EOI, providing
an accurate quantitative value to inform the clinical model. We
used a binary classification system to indicate if a patient was
administered or had a history of taking a particular medication
grouper class prior to the EOI.

Office visits

Prior patient encounters in dermatology offices prior to
EOI were tallied by selecting for encounters in departments
containing either “DERM” or “MOHS”.

Model development and statistical
analysis

Detailed description of a two staged approach and
methodology for development of an image-alone model,
clinicodemographic data-alone model, and the combined image
and data model are detailed in Figure 2 a complementary
technical paper (arXiv:2104.02652). The image-alone and

1 https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
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TABLE 1 Demographic and clinical data used in training.

Characteristic Overall Benign Malignant

Age, years (mean ± STD) 61.463 ± 16.285 54.696 ± 17.623 66.535 ± 13.083

Sex (%)

Female 3,504 (48.69) 1766 (57.28) 1738 (42.26)

Male 3,692 (51.31) 1317 (42.72) 2375 (57.74)

Race1 (%)

Caucasian/White 6,754 (95.64) 2,783 (92.12) 3,971 (98.27)

Black/African American 152 (2.15) 136 (4.50) 16 (0.40)

Asian 37 (0.52) 31 (1.03) 6 (0.15)

Other 100 (1.42) 56 (1.85) 44 (1.09)

American Indian or Alaskan Native
Hawaiian or other Pacific Islander or
Not Reported/Declined

19 (0.27) 15 (0.50) 4 (0.10)

Comorbidities, history of2 (%)

Skin Disorders 1,057 (14.69) 370 (12.00) 687 (16.70)

No Skin Disorders 6,139 (85.31) 2,713 (88.00) 3,426 (83.30)

Hematological Disorders 225 (3.13) 67 (2.17) 158 (3.84)

No Hematological Disorders 6,971 (96.87) 3,016 (97.83) 3955 (96.16)

Infectious Diseases 76 (1.06) 15 (0.49) 61 (1.48)

No Infectious Diseases 7,120 (98.94) 3,068 (99.51) 4052 (98.52)

Autoimmune Diseases 1,234 (17.15) 450 (14.60) 784 (19.06)

No Autoimmune Diseases 5,962 (82.85) 2,633 (85.40) 3329 (80.94)

Surgeries, history of3 (%)

History of transplant 46 (0.64) 20 (0.65) 26 (0.63)

No history of transplant 7,150 (99.36) 3,063 (99.35) 4,087 (99.70)

Medication use, history of4 (%)

Oncotherapeutic agents (overall) 1,024 (14.23) 274 (8.89) 750 (18.23)

High risk oncotherapeutic agents 140 (2.08) 30 (4.06) 308 (8.15)

Low risk oncotherapeutic agents 428 (6.35) 120 (3.03) 110 (7.39)

High frequency (≥ 10 administrations) 592 (8.23) 127 (4.12) 465 (11.31)

Low frequency (< 10 administrations) 662 (9.20) 209 (6.78) 453 (11.01)

Did not take oncotherapeutic agents 6,172 (85.77) 2,809 (91.11) 3,363 (81.77)

Immunosuppressants (overall) 2,201 (30.59) 796 (25.82) 1405 (34.16)

High risk immunosuppressants 1,422 (21.49) 538 (18.57) 884 (23.76)

Low risk immunosuppressants 201 (3.04) 72 (2.49) 129 (3.47)

High frequency (≥10 administrations) 438 (6.09) 95 (3.08) 343 (8.34)

Low frequency (<10 administrations) 1,364 (18.95) 553 (17.94) 811 (19.72)

Did not take immunosuppressants 4,995 (69.41) 2,287 (74.18) 2,708 (65.84)

Antibiotics (overall) - all high risk 2,592 (36.02) 953 (30.91) 1,639 (39.85)

High frequency (≥10 administrations) 573 (7.96) 129 (4.18) 444 (10.80)

Low frequency (<administrations) 1,313 (18.25) 538 (17.45) 77 (18.84)

Did not take antibiotics 4,604 (63.98) 2130 (69.09) 2,474 (60.15)

Cardiovascular drugs (overall) 2,573 (35.76) 864 (28.02) 1,709 (41.55)

High risk cardiovascular drugs 35 (0.59) 22 (0.80) 13 (0.40)

Low risk cardiovascular drugs 1,303 (21.86) 497 (18.15) 806 (25.01)

High frequency (≥10 administrations) 544 (7.56) 121 (3.92) 423 (10.28)

Low frequency (<10 administrations) 1,589 (22.08) 557 (18.07) 1,032 (25.09)

Did not take cardiovascular drugs 4,623 (64.24) 2,219 (71.98) 2,404 (58.45)

“Other” drugs (overall) 330 (4.59) 82 (2.66) 248 (6.03)

High risk “other” drugs 263 (3.66) 56 (1.82) 207 (5.04)

(Continued)
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TABLE 1 (Continued)

Characteristic Overall Benign Malignant

Low risk “other” drugs 56 (0.78) 21 (0.68) 35 (0.85)

High frequency (≥10 administrations) 203 (2.82) 40 (1.30) 163 (3.96)

Low frequency (<10 administrations) 220 (3.06) 53 (1.72) 167 (4.06)

Did not take “other” medications 6,866 (95.41) 3,001 (97.34) 3,865 (93.97)

Skin tone (%)

Light 6,030 (83.80) 2,489 (80.73) 3,541 (86.09)

Medium 1,064 (14.79) 507 (16.45) 557 (13.54)

Dark 102 (1.42) 87 (2.82) 15 (0.36)

Body part, lesion location by (%)

Head/neck 2,703 (37.56) 843 (27.34) 1860 (45.22)

Trunk 2,167 (30.11) 1262 (40.93) 905 (22.00)

Arms 1,039 (14.44) 374 (12.13) 665 (16.17)

Legs 905 (12.58) 407 (13.20) 498 (12.11)

Acral 281 (3.90) 121 (3.92) 160 (3.89)

Groin/buttocks 101 (1.40) 76 (2.47) 25 (0.61)

1Patient race was organized into the following categories: Caucasian/White, Black/African American, Asian, American Indian or Alaskan Native, Hawaiian or other Pacific Islander, Other,
and Not Reported/Declined; 2 or more races and Unavailable were classified as Other and Not Reported/Declined, respectively.
2CCS groupings used were: history of chronic ulcer of skin, diseases of white blood cells, human immunodeficiency virus [HIV] infection, Hodgkin’s disease, non-Hodgkin’s lymphoma,
infective arthritis and osteomyelitis, leukemias, Parkinson’s disease, rheumatologic diseases, skin and subcutaneous tissue infections, inflammatory condition of skin, systemic lupus
erythematosus, other connective tissue disease, other sexually transmitted diseases, other hematologic diseases, other skin disorders.
3CPT codes to select for transplant procedures: liver (Liver Transplantation Procedure - 47133, 47135, 47140, 47141, 47152, 47143, 47144, 47145, 47146, 47147), lung/cardiac (Lung
Transplantation Procedures - 32851, 32853. Heart/Lung Transplantations Procedure - 33945), bone marrow (Bone Marrow or Stem Cell Services/Procedures - 38232), kidney (Renal
Transplantation Procedures - 50360, 50365, 50370).
4We selected the following medication groupers of interest based on their potential associations with skin cancer: immunosuppressants, corticosteroids, anti-hypertensives, anti-fungals,
diuretics, antibiotics, anti-arrhythmics, anti-thrombotics, chemotherapy drugs, targeted therapy drugs (BRAF-inhibitors), immunotherapy drugs, and “other” medications of interest
(azathioprine, tacrolimus, cellcept, hydroxychloroquine, and methyldopa). Medications were then further classified into one of the following three groups based on literature review: high
risk of causing skin cancer, low risk of causing skin cancer or used to treat skin cancer, or no correlation with causing skin cancer; medications belonging to the last group were not
included in training the model.

combined models were constructed as ResNet-50s, which are
variation of CNNs (18, 19). The clinical data-alone model was
built as a logistic regression model with standardized input
and discrete (categorical) covariates encoded as one-hot vectors.
Specifically regarding the combined image and data model,
we used the malignancy classification model as the backbone
while freezing all convolutional layers during training. Then,
we concatenated the standardized input covariates and the
global average-pooled convolutional feature maps and fed them
through a fully connected layer with sigmoid activation that
produces the likelihood of malignancy. The combined model
was trained using an SGD optimizer for 30 epochs, with
batch size 64, initial learning rate 0.001, momentum 0.9 and
weight decay 1e-4. The learning rate was decayed using a half-
period cosine function as in the malignancy classification model.
Patients were split into training, testing, and validation sets
based on patient IDs. There was no overlap with the datasets
used for each phase of model development. We calculated
the sensitivity, specificity, positive predictive value (PPV; i.e.,
precision), area under the curve (AUC) of the receiver operating
characteristic (ROC) curve, and average precision (AP) for each
model and selected a threshold of 0.5 to determine the accuracy
and predictive abilities of the models. The most superior
model was tested for accuracy against three board-certified

dermatologists, who individually evaluated an independent test
set of 488 images comprising of clinical and dermoscopy images
and rated them as benign vs. malignant. They also reported their
confidence level with each classification.

Dataset

Discovery dataset
To develop the model we consider a single institution,

retrospective collection of skin lesion images taken with
smartphones with and without dermoscopy from Duke
University Medical Center patients of age 18 and older from
2013-2018. These data are collected under the approval of
the Duke Institute for Health Innovation and each participant
has provided written informed consent. The discovery dataset
consists of 6,819 images from 3,853 patients with 7,196 manually
annotated lesions, from which 4,113 (57%) lesions in 3,894
images are malignant. In terms of skin tone, 6,022 lesions (5,721
images) are light, 1,073 lesions (1,020 images) are medium
and 101 lesions (96 images) are dark tone. Lesions were
manually annotated as bounding boxes (ROIs) by a dermatology
trained medical doctor (Dr. Kheterpal, MK) using a in-house
annotation application. Diagnoses taken from the biopsy reports
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FIGURE 2

Schema for Lesion Identification and malignancy detection. Two-stage malignancy prediction and lesion identification Framework. (Top left)
Examples of dermoscopy images. (Bottom left) Examples of wide-field images. (Top right) The lesion identification model estimates lesion
locations (bounding boxes) from whole images (dermoscopy or wide-field) via a faster-RCNN architecture. (Bottom right) The malignancy
prediction model specified via a ResNet-50 architecture predicts the likelihood that a lesion is malignant. The lesions identified by the lesion
identification model are fed into the malignancy prediction model for end-to-end processing.

associated with the lesion images were designated as the ground
truth (Malignant vs. Benign). Further, there are 589 (9%)
dermoscopy images and 6,230 (91%) wide-field images. Table 1
shows detailed lesion type counts and proportions. The average
area of the lesion is 307,699 (Q1-Q3: 9,192-184,900) pixels2
(roughly 554 × 554 pixels in size) while the average area of
the images is 8’036,107 (3’145,728-12’000,000) pixels2 (roughly
2834 × 2834 pixels in size). We split the dataset, at the
patient level, into 6,115 lesions (5,781 images) for training and
1,081 lesions (1,038 images) for validation. The validation set
was used to optimize the model parameters, architecture and
optimization parameters.

Clinical dataset
We also consider a subset of 4,130 images from 2,270

patients for which we also have demographic (age at encounter,
sex and race), lesion characteristics (location and number
of previous dermatology visits), comorbidities (history of
chronic ulcer of skin, diseases of white blood cells, human
immunodeficiency virus infection, Hodgkin’s disease, non-
Hodgkin’s lymphoma, infective arthritis and osteomyelitis,
leukemias, Parkinson’s disease, rheumatologic diseases,
skin and subcutaneous tissue infections, inflammatory
condition of skin, systemic lupus erythematosus, other
connective tissue disease, other sexually transmitted diseases,
other hematologic diseases, and other skin disorders) and
skin-cancer-related medications (immunosuppressants,

corticosteroids, antihypertensives, antifungals, diuretics,
antibiotics, antiarrhythmics, antithrombotics, chemotherapy,
targeted therapy, immunotherapy, and other), their risk (Low
vs. High), and frequency of administration. Among these
patients, 1,411 (2,537 images) are diagnosed as malignant and
859 (1,593 images) as benign. Similar to the discovery dataset,
we split these data into 85% for training and the remaining
15% for validation.

ISIC2018
Provided that we have a smaller number of dermoscopy

images, we also consider augmenting our discovery dataset
with the ISIC2018 training dataset 24, 25 consisting of 10,015
dermoscopy images, from which 1,954 correspond to malignant
lesions and 8,061 benign lesions. In the experiments, we also
consider the ISIC2018 validation dataset to test the model with
and without ISIC2018 augmentation.

Results

Comparison of model performance on
binary classification

We selected a threshold of 0.5 to calculate the sensitivity,
specificity, and PPV for each model, as standard practice.
Sensitivity, specificity, PPV, AUC, and AP values for each model
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FIGURE 3

Model performance. (A) Area under the curve (AUC) of receiver operating curve (ROC) and precision-recall curves on test images. (B) Sensitivity,
specificity, and PPV for the image-alone, clinical data-alone, and combined models.

can be found in Figures 3A,B. The models demonstrated the
following performance, respectively: sensitivity (image-alone:
78.9%, clinical data-alone: 71.9%, combined: 77.3%), specificity
(image-alone: 63.8%, clinical data-alone: 56.5%, combined:
65.2%), PPV (image-alone: 68.2%, clinical data-alone: 61.9%,
combined: 68.8%), AUC (image-alone: 78.8%, clinical data-
alone: 68.8%, combined: 79.2%), AP (image-alone: 77.6%,
clinical data-alone: 64.4%, combined: 78.7%). The image-alone
and combined image and clinical data models had comparable
sensitivity, specificity, PPV, AUC, and AP while the clinical
data-alone model performed the worst in all metrics out of
the three models. The addition of clinical data to the image-
alone model surprisingly did not seem to improve the model’s
performance significantly. In addition, the skin lesion image
rather than clinical features of the patient with the skin lesion
seem to have a greater importance in determining if the lesion
is benign vs. malignant. For the clinical data-alone model,
all of the clinicodemographic features except history of organ
transplantation were found to be statistically significant in
predicting skin malignancy (Table 2). However, certain features
were the most significantly associated with a higher chance of
malignancy. For example, patients who were older, identified
as males, and had a greater number of previous dermatology
visits prior to a given visit had a higher chance of having
malignant skin lesions. This is concordant with national trends
that show increasing incidence of melanoma, the only skin
cancer reportable in the SEER database, with age and in males
(6). In addition, patients with underlying skin conditions or
have lesions that require frequent dermatology visits are more

likely to have malignant lesions. Other features significantly
associated with a higher chance of malignancy included having
a comorbidity under the category of “HIV infection” or
“Systemic lupus erythematosus and connective tissue disorders”
and having a history of taking a high-risk “other” medication
(azathioprine, tacrolimus, cellcept, hydroxychloroquine, or
methyldopa). These findings could be due to the effects that
autoimmune skin conditions and immunosuppressants have on
inhibiting repair mechanisms that would normally be protective
against skin malignancy (20). In contrast, certain features were
found to be the most significantly associated with a lower chance
of skin malignancy, such as having a history of taking a low-
risk antibiotic medication, identifying as Asian or black/African
American race, having a lesion located on the hands/feet or
buttocks/groin region, and having a darker skin tone (Table 2).
These findings could be due to the protective effects of a
darker skin tone and areas of the body that have low UV light
exposure on development of skin malignancy. One controversial
result noted was a lower risk of malignancy in patients with
a history of a prior cardiac or lung transplant. Typically these
patients have a high degree of immunosuppression and thus
these patients are typically in high risk category (21). However
in our study, only 46 patients were included in this rare cohort,
thus results were statistically non-signficant and may not be
reflective of the true incidence. Bias may also be introduced
by the clinical practice of routinely monitoring these patients
despite no concerning lesions as part of routine post transplant
surveillance as well as lower threshold for biopsing skin lesions,
therefore favaoring benignity.
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TABLE 2 Coefficients and associations for demographic and clinical features relevant for informing the combined image and clinical data model.

Feature Coefficient Correlation with malignancy

Older Age 0.700487 Positive

Male sex 0.149656 Positive

Comorbidity of HIV infection 0.139267 Positive

Comorbidity in the category “Systemic Lupus Erythematosus and Other Connective Tissue Disorders” 0.088971 Positive

Taking a low-risk antibiotic medication −0.196025 Negative

Taking a high-risk medication in the “other” category 0.132797 Positive

Asian Race −0.111828 Negative

Black or African American Race −0.274017 Negative

History of prior cardiac or lung transplant −0.258418 Negative

Higher number of previous visits to dermatology 0.175964 Positive

Part of the body the lesion was located −0.115341 Negative

Darker skin tone −0.065430 Negative

Comparison of model performance on
skin tone and race

Performance for each model on images representing light
vs. medium/dark skin tones can be found in Table 3. Without
any knowledge of patients’ gender, race, and ethnicity, 2
raters independently rated images as light skin tone based
on consistency with Fitzpatrick type 1&2, medium skin
tone consistent with Fitzpatrick type 3&4, and dark skin
tone consistent with Fitzpatrick type 5&6. The image-alone
and combined image and clinical data models performed
significantly better on images classified as having light skin
tones, with an AUC of 79.9% and 80.2%, respectively, compared
to the clinical data-alone model, with an AUC of 67.3%.
The image-alone and combined models also had marginal
improvement in performance on images classified as having
medium and dark skin tones, with an AUC of 75.6 and 76.3%,
respectively, compared to the clinical data-alone model, with an
AUC of 73.0%. Performance for each model on images from
individuals identifying as white vs. non-white race can be found
in Table 4. The image-alone and combined image and clinical
data models performed better on images from patients who
identified as a white race, with an AUC of 78.0 and 78.34%,
respectively, compared to the clinical data-alone model, with
an AUC of 67.3%. The image-alone and combined image and
clinical data models also performed better on images from
patients who identified as a non-white race, with an AUC of

TABLE 3 Performance/AUC for each model on light vs. medium/dark
skin tones on a small test dataset (n = 488).

Light skin tone
(n = 359)

Medium and
dark skin tone

(n = 129)

Total

Image model 0.7994 0.7563 0.7883

Clinical model 0.6729 0.7297 0.6878

Combined model 0.8018 0.7634 0.7924

TABLE 4 Performance/AUC for each model on white vs. non-white
races on a small test dataset (n = 488).

White race
(n = 460)

Non-white race
(n = 28)

Total

Image model 0.7799 0.8958 0.7883

Clinical model 0.6733 0.6667 0.6878

Combined model 0.7834 0.8958 0.7924

89.6 and 89.6%, respectively, compared to the clinical data-
alone model, with an AUC of 66.7%. These findings could
further highlight the importance of image-related features over
patient demographic features in predicting if a lesion is benign
vs. malignant.

Comparison of image-alone model
against dermatologists

Three-board certified dermatologists classified a separate
independent test set of 488 skin lesion images as benign
vs. malignant against histological ground truth. The model
correctly identified malignant lesions with an accuracy of
71.3% at a threshold of 0.5 against the three board-certified
dermatologists who correctly identified malignant lesions with
an accuracy of 77.9, 69.9, and 71.9%, respectively.

Discussion

Utility of real-world smartphone
images

Early skin lesion classification models relied on high-
quality clinical and dermoscopy images for proof of concept.
Models trained on these high-quality images may have limited
applications in primary care facilities and resource-limited
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rural settings. While there are challenges to consumer grade
smartphone image quality, such as variability in image angles,
lighting, distance from lesion of interest, and blurriness,
they show promise to improve clinical workflows in primary
care. Wide field images acquired by smartphones can be
easily acquired during clinical workflow and therefore can
democratize the process of dermatological care access by
appropriate triage. Soenksen et al. demonstrated the utility
of wide-field clinical images taken with smartphones for
detection of “ugly duckling” suspicious pigmented lesions
vs. non-suspicious lesions with 90.3% sensitivity (95% CI:
90.0-90.6) and 89.9% specificity (95% CI: 89.6-90.2) validated
against three board-certified dermatologists (22). However,
they used consensus of the dermatologist instead of more
definitive histological ground truth. This is relevant as there is
variability in the dermatologists’ accuracy and number needed
to treat (NNT) metrics. NNT for true melanoma detection
from pigmented lesion biopsies by dermatologists is 9.60 (95%
CI: 6.97-13.41) by meta-analysis (23). This demonstrates the
importance of using histopathological reports as ground truth
rather than concordance with dermatologists for improved
accuracy and comparability of model performance. Other
models used multiple clinical images as input (16), while
our model used clinical or dermoscopy images. Interestingly,
the addition of dermoscopy images that were not paired
with corresponding clinical images also significantly improved
model performance (arXiv:2104.02652), demonstrating that the
addition of paired or unpaired images may help improve
future model performance. Our image-alone and combined
models were trained and validated with wide-field clinical
and dermoscopy images taken with smartphones based on
histopathological ground truth and demonstrated encouraging
model performance, sensitivity, and specificity outcomes to
current literature (11–13). The usability of these models were
further validated by comparison with dermatologists with
variable levels of dermoscopy experience, showing comparable
performance to dermatologists in both clinical and dermoscopy
binary classification tasks.

Demographics and clinical features

Early models have considered either only image data or
clinical data in training algorithms to classify lesions as benign
or malignant. Clinicians often make contextual diagnostic
and management decisions while evaluating skin lesions to
improve their accuracy and clinical-context improves diagnostic
accuracy in pigmented lesions. However, this may be dependent
on years of dermoscopy experience (12), largely disappearing in
expert reviewers. Our combined model considered both image
and clinical data to predict if a lesion is benign vs. malignant.

We demonstrate that comprehensive EHR demographic and
clinical data, while relevant to risk of malignancy as shown
previously (12, 17), may not be critical for improving CNN-
model performance in a subset of patients when compared with
images for lesion classification. There are several possibilities
why clinical context maybe less important in this setting.
Specific lesion characteristics, such as color variegation and skin
tone, may inform the model robustly to account for clinical
context such as age, race, and ethnicity. Lesion features may
be more significant in determining the malignant potential of
a lesion than prior history including procedure and medication
exposure. This differs from recent work done by Liu et al., who
also integrated clinical data into their model and showed a 3%
improvement in model performance; however, these results are
challenging to interpret since it is unclear which clinical features
were used to train their model as well as if this improvement in
accuracy was for skin growths, rashes, or both (16). It should
be noted that the current study was performed on lesions
selected by dermatology providers for a biopsy, hence the results
may not generalize to clinical settings such as primary care.
Additionally, clinical-data models do not encompass additional
high-risk features for skin cancer such as present or past
chronic sun exposure, severe intermittent sun exposure, tanning
booth exposure, and family history of skin cancer, although
these data are not robust due to inconsistent and retrospective
nature of capture as well as recall bias. The image model
performing at par with the combination model implies that the
infrastructure and resources needed to incorporate clinical data
into the models may not be needed. Smaller clinical practices
with fewer resources and busy workflows could still utilize
this model as CDS via their smartphones without complex
EHR integrations.

Model performance based on skin tone
and race

While fair skin tones were over-represented (Table 3), we
demonstrate comparable AUC for the models based on light and
medium/dark skin tones. While ethnicity bias in existing image
datasets is explicitly noted, our study aims to stratify results
based on a blinded assessment of skin tone independent of
ethnicity. Adequate representation of skin variation is important
for widespread use of CNN-based artificial intelligence (AI)
models (24) and may not be dependent on ethnicity, which
is more complex and important for clinical context but not
image-data models in our study. The models also demonstrated
comparable AUC based on white and non-white races, with
improved performance on non-white race skin lesions for the
image-alone and combined data models despite having a lower
proportion of patients who identified as a non-white race.
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However, the applicability of these results may be limited as
there were only 28 non-white race skin lesions and only 4 of
these lesions were classified as malignant.

Comparison of image-alone model
against dermatologists

Our proof of concept model performed comparatively well
against three board-certified dermatologists, demonstrating its
utility as a classification tool that performs as well as current
experts in the field. Before implementation in a clinical setting,
however, it is important to validate model performance in a
clinical workflow, testing a larger set of images with a larger
set of dermatogists prior to deployment. This is important as
our model was trained on images that utilized histopathological
reports as ground truth while dermatologist consensus is often
used as the ground truth in a real-world clinical setting, as many
lesions are not biopsied.

Limitations

Limitations of the study include a small discovery image
dataset and a limited number of dermoscopy images. In
particular, images with dark skin tone represented less than
2% of the images. While this may represent bias, skin
cancers are more prevalent in light- and medium-skin tones.
However, for a generalized CDS, it is important to incorporate
images representing the large range of skin types and lesions
encountered in clinical practice. As education efforts expand
to represent more dark skin images of dermatologic conditions
in educational materials (25), similar efforts should be pursued
to develop and train generalizable CDS tools. Additionally,
while the pure clinical model incorporates a comprehensive
list of patient demographics, comorbidities, and medications
and accounts for temporal association of this metadata with
detection of lesions, it is not an exhaustive list as it does
not include social determinants such as sun-exposure behavior
(26), tanning bed usage, or smoking behavior (27): critical
factors contributing to the increasing incidence of skin cancer.
Metadata such as lesion symptoms (ex. bleeding or itching)
(16) and evolution of lesions is also missing and should be
incorporated in future studies. Interestingly, the addition of
skin tone and location of the skin lesion of interest caused the
performance of the clinical data-alone model to decline. This
could be due to subjective labeling of the skin tone of each of the
skin lesion images as light, medium, or dark rather than more
standardized classification of skin tone used in other studies,
such as the Fitzpatrick skin type classification scale (16). As for
location of the skin lesion of interest, while one study found that

most BCCs are located on the head, neck, and trunk (28), which
is concurrent with our model, our model predicted a lower risk
of malignancy for lesions on areas such as the extremities, which
often have higher sun exposure. Finally, it should be noted that
lesions included in this study were evaluated and selected for
biopsies in dermatology clinics. If this model was to be utilized in
a primary care setting, additional validation would be needed as
pre-test probability of lesion detection is different among clinical
settings (23).
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