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Gastrointestinal disorders and
intestinal bacteria: Advances in
research and applications in
therapy
Toshifumi Ohkusa*, Yuriko Nishikawa and Nobuhiro Sato

Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan

Intestinal bacteria coexist with humans and play a role in suppressing the invasion

of pathogens, producing short-chain fatty acids, producing vitamins, and controlling

the immune system. Studies have been carried out on culturable bacterial species

using bacterial culture methods for many years. However, as metagenomic analysis

of bacterial genes has been developed since the 1990s, it has recently revealed that

many bacteria in the intestine cannot be cultured and that approximately 1,000

species and 40 trillion bacteria are present in the gut microbiota. Furthermore,

the composition of the microbiota is different in each disease state compared

with the healthy state, and dysbiosis has received much attention as a cause of

various diseases. Regarding gastrointestinal diseases, dysbiosis has been reported

to be involved in inflammatory bowel disease, irritable bowel syndrome, and non-

alcoholic steatohepatitis. Recent findings have also suggested that dysbiosis is

involved in colon cancer, liver cancer, pancreatic cancer, esophageal cancer, and

so on. This review focuses on the relationship between the gut microbiota and

gastrointestinal/hepatobiliary diseases and also discusses new therapies targeting the

gut microbiota.

KEYWORDS

gut microbiota, inflammatory bowel disease, NSAID enteritis, colorectal cancer, alcoholic
and non-alcoholic steatohepatitis, primary sclerosing cholangitis, pancreatic cancer, fecal
microbiota transplantation

1. Introduction

Since the 1990s, direct sequencing targeting bacterial-specific 16S ribosomal RNA (16S
rRNA) and 16S rRNA-encoding genes have been adopted to study intestinal bacteria,
which has enabled the identification of bacterial species that have remained uncultured.
In addition, the emergence of next-generation sequencing technologies has accelerated
the gene analysis process and led to metagenomic analysis, which contributed to the
elucidation of enormous quantities of gut microbiota members. Metagenomic shotgun
sequencing and 16S amplicon sequencing are commonly used for the analysis of gut
microbiota. Although each of these two types of analysis has advantages and disadvantages
(Table 1), both have brought about great advances in gut microbiome analysis. Such advances
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in bacterial analyses have shed light on dysbiosis, i.e., altered
microbiota compositions in individuals with diseases compared with
the microbiota compositions of healthy individuals. An association
of this perturbed state of the gut microbiota with various diseases has
been reported to occur in inflammatory bowel disease (IBD), irritable
bowel syndrome (IBS), non-alcoholic steatohepatitis (NASH), and
colorectal, pancreatic, and esophageal cancers. The association
with additional disorders has also been implicated, including
diabetes, obesity, arteriosclerosis, multiple sclerosis, neuropsychiatric
conditions (such as autism), uremia, and rheumatoid arthritis. In this
study, the relationships between intestinal bacteria and individual
gastrointestinal (GI) diseases that have been reported to be associated
with intestinal microbiota dysbiosis (Table 2) are discussed.

2. IBD and intestinal bacteria

The pathogenesis of intestinal inflammation in IBD was
previously attributed to autoimmunity (autoimmunity theory).
However, due to advances in research through the development of
bacterial metagenomic analysis methods and the discovery of innate
immunity, intestinal bacteria have surfaced as a culprit in IBD, and
the supporting data are presented in Table 3.

2.1. Intestinal mucosal protection capacity
declines in IBD due to leaky gut

In the research of single-nucleotide polymorphisms (SNPs) in
IBD, the availability of further advanced sequencing technologies
has enabled genome-wide association studies (GWASs), in which
more and longer gene sequences are simultaneously analyzed.
Using such sequencing systems, 71 Crohn’s disease (CD)-associated
SNPs and 47 ulcerative colitis (UC)-associated SNPs were identified
in the European and American populations studied (1, 2). For
approximately 80% of those SNPs, their roles are not clear, but among
the remaining SNPs, many are known to have roles related to bacterial
clearance or mucosal protection (3). NOD2 (CARD15), a particularly
well-known CD-associated gene predominantly expressed in the
Paneth cells of the small intestine, detects the bacterial component
peptidoglycan through the recognition of the peptidoglycan product
muramyl dipeptide (4). Moreover, NOD2 induces defensin secretion
by Paneth cells for bacterial elimination (5). NOD2 also promotes the
production of immunosuppressive interleukin-10 (IL-10) (6) and is
involved in the induction of autophagy, a recent high-profile topic
(7, 8). With respect to autophagy, it has been reported that SNPs
in the autophagy-related 16 like 1 (ATG16L1) gene are observed
in patients with CD and that autophagy is reduced in cells with
NOD2 and ATG16L1 variants (7). Given the above, in CD, the

Abbreviations: IBD, inflammatory bowel disease; IBS, irritable bowel
syndrome; NASH, non-alcoholic steatohepatitis; GI, gastrointestinal; SNPs,
single nucleotide polymorphisms; UC, ulcerative colitis; CD, Crohn’s disease;
SRB, sulfate-reducing bacteria; TNF-α, tumor necrosis factor-α; IFN-γ,
interferon gamma; PCR, polymerase chain reaction; SIBO, small intestinal
bacterial overgrowth; CRC, colorectal cancer; ESCC, esophageal squamous
cell cancer; EAC, esophageal adenocarcinoma; NSAIDs, non-steroidal anti-
inflammatory drugs; ASH, alcoholic steatohepatitis; LC, liver cirrhosis; HE,
hepatic encephalopathy; PSC, primary sclerosing cholangitis; FMT, fecal
microbiota transplantation; CDI, C. difficile infection; RCTs, randomized
controlled trials.

TABLE 1 Commonly used methods to assess the microbiota.

Method 16S amplicon
sequencing

Shotgun
sequencing

Cost Less expensive Expensive

Detection Detecting taxa in low
abundance

Miss taxa present in
low abundance

Identifying species and genes Less reliable More useful

Functional relevant Not available Available

TABLE 2 GI system diseases reported to be associated with intestinal
microbiota dysbiosis.

GI diseases

IBD IBS

Antibiotic-associated colitis (Clostridium difficile colitis, CDI)

Colorectal cancer

Esophageal cancer

Non-steroidal anti-inflammatory drug-induced colitis

Hepatic diseases

Alcoholic steatohepatitis (ASH)

Non-alcoholic steatohepatitis (NASH)

Liver cirrhosis (LC)

Hepatic encephalopathy (HE)

Primary sclerosing cholangitis (PSC)

Pancreatic disease

Pancreatic cancer

function to detect pathogenic bacteria and eliminate them via the
promotion of defensin secretion assumingly may be diminished,
and further, SNPs may hamper the removal of components of
invading bacteria from cells; this may actually be a cause of the
non-caseating granulomas observed in patients with CD. A recent
study detected highly harmful intestinal bacterial counts in the blood
of patients with active-phase CD harboring the ATG16L1 variant
(9). Another study reported a massive translocation of intestinal
microbes into the mesenteric adipose tissue (10). The decreased
mucosal defense in genetically influenced patients with CD and
pathological bacterial translocation are generally detailed in a recent
review (11).

In IBD, especially in UC, attention has been drawn to increased
mucosal permeability, or “leaky gut.” In a U.S. multicenter study
(3), reduced epithelial-barrier function resulting in the leaky gut
was observed in patients with UC carrying SNPs in the following
genes: HNF4A, which is involved in cell–cell junctions, such as tight
junctions and adherens junctions; CDH1, an encoder of E-cadherin,
which is a protein involved in cell–cell adhesion formation and
maintenance; and LAM, an encoder of laminin subunit beta-1, which
is expressed in the intestinal basement membrane and plays a key
role in anchoring the single-layered epithelium. Essentially, one study
found a decrease in the levels of the mucin core protein gene MUC2
and mucus-producing goblet cells in UC-affected mucosae (12).
A recent study reported that sialylation plays an essential role in
protecting mucus-barrier integrity from bacterial degradation and
is governed by ST6GALNAC1 (ST6), a local sialyltransferase in
the gut (13). Glycoproteomic profiling and biochemical analysis of
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TABLE 3 Supporting data for the theory of intestinal bacteria
as a cause of IBD.

Supporting data

� Immune abnormality-related spontaneous enterocolitis does not develop in
germ-free settings; it is caused by intestinal bacteria

� Resident bacteria are extremely abundant in the intestinal mucosa of patients with
IBD

� The beneficial vs. harmful bacterial balance is abnormal with harmful species
predominatingin patients with IBD compared with the balance in healthy
individuals

� Genetic polymorphism analysis reveals that many of the gene polymorphisms
observed in IBD are linked to the reduction in bacterial clearance and mucosal
protective mechanisms

� In IBD, tolerance to intestinal bacteria decreases, resulting in an excessive
immune response, i.e., inflammation

� Toll-like receptors, key players in the innate immune system, are expressed in the
intestinalepithelium, and for many of them, the ligands are bacterial components.

ST6 mutations identified in patients show that decreased sialylation
causes defective mucus proteins and congenital IBD. In addition,
a number of studies have reported the association of a high-fat
diet with increased mucosal permeability (14). The possibility of
increases in the number of IBD cases in Japan attributable to leaky
gut resulting from such a diet cannot be ruled out; specifically,
mucosal penetration of commensal bacteria due to a leaky gut
may cause intramucosal inflammation or ulceration, leading to
the onset of IBD.

Although immune tolerance is important in terms of symbiosis
between intestinal bacteria and mucosal cells, multiple GWASs
identified SNPs in the immunosuppressive cytokine IL-10, a key
factor in immunotolerance, in patients with UC and those with
CD, with decreased production of this cytokine in both patient
populations studied (1, 15). IL-10-knockout mice spontaneously
develop colitis in the presence of intestinal bacteria (16). In
humans, it was reported that variants of the IL-10 receptor
genes IL-10RA and IL-10RB caused an early onset of severe
IBD (17). These GWAS results were obtained from Western
populations. SNPs in NOD2 and ATG16L1 are deemed unlikely
in Japanese individuals (18, 19). In addition, evidence for the
influence of each SNP on the development of IBD is not
considered conclusive, with the odds ratio estimate of the
influence being low.

2.2. IBD may be caused by gut microbiota
dysbiosis

In IBD, gut microbiota dysbiosis, i.e., imbalanced microbiota
composition due to decreased anti-inflammatory species and
increased pro-inflammatory species, is thought to result in mucosal
inflammation and ulceration (Figure 1).

A large number of studies of IBD based on genetic analyses
targeting 16S rDNA, which encodes bacterial 16S rRNA, have
reported an increase in bacteria of the family Enterobacteriaceae
and the genus Desulfovibrio of the phylum Proteobacteria, those
of the genus Bacteroides of the phylum Bacteroidetes, and those
of the phylum Fusobacteria (20). The bacteria Bacteroides and
Enterobacteriaceae (e.g., Escherichia coli and Klebsiella) are

pathogens that induce opportunistic infections, such as sepsis,
in the compromised host and are classified as aggressive microbial
species, i.e., harmful species. On the contrary, a number of
studies in patients with UC or CD have reported a decrease in
beneficial microbial species or probiotics, including Lactobacillus,
Faecalibacterium prausnitzii, Roseburia hominis, and Clostridium IXa
and IV groups of the phylum Firmicutes and genus Bifidobacterium
of the phylum Actinobacteria (21). In long-term IBD, Yilmaz
et al. defined distinct networks of taxa associations within
intestinal biopsies of patients with CD and UC and reported
that disturbances in an association network containing taxa
of Lachnospiraceae and Ruminococcaceae families, typically
producing short-chain acids, characterize frequently relapsing
disease and poor response to treatment with anti-TNF-α therapeutic
antibodies (22).

The abundance of sulfate-reducing bacteria (SRB), which
produce hydrogen sulfide (H2S), in IBD has also been reported
(23). The produced H2S is toxic to mucosal cells and inhibits
the absorption of butyrate, induces cell overgrowth, and inhibits
bacterial phagocytosis and killing (24); H2S-producing SRB is thus
suspected to be involved in the pathogen of IBD. This report
found a decrease in the Clostridium IXa and IV groups. In patients
with active UC, the number of SRB was observed to be increased
compared with those in patients with UC in remission and healthy
controls (25–27). Various types of bacteria are included among SRB,
including Fusobacterium, Proteus, Campylobacter, Pseudomonas, and
Salmonella (28). Some studies point to the possibility that the
dysbiosis of gut fungal microbiota, in addition to that of gut
bacterial microbiota, may play a part in lesion development in IBD
(29, 30).

2.3. Suspected causative bacteria of UC

Historically, numerous bacteria have been studied as the primary
UC cause candidates. The major reports on those studies are
summarized in Table 4 (23, 31–33). Of note, in many of those
studies, bacteria were isolated and identified using stool cultures.
Since infection is commonly initiated by the adherence of bacteria
to host cell surfaces, the analysis of cultured mucosal bacteria is of
greater value than the analysis of cultured stool bacteria; therefore,
the use of mucosal cultures for the isolation and identification of
bacteria is desired and preferred.

In a prior study in which the author and associates closely
examined surgically excised mucosal lesion samples from patients
with UC, we found bacilli adherent to the lesions as well as mucosal
invasion at ulcerated sites (34). We then isolated and identified
Fusobacterium varium from the inflamed mucosa of patients with
UC. The detection rate for these bacteria was significantly higher in
patients with UC than in those with CD, ischemic enteritis, or colonic
adenoma or in healthy controls. Moreover, the serum antibody titer
against F. varium was significantly higher in samples from patients
with UC. In addition, immunohistochemical staining of inflamed
mucosal samples detected F. varium in a larger proportion of UC
samples than other disorder samples or healthy control samples (32).
Despite the absence of verotoxin genes, F. varium cells demonstrated
cytotoxicity to Vero cells and were tested for the origin of the toxin.
We found that the butyrate produced by F. varium was toxic to Vero
cells and that enemas of this butyrate induced apoptotic changes and
UC-like lesions in mice (35). It was reported that butyrate in the
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FIGURE 1

Dysbiosis of the gut microbiota in IBD.

human colonic epithelium is an energy source but induces apoptosis
(36). As an end product of dental plaque metabolism, butyrate is
involved in the etiology of periodontal disease (37), whereas in the
pediatric field, a butyrate-producing bacterium is reported to cause
neonatal necrotizing enterocolitis (38). These reports support our
hypothesis: F. varium bacteria adhere to or invade the colonic mucosa
and generate butyrate, which induces ulceration in the colon. We also
confirmed that such colonic mucosal adherent or invading bacteria
markedly promoted the release of pro-inflammatory cytokines, such
as IL-8 and tumor necrosis factor-α (TNF-α), from the mucosa
(39). Moreover, our whole-genome sequencing of F. varium has
revealed their high pathogenicity: they have the type IV secretion
system found in Helicobacter pylori and the type V secretion
system found in Yersinia and Neisseria gonorrheae, and they carry
a large number of adhesins, which induce mucosal adherence, i.e.,
a basic property of pathogens (40). The above findings indicate that
F. varium may elicit inflammation, ulceration, and, eventually, UC
(Figure 2). Recently, increases in Fusobacterium group members
have been reported in patients with UC after undergoing pouch
surgery for pouchitis (41, 42). Another recent study found that
patients with UC who did not achieve remission with fecal microbiota
transplantation (FMT) had an enrichment of a Fusobacterium species
(43).

We later attempted to reduce the load of F. varium in patients
with UC positive for the antibody of this species using a combination
therapy consisting of three antibiotics (amoxicillin, tetracycline, and
metronidazole) to which F. varium is susceptible; improvement was
achieved in UC symptoms and endoscopic and histological findings
(44). In a double-blind, placebo-controlled, multicenter study of
more than 200 patients, the aforementioned triple antibiotic regimen
significantly exceeded the placebo in improvement and remission
rates (45). The above findings indicate that F. varium is likely involved
in the etiology of UC.

TABLE 4 Suspected causative bacteria for UC.

References Causative bacteria Specimens
tested

Roediger et al. (23) Sulfate-reducing bacteria Mucosa

Matsuda et al. (31) Bacteroides vulgatus Mucosa

Ohkusa et al. (32) Fusobacterium varium Mucosa

Swidsinski et al. (33) Bacteroides, Enterobacteriaceae Mucosa

2.4. Suspected causative bacteria for CD

Of the several potential causes of CD reported to date (Table 5),
the most notable is Mycobacterial paratuberculosis (currently
classified as Mycobacterium avium subspecies paratuberculosis),
reported by Chiodini et al. (46). M. paratuberculosis is known as a
pathogen of Johne’s disease, contagious chronic enteritis in domestic
animals with symptoms such as diarrhea and feces mixed with mucus
and/or blood. This atypical acid-fast bacterium grows very slowly and
is, therefore, very difficult to culture and identify in a conventional
manner. For the first time, Chiodini et al. (46) succeeded in isolating
the bacterium from patients with CD and culturing it. By employing
a polymerase chain reaction (PCR)-based method, Sanderson et al.
(47) detected a DNA element specific to M. paratuberculosis (i.e.,
IS900) in 65% of the CD patient tissue samples tested. Ryan et al.
(48) used PCR to examine DNA extracted from laser capture
microdissection-isolated granuloma tissue specimens and detected
IS900 in 40% of the specimens from the studied patients with CD.
Using culture and PCR, Naser et al. (49) surprisingly confirmed the
presence of viable M. paratuberculosis in peripheral blood in a higher
proportion of CD patient samples than in control samples. The role
of M. paratuberculosis in the etiology of CD is still being actively
debated today. In a study of rifaximin, this anti-M. paratuberculosis
antibiotic was shown to be more effective than a placebo in inducing
CD remission (50).

Adherent-invasive E. coli is considered to be another potential
cause of CD, as reported by Darfeuille-Michaud et al. (51). They
cultured surgically resected ileal mucosa samples from patients with
CD and detected α-hemolysin-producing adherent-invasive E. coli
strains in many of the lesions evaluated (active lesions, 84.6%;
non-active lesions, 78.9%; control, 33%). Recently, the presence of
Fusobacterium nucleatum in CD-affected intestinal mucosa has also
been reported. Strauss et al. (52) detected strains of this species in
10 (58.8%) of 17 patients with CD, all of which were cytoinvasive.
Atarashi et al. (53) demonstrated that Klebsiella pneumoniae isolated
from the cecal fluid of patients with CD upon colonizing the
mouse gut mucosa strongly induced interferon gamma (IFN-γ)-
producing CD4 + T helper cells, indicating the possibility for this
species to cause intestinal inflammation and exacerbate CD. Recently,
Federici et al. transferred clinical IBD-associated K. pneumoniae
into germ-free mice and found that colonized mice enhanced
intestinal inflammation. In addition, they showed that a lytic
five-phage combination targeting K. pneumoniae enables effective
K. pneumoniae suppression in colitis-prone mice (54).
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FIGURE 2

Colonic ulceration and inflammation by Fusobacterium varium (hypothesis).

3. IBS and intestinal bacteria

In the 1960s, when the first modern concept of IBS was
proposed, it was already known that IBS could develop following
infectious enteritis (55). In Balsari et al. (56) reported, as revealed
by stool culture analysis, a decrease in bifidobacteria, lactobacilli,
and anaerobic bacteria in patients with IBS compared with healthy
individuals. Their findings drew little attention, possibly because
IBS was largely believed to be attributable to GI dysfunction. Later,
in Pimentel et al. (57) found small intestinal bacterial overgrowth
(SIBO) in a large proportion of the studied patients with diarrhea-
predominant IBS. The symptoms of this type of IBS were shown
to be improved by treatment with antibiotics (such as rifaximin)
or probiotics (such as VSL#3); the relationships between intestinal
bacteria and IBS have thus come to garner increasing attention
(58). According to the findings from a systematic review, increases
in the families Enterobacteriaceae and Lactobacillaceae and the
genus Bacteroides and decreases in the genera Bifidobacterium and
Faecalibacterium were demonstrated in patients with IBS (59).

With respect to constipation-predominant IBS, an association
of methanogenic bacteria is indicated by the increased methane
concentration in the stool of patients with constipation (60). The
primary methanogenic bacterial species was Methanobrevibacter
smithii. One study reported that a neomycin and rifaximin
combination therapy targeting this species resulted in an
improvement in clinical symptoms as well as a decrease in methane
in the stool (61).

TABLE 5 Suspected causative bacteria for CD.

References Causative bacteria Specimens
tested

Chiodini et al. (46) Mycobacterium
paratuberculosis

Mucosa, lymph
node

Darfeuille-Michaud et al. (51) Adherent E. coli Mucosa

Willing Ruminococcus gnavus Mucosa

Strauss et al. (52) Fusobacterium nucleatum Mucosa

Atarashi et al. (53) Klebsiella pneumoniae Cecal fluid

Irritable bowel syndrome, especially IBS following infectious
enteritis, is associated with decreased occludin at tight junctions
and increased colonic mucosal permeability. This results from an
increase in serine protease due to gut microbiota dysbiosis. One
recent study reported an improvement in mucosal permeability by
treatment with a serine protease inhibitor (62). Dysbiosis and leaky
gut are deemed causative factors for IBS. In diarrhea-predominant
IBS, bile acid malabsorption is observed. It has been reported that
this inhibition of absorption is strongly linked to the gut microbiota
dysbiosis-associated changes in the fecal metabolome consisting of
stool metabolites (63).

4. Colorectal cancer and intestinal
bacteria

Colorectal cancer (CRC)-associated intestinal bacteria reported
to date based on bacterial culture analysis include pathogenic
strains of E. coli, enterotoxigenic strains of Bacteroides fragilis, and
Streptococcus bovis (64). In a recent meta-analysis of S. bovis based
on stool culture, patients with CRC were found to have a higher
incidence of this species in their feces, with an odds ratio of 2.52 (95%
confidence interval, 1.14–5.58). This finding suggests a significant
association of S. bovis with CRC (65). Conversely, in one study,
bacterial genomic analysis detected a higher prevalence of genetic
polymorphism for the Clostridium coccoides and Clostridium leptum
groups in the stool samples of CRC patients than in those of
healthy controls, and in another study, increased coriobacteria and
decreased enterobacteria were observed in CRC tissue compared with
adjacent non-malignant mucosa (64). Ahn et al. (66) reported the
highest enrichment of Fusobacterium, followed by Porphyromonas,
in patients with CRC. One study found that Fusobacterium was
significantly abundant in CRC tissue and that fluorescence in situ
hybridization detected an enrichment of the bacteria of this genus
in CRC compared with non-neoplastic mucosa (67). Another study
reported that a Fusobacterium isolate was obtained from a cancer
tissue specimen (68). These findings have made Fusobacterium a
high-profile factor worldwide, similar to H. pylori, as a potential
cause of CRC. Essentially, F. nucleatum cultured from cancer tissue
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promotes BRAF mutations and microsatellite instability, increasing
the risk of CRC in an experimental setting. The reduction in this
species with antibiotic treatment was reported to inhibit tumor
growth in number and size (69). With regard to Japanese individuals,
Yachida et al. (70) reported that the whole metagenomic analysis
of stool samples showed an increase in Atopobium parvulum in
colonic adenomas and a significant elevation in both F. nucleatum
and Actinomyces odontolyticus in intramucosal carcinomas, a more
advanced stage of the tumor. Thomas et al. performed a meta-
analysis of five publicly available data sets and two new cohorts and
validated the findings on two additional cohorts, considering a total
of 969 fecal metagenomes. Unlike microbiome shifts associated with
GI syndromes, the gut microbiome in CRC showed reproducibly
higher richness than controls (P < 0.01), partially due to expansions
of species typically derived from the oral cavity. They found that
Peptostreptococcus stomatis was the species with the highest average
rank in CRC (71).

In our 16S rRNA metagenomic analysis of aspirates from
colorectal adenoma, which is a precancerous lesion, F. nucleatum was
detected, but not in significant abundance compared with normal
colorectal tissue. Conversely, F. varium, another species belonging
to Fusobacteria, was significantly enriched in adenoma samples
compared with normal samples (72). A Hong Kong study also
reported that an abundance of F. varium, but not F. nucleatum,
was detected by shotgun whole metagenomic analysis in patients
with CRC (73). In a large study where more than 50,000 male
subjects were evaluated in terms of their diet patterns and fecal
microbiota over 26 years, an increase in H2S-producing SRB in
stools was associated with an increased risk of the distal colon and
rectal cancers (74). SRB, which includes Fusobacteria, are well-known
periodontal pathogens; oral bacteria are implicated in CRC. Recently,
Bertocchi et al. demonstrated the critical role of the gut vascular
barrier (GVB) in the hematogenous route of liver CRC metastases.
They link GVB impairment with bacterial translocation into the
liver, the formation of a premetastatic niche, and tumor cell seeding.
We report that tumor-resident bacteria E. coli disrupt the GVB
and antibiotic treatment hampers metastases formation, preventing
GVB disruption (75). They proposed that targeting tumor-associated
bacteria might be a new strategy to counteract liver metastases.

5. Esophageal cancer and intestinal
bacteria

Esophageal cancers are roughly divided into esophageal
squamous cell cancer (ESCC) and esophageal adenocarcinoma
(EAC); ESCC is predominant in Asia and Africa, whereas EAC is
more prevalent in Europe and the United States (USA). Yamamura
et al. (76) of Japan detected F. nucleatum in 23% (74/325) of
resected esophageal cancer tissue specimens. A study by Gao et al.
(77) detected Porphyromonas gingivalis in 61% of the ESCC tissue
samples studied. Peters et al. (78) performed a 16S rRNA meta-
analysis on oral bacteria from patients with esophageal cancer and
found that the periodontal pathogen P. gingivalis was abundant in
ESCC samples and Tannerella forsythia in EAC samples. In a recent
study, periodontal pathogens in dental plaque and saliva samples
from 61 patients with ESCC were subjected to a real-time PCR assay,
and the results were subjected to logistic regression analysis and
found T. forsythia and Streptococcus anginosus in dental plaque,

Aggregatibacter actinomycetemcomitans in saliva, and a drinking
habit was found to be associated with a significantly higher ESCC
risk, but F. nucleatum was not significantly associated with ESCC risk
(79). Since most of the above bacteria detected in esophageal cancer
live in the oral cavity, it is suspected that oral bacteria are involved in
esophageal cancers.

6. Non-steroidal anti-inflammatory
drug-induced enteritis and intestinal
bacteria

Non-steroidal anti-inflammatory drugs (NSAIDs), well-known
inducers of the stomach and duodenal ulcers, also induce small
intestinal ulcers, but this is not broadly known. The increasing
prevalence of capsule endoscopy and enteroscopy for the small
intestine has shed light on the high ulceration rate (over 50%)
following NSAID treatment, which has emerged as a clinical
problem that causes intestinal bleeding. In Kent and associates
demonstrated that small intestinal ulcerations developed in almost
100% of indomethacin-treated rats and that antibiotic combination
treatment with neomycin, polymyxin B, and bacitracin reduced
the severity of ulcers (80). Culture analysis revealed a significant
increase in the numbers of E. coli, Bacteroides, and clostridia at
the time of ulceration. Antibiotic treatment reduced the numbers
of these bacteria to near-normal levels. These findings suggested
the involvement of the above intestinal bacteria in small intestinal
ulcerations. Furthermore, NSAID treatment was not shown to result
in small intestinal ulceration in rats when bile was excluded by
bile duct ligation, suggesting a potential role of bile acid in small
intestinal ulcer formation (81). Robert and Asano (82) reported that
indomethacin did not induce small intestinal ulcers in germ-free rats.
In a Japanese study by Uejima et al. (83) in following cyclooxygenase-
2 inhibitor treatment, no small intestinal ulcers were observed
in germ-free rats, whereas ulceration was observed in 57–71% of
specific pathogen-free rats. Small intestinal ulcers did not develop
in specific pathogen-free rats after cotreatment with three antibiotics
(neomycin, streptomycin, and bacitracin). Culture analysis revealed
an increase in Gram-negative bacilli (e.g., E. coli, Klebsiella, Proteus,
and Bacteroides) in both the feces and lesions of the animals, whereas
these bacteria were markedly decreased by antibiotic treatment. The
authors concluded that their findings suggested an association of
Gram-negative bacilli with ulcer formation. As indicated by the above
data, intestinal bacteria are deemed to be responsible for NSAID-
induced ulceration in the small intestine. Another study found that
probiotic treatment using Bifidobacterium breve reduced both the
number and size of aspirin-induced small intestinal ulcers compared
with placebo (84).

7. Alcoholic steatohepatitis (ASH),
NASH, and intestinal bacteria

The likely mechanism of the development of ASH is postulated
to be as follows: alcohol increases mucosal permeability. This
increased mucosal permeability allows large quantities of endotoxins
(lipopolysaccharide, LPS) to leak into the portal venous circulation.
LPS then activates Kupffer cells in the liver, enhancing the release
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of pro-inflammatory cytokines, including TNF-α, by these cells.
Such cytokines contribute to hepatocellular necrosis, apoptosis,
and fibrosis (Figure 3). Some findings have suggested that hepatic
necrosis, apoptosis, and fibrosis in NASH may be caused in a similar
manner by factors such as intestinal bacteria-derived alcohol (85)
and intestinal bacterial overgrowth (86). With regard to genetic
elements, it is known that in both ASH and NASH patients, the
expression of the LPS receptor CD14 in Kupffer cells is elevated,
increasing their susceptibility to LPS (87). Treatment with probiotics
or FMT has been reported to inhibit the development of both ASH
and NASH and improve the lesions of these conditions (86). This
finding indicates a close association of not only insulin resistance
but also intestinal bacteria-derived LPS in the pathogenesis of ASH
and NASH. A recent study by Sookoian et al. (88) detected intestinal
bacteria, albeit in small amounts, in NASH liver tissue samples;
among them, Bacteroidetes, Firmicutes, and Proteobacteria were
overrepresented, whereas the abundance of Lachnospiraceae was
decreased.

In an interesting animal model study, mice in which NASH
was induced by feeding with a methionine-choline-deficient diet
were cohoused with wild-type mice of the same strain as the
NASH model mice; the wild-type mice also developed NASH
(89). The pyrosequencing of the fecal microbiota from those mice
demonstrated an increased representation of Prevotella. A study by
Zhu et al. (90) also reported an increase in Prevotella abundance
in children with NASH compared with healthy controls (91).
However, in another study, adult patients with NASH were found
to have a lower percentage of Bacteroidetes (the phylum to
which the genus Prevotella belongs) in their total bacterial counts
(92). Consistency in findings is yet to be achieved. Increases
in Prevotella have also been reported in samples from patients
with alcoholic cirrhosis (93). There is a report that SIBO is
present in 50% of patients with NASH, and another report
states that SIBO is common in patients with liver cirrhosis
(LC) (91).

Naturally, alcohol abstinence is a primary strategy in the
treatment of ASH; other options include treatments targeting
intestinal bacterial dysbiosis. An overabundance of LPS, a potential
cause of ASH, is induced by Gram-negative bacteria, antibiotics (such
as rifaximin) or probiotics (such as lactobacilli and bifidobacteria) are
thus administered to decrease Gram-negative bacteria and thereby
reduce LPS, with a certain degree of therapeutic success, such as
improved hepatic function (94). NASH is mainly treated by weight
loss and with the aforementioned antibiotic, probiotic, prebiotic,
synbiotic, and fiber diet approach for the same reason as in the case
of ASH, yielding similar efficacy in NASH (95–99).

8. LC, hepatic encephalopathy, and
intestinal bacteria

With regard to intestinal bacterial dysbiosis in LC, fecal
16S metagenomic sequencing revealed the following: an
enrichment of Proteobacteria and Fusobacteria and a reduced
proportion of Bacteroidetes in one study (100) and an increase in
Staphylococcaceae, Enterococcaceae, and Enterobacteriaceae, and
a decrease in Clostridium XIV, Lachnospiraceae, Ruminococcaceae,
and Rikenellaceae in another study (101). Enterococcaceae and
Enterobacteriaceae are families of the phylum Proteobacteria;

increases in the number of Proteobacteria are almost certain to
occur in LC. Furthermore, Sung et al. (102) found a decreased
abundance of Bacteroidetes and increased abundances of Firmicutes,
Proteobacteria, and Actinobacteria in decompensated LC with
hepatic encephalopathy (HE) compared with the fecal microbiome
in compensated LC. Of those findings, an increase in Veillonella
parvula of the phylum Firmicutes was especially conspicuous.
Their 1-year follow-up data demonstrated that HE recurrence was
associated with increased abundances of Clostridium XI, Bacteroides,
Lactobacillus, and Clostridium sedis and decreased abundances
of Alistipes, Bacteroides, and Phascolarctobacterium. The author
and associates performed metagenomic sequencing on blood
samples obtained from 66 patients with LC and created blood
microbial profiles, which demonstrated an increased abundance
of Enterobacteriaceae and decreased abundances of Akkermansia,
Rikenellaceae, and Erysipelotrichales compared with healthy control
profiles (103). These findings are consistent with the results of
the aforementioned studies (100–102). Intestinal bacteria were
shown to pass through the intestinal mucosa and enter the blood
circulation (bacterial translocation). Numerous bacterial species
are assumed to be present in the blood of patients with LC (103),
which possibly contributes to the development of LC complications,
such as sepsis and spontaneous bacterial peritonitis. Bacterial
translocation is closely related to various liver disease states; for
example, the entry of bacterial toxins (such as endotoxins) and
bacterial metabolites (such as ammonia and mercaptan) into the
blood circulation is associated with the state of HE and other
liver diseases (104). Thus, the above study results are helpful in
planning therapeutic strategies, e.g., the use of antibacterial or
probiotic agents in patients with LC. Essentially, the non-absorbable
antibiotic rifaximin is effective in treating HE, with long-term
effects demonstrated over extended periods (105). Lactulose is an
oligosaccharide with a long history of therapeutic use for HE. This
substance is deemed to exert its effect by improving gut dysbiosis as
a prebiotic (106).

9. Primary sclerosing cholangitis and
intestinal bacteria

Primary sclerosing cholangitis (PSC) is a chronic progressive
inflammatory disease characterized by fibrous strictures of
intrahepatic and extrahepatic bile ducts. In Japan, PSC is designated
as an intractable disease. Fecal microbiota dysbiosis has been
reported in PSC. In a patient study by Iwasawa et al. (107), 16S
metagenomic analysis revealed an overrepresentation of the genus
Enterococcus of the phylum Firmicutes and a decreased abundance of
the members of the genus Parabacteroides in PSC patients compared
with healthy controls; increased species of Enterococcus included
Streptococcus parasanguinis, Veillonella sp., and Enterococcus
faecium. Sabino et al. (108) of Belgium reported significantly
increased abundances of Fusobacterium and Lactobacillus in addition
to an overrepresentation of Enterococcus in PSC patient samples.
Adopting a similar analysis method, Rühlemann et al. (109) of
Germany detected an increase in the phylum Proteobacteria and
the bile tolerant genus Parabacteroides in PSC. Liwinski et al. (110)
analyzed bile specimens obtained from patients with PSC and
found an increase in E. faecalis, which correlated with the increased
concentrations of the secondary bile acid taurolithocholic acid. In
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FIGURE 3

Development and exacerbation of NASH by intestinal bacteria (hypothesis).

an animal study, cholangitis was reproduced in gnotobiotic mice
inoculated with K. pneumoniae that was isolated from PSC patient
stool samples (111). Allegretti et al. (112) performed FMT, although
in a small number of patients (n = 10), to evaluate its effectiveness
on dysbiosis in PSC; an improvement in alkaline phosphatase
levels, a measure of PSC lesion severity, was observed in three
(30%) patients.

10. Pancreatic cancer and intestinal
bacteria

In Michaud et al. (113) reported a statistically significant
association of periodontal disease with pancreatic cancer risk, which
prompted further studies on the relationship between periodontal
disease and pancreatic cancer. Moreover, significantly increased
abundances of periodontal disease pathogens (e.g., P. gingivalis
and A. actinomycetemcomitans) in the oral cavity of patients
with pancreatic cancer have been reported (114, 115). In a study
by Mitsuhashi et al. (116), Fusobacterium species were detected
in 25 (8.8%) of 283 pancreatic cancer tissue specimens. Geller
et al. (117) reported that the most commonly identified species
in their pancreatic cancer samples were those belonging to the
class Gammaproteobacteria. Pushalkar et al. (118) detected bacterial
DNA in significantly larger proportions of pancreatic cancer tissue
specimens than healthy control specimens, with particularly high
abundances of Proteobacteria, Bacteroidetes, and Firmicutes and
the genera Pseudomonas and Elizabethkingia. In addition, in fecal
samples from patients with pancreatic cancer, Pushalkar et al. (118)
found increased abundances of Proteobacteria, Synergistetes, and
Euryarchaeota, exhibiting dysbiosis. Recently, Kartal et al. reported
that Veillonella atypica, F. nucleatum/hwasookii, and Alloscardovia
omnicolens were enriched in the feces of patients with PDAC, whereas
Romboutsia timonensis, Faecalibacterium prausnitzii, Bacteroides
coprocola, and Bifidobacterium bifidum species clusters were depleted
(119). As shown above, the bacterial invasion of pancreatic tissue
is deemed responsible for the inflammation and immune system
modifications that promote cancer growth. In contrast, there is
a report that a higher tumoral microbial diversity is associated
with longer term survival (120). The above are findings from solid
pancreatic ductal adenocarcinomas, but similar observations have

also been reported for pancreatic cysts. Enrichment of the oral
bacteria F. nucleatum and Granulicatella adiacens was detected in
the pancreatic cyst fluid of intraductal papillary mucinous neoplasms
with high-grade dysplasia, which is a precursor to cystic pancreatic
cancer (121).

11. Treatment for intestinal bacterial
dysbiosis

Diseases associated with gut microbiota dysbiosis, leaky
gut with increased mucosal permeability, and SIBO have been
described. Treatments for such diseases include antibiotics and
probiotics (e.g., lactobacilli and bifidobacteria), prebiotics (e.g.,
oligosaccharides), synbiotics (i.e., a combination of probiotics
and prebiotics), and FMT. These long-standing traditional
therapies are now provided with the aim of reducing causative
bacterial groups and correcting gut dysbiosis, as gut microbiota
dysbiosis has been acknowledged as one of the causes of each of
the above diseases.

Antibiotics have actually been administered to HE (105), IBS
(58), and UC (44), and their efficacy has been reported. In addition,
probiotics, prebiotics, and synbiotics are therapeutic use for IBS (58),
NSAID-induced enteritis (84), NASH (95), and HE (106).

11.1. FMT for antibiotic-induced enteritis,
including clostridium difficile infection

In 1935, a new species of bacteria was named Bacillus
difficilis, the species name was given because of its difficult
anaerobic isolation from human feces. After 40 years, B. difficilis
was renamed Clostridium difficile and identified as the cause of
pseudomembranous colitis. This microorganism produces a toxin
that secretes fluids and leads to the development of yellow-white
plaques on the colonic mucosa. Essentially, microbial substitution
resulting from antibiotic therapy allows the overgrowth of this
resident microorganism in the gut microbiota, leading to the
generation of toxicity. In our experience, C. difficile, being
susceptible to vancomycin and metronidazole, can usually be
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TABLE 6 More and less abundant bacteria in GI disorders.

Bacteria Diseases

More abundant

Bacteroidetes NASH PC

Bacteroides UC IBS CRC NSAID enteritis

Bacteroides vulgatus UC

Porphyromonas gingivalis ESCC

Tannerella forsythia EAC

Proteobacteria NASH HE PC

Enterobacteriaceae UC

Adherent E. coli CD

Klebsiella pneumoniae CD

Enterobacteriaceae IBS LC

E. coli CRC NSAID enteritis

Firmicutes NASH HE PC

Ruminococcus gnavus CD

Lactobacillaceae IBS

Streptococcus bovis CRC

Clostridium coccoides CRC

Clostridium leptum CRC

Peptostreptococcus stomatis CRC

Clostridia NSAID enteritis

Enterococcaceae LC

Staphylococcaceae LC

Enterococcus PSC

Lactobacillus PSC

Granulicatella adiacens PC

Actinobacteria HE

Mycobacterium paratuberculosis CD

Actinomyces odontolyticus CRC

Fusobacteriota

Fusobacterium PSC

Fusobacterium nucleatum CD CRC CRA ESCC PC

Fusobacterium varium UC CRA

Archaea

Methanobrevibacter smithii IBS-C

Less abundant

Lactobacillus UC CD IBS

Faecalibacterium prausnitzii UC CD IBS

Roseburia hominis UC CD

Clostridium IXa and IV groups UC CD

Bifidobacterium UC CD IBS

Enterobacteria CRC

Lachnospiraceae NASH

Bacteroidetes HE

Bacteroides HE

(Continued)
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TABLE 6 (Continued)

Bacteria Diseases

Alistipes HE

Phascolarctobacterium HE

Akkermansia LC

Rikenellaceae LC

Erysipelotrichales LC

Romboutsia timonensi PC

Faecalibacterium prausnitzii PC

Bacteroides coprocola PC

Bifidobacterium bifidum PC

NASH, non-alcoholic steatohepatitis; PC, pancreatic cancer; UC, ulcerative colitis; IBS, irritable bowel syndrome; IBS-C, IBS constipation type; CRC, colorectal cancer; HE, hepatic encephalopathy;
LC, liver cirrhosis; ESCC, esophageal squamous cell cancer; EAC, esophageal adenocarcinoma; PC, pancreatic cancer; CD, Crohn’s disease; NSAID, non-steroidal anti-inflammatory drugs.

removed by either of these antibiotics before inducing intractable
conditions (122).

In Europe and the USA, however, recurrent C. difficile infection
(CDI) and CDI resistant to the above two antibiotics have been
observed for some time, and to make matters worse, CDIs have
been on the rise in recent years, looming large as a serious clinical
problem. For such refractory CDIs, FMT is considered the only
effective therapy, and numerous case reports on FMT-treated patients
have been published to date. A systematic review by Sha et al. (123)
is available, covering an extensive range of these reports, including
abstracts presented at academic meetings. The first modern FMT
treatment of CDI was performed in by Eiseman et al. (124). This
FMT treatment was given as one to three fecal enemas in four
patients with recurrent CDI and resulted in symptom improvement
and the clearance of the causative pathogen in all patients. No adverse
events were observed. In FMT-treated patients who followed from
then on, the success rates remained high, ranging from 79.7 to
100%, with few adverse events reported. The main administration
method was initially retention of enemas via a rectal tube, which
was then replaced by duodenal infusion via a nasogastric tube or
gastroscopy, and recently, FMT administration by colonoscopy has
become increasingly common. The dose used varies from patient
to patient, but it seems that larger doses can be delivered via the
colonic route than the duodenal route. Prior to FMT, vancomycin
or metronidazole is administered in many patients. The aim of
this pretreatment may be to reduce, if not eradicate, C. difficile to
improve the microbiota composition rich in this microorganism
to the greatest extent possible. The report by Van Nood et al.
(125), which is the only controlled FMT study, surprised healthcare
professionals worldwide.

The comparison between vancomycin alone and FMT resulted
in significantly higher CDI resolution rates for FMT (81.3–
91.8%) than for the vancomycin regimens tested (23.1–30.8%),
demonstrating the superiority of FMT to this antibiotic (125).
Recently, Baunwall et al. reported that oral vancomycin therapy
followed by FMT for the first or second CDI resulted in a
significantly higher cure rate than that of a placebo (126). Kelly
et al. (127) conducted FMT in 80 immunocompromised (due to
HIV, immunosuppressive therapy, or other reasons) patients with
CDI and achieved a CDI cure rate of 89%. However, 12 (15%)
patients had serious adverse events. Caution for adverse events
is required in the treatment of immunocompromised patients
with FMT. 16S rRNA analysis-based assessments of post-FMT

changes in the microbiota conducted by Van Nood et al. (125),
Dutta et al. (128), and Seekatz et al. (129) all revealed increased
microbial diversity, similar to the donor profile, following FMT.
This result indicates the successful transplantation of a healthy
donor’s gut microbiota into the patient. Dutta et al. (128) found
significantly increasing proportions of the family Lachnospiraceae
and decreasing proportions of Enterobacteriaceae, whereas Van
Nood et al. (125) and Seekatz et al. (129) reported decreases in the
phylum Proteobacteria, especially an Enterobacteriaceae member at
the genus level, as well as increases in the phylum Bacteroidetes
and phylum Firmicutes, including Clostridium clusters IV and XIVa.
These findings suggest that donor gut microbiota transplantation via
FMT can achieve the successful elimination of C. difficile and the
resolution of CDI symptoms.

11.2. FMT treatment for IBD

Fecal microbiota transplantation treatment of IBD was first
reported in by Bennet and Brinkman (130). One patient underwent
antibiotic treatment for intestinal sterilization, followed by an FMT
enema. A single FMT achieved remission (130). Subsequently,
randomized controlled trials (RCTs) were conducted in a double-
blind manner for the objective evaluation of FMT treatment of
IBD (131–134). Paramsothy et al. (133) performed intensive-dosing
FMT by colonoscopy 5 days per week for 8 consecutive weeks; the
remission rate was significantly higher for the FMT group (27%,
11/41 patients) than for the placebo group (8%, 3/40 patients).
In these four RCTs, FMT was found to be effective in three
(131, 133, 135), except the trial by Rossen et al. (132), which
was a negative trial. With improved fecal delivery techniques,
the efficacy rates have been increasing recently. Ishikawa et al.
(135) of Japan assessed a treatment method that applied a bone
marrow transplant method combined with a multiple antibiotic
regimen in patients with UC who responded well to FMT enemas
following multiple antibiotic pretreatment for intestinal sterilization,
with a clinical response rate of 82.3% and a remission rate of
53.0% at 4 weeks. Furthermore, in another study of FMT plus
the same multiple antibiotic pretreatment as above, Ishikawa et al.
(136) observed a recovery of bacterial diversity with increased
Bacteroidetes species in most responders, resulting in bacterial
profiles that were similar to those of donors. Recently, two studies
conducted in RCTs of similar multiple antibiotic pretreatment
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and FMT were performed by oral capsules (137) or lyophilized
capsules (138) for UC and reported their effectiveness. However, the
clinical efficacy of FMT treatment of UC remains elusive despite
favorable outcomes, such as the above, due to the variability in
treatment modalities studied thus far and small patient sample
sizes. Sarbagili Shabat et al. evaluated whether the integration of
novel UC exclusion diets (UCED) for patients with UC, in addition
to FMT, could increase the FMT remission rate in refractory
UC. The results of the study were that UCED alone appeared
to achieve higher clinical remission and mucosal healing than
single-donor FT with or without diet (139). Karjalainen et al.
reported an RCT study in which the safety profile of FMT was
good, but FMT was not effective in the treatment of chronic
pouchitis (140).

With respect to FMT treatment of CD, FMT by retention
enema in a 31-year-old male patient was reported in by Borody
et al. (141), and this treatment was drastically effective, achieving
clinical remission with no adverse events. Paramsothy et al. (142)
demonstrated remission rates of 50.6% (42/83 patients) and 52.0%
in patients with CD receiving FMT treatment included in their
meta-analysis of cohort studies. Li et al. (143) of China performed
FMT by endoscopy in 69 patients with CD by infusing a 150-ml
microbiota suspension from the duodenum below the papilla of Vater
in the anal direction, and favorable outcomes were achieved, with an
improvement rate of 62.3% (43/69 patients) and a remission rate of
43.5% (30/69) at 4 weeks post-FMT. Notwithstanding the above, the
efficacy of FMT treatment of CD is yet to be established due to the
limited number of patients studied to date and the absence of RCTs.
UC and CD both comprise diverse disease states accompanied by
genetic polymorphic variations.

It is not clear which states are or are not dysbiosis related. Cases
of IBD that benefit from FMT may thus be limited.

11.3. FMT treatment of IBS

In Borody et al. (141) performed FMT by retention enema in
a 21-year-old female patient with diarrhea-predominant IBS and
reported good outcomes with symptom resolution and a cure.
Six RCTs followed (144–149) with mixed results depending on
the FMT treatment methods used, including non-response to oral
FMT capsule therapy (two studies), response to duodenal or jejunal
delivery by nasogastroscopy (two studies), response to cecal delivery
by endoscopy (one study), and non-response to the same modality
(one study). Thus, the efficacy of FMT treatment of IBS is not clear.

11.4. Adverse events of FMT treatment

According to the FMT treatment, adverse event data compiled
by Lai et al. (150) from 4,493 patients in 35 studies were published
up to mid-2018 and the serious adverse events reported were
as follows: death (0.13%), aspiration pneumonia (0.16%), and
intestinal perforation and sepsis (0.07% each). The most common
events included diarrhea (13%) and abdominal distension (11%).
One case of death from multidrug-resistant E. coli infection
among FMT-treated patients was reported in DeFilipp et al.
(151), raising a warning against the use of FMT without solid
reasoning. FMT therapy is not without weaknesses, which are

said to include the inability to eliminate unknown viruses. The
elucidation of dysbiosis at the bacterial species level and, based
on the uncovered data, the development of pharmaceuticals
comprising numerous probiotic intestinal bacteria as alternatives to
FMT are awaited.

12. Conclusion and future
perspectives

The detection of intestinal bacteria in tissue samples of pancreatic
and other cancers indicates an association of microbiota with cancer
development and proliferation and, further, with patient responses to
anticancer drugs. Various diseases are assumed to be caused by the
loss of microbiota diversity and the resulting dysbiosis. Increases and
decreases in bacterial populations occur in diseased states (Table 6),
and causative pathogens are probably among those that increase. We
should not perceive dysbiosis as a single cause but look further into it
and identify specific causative bacteria or bacterial groups. Currently,
microbiota analysis systems are advancing from 16S metagenomic
sequencing to whole-genome shotgun sequencing, which allows
comprehensive sampling of all genes in given specimens, along
with the establishment of computer analysis systems. Against such
a backdrop, further exploration of causative pathogens is expected
to proceed. Revolutionary therapies for the diseases discussed herein
may then come into sight. We look forward to seeing what lies
ahead.
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