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Background: For the intensivists, accurate assessment of the ideal timing for

successful weaning from the mechanical ventilation (MV) in the intensive care

unit (ICU) is very challenging.

Purpose: Using artificial intelligence (AI) approach to build two-stage

predictive models, namely, the try-weaning stage and weaning MV stage to

determine the optimal timing of weaning from MV for ICU intubated patients,

and implement into practice for assisting clinical decision making.

Methods: AI and machine learning (ML) technologies were used to establish

the predictive models in the stages. Each stage comprised 11 prediction

time points with 11 prediction models. Twenty-five features were used for

the first-stage models while 20 features were used for the second-stage

models. The optimal models for each time point were selected for further

practical implementation in a digital dashboard style. Seven machine learning

algorithms including Logistic Regression (LR), Random Forest (RF), Support

Vector Machines (SVM), K Nearest Neighbor (KNN), lightGBM, XGBoost, and

Multilayer Perception (MLP) were used. The electronic medical records of the

intubated ICU patients of Chi Mei Medical Center (CMMC) from 2016 to 2019

were included for modeling. Models with the highest area under the receiver
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operating characteristic curve (AUC) were regarded as optimal models and

used to develop the prediction system accordingly.

Results: A total of 5,873 cases were included in machine learning modeling

for Stage 1 with the AUCs of optimal models ranging from 0.843 to 0.953.

Further, 4,172 cases were included for Stage 2 with the AUCs of optimal

models ranging from 0.889 to 0.944. A prediction system (dashboard) with

the optimal models of the two stages was developed and deployed in the

ICU setting. Respiratory care members expressed high recognition of the AI

dashboard assisting ventilator weaning decisions. Also, the impact analysis of

with- and without-AI assistance revealed that our AI models could shorten the

patients’ intubation time by 21 hours, besides gaining the benefit of substantial

consistency between these two decision-making strategies.

Conclusion: We noticed that the two-stage AI prediction models could

effectively and precisely predict the optimal timing to wean intubated patients

in the ICU from ventilator use. This could reduce patient discomfort, improve

medical quality, and lower medical costs. This AI-assisted prediction system is

beneficial for clinicians to cope with a high demand for ventilators during the

COVID-19 pandemic.

KEYWORDS

artificial intelligence, machine learning, intensive care unit, weaning mechanical
ventilation, optimal weaning timing

Introduction

Mechanical ventilation (MV) is frequently applied in
the intensive care unit (ICU). Approximately eight hundred
thousand patients receive MV annually in the United States (1).
Extubation decision is critical during an ICU stay. An early trial
of the weaning process and successful extubation may lower the
medical costs and ventilator-related complication rates. Besides,
it could improve the patient’s prognosis (2–4). Therefore, after
the recovery of the critical illness, clinicians should immediately
prepare to liberate the patients from MV. Evaluation of an
ICU patient’s fitness for weaning and subsequent extubation
is objectively referred to the airway, respiratory, neurological
parameters, etc. (5). Most of the times, liberation from MV
requires three steps – readiness testing, weaning, and extubating
and the process of MV liberation is dynamic and complicated. In
daily practice, extubation is usually left to the discretion of the
clinician (6); therefore, various protocols for ventilator weaning
have been established and assessed to increase the extubation
rate (7–18).

Despite following the recommended extubation process
established in the American Thoracic Surgery weaning protocol,
the failure rate still ranges from 10 to 15% of ICU patients
in the United States (19). Truthfully, there has been no
significant decrease in extubation failure in the past decades.
Therefore, an advanced strategy is mandatory to increase

the prediction accuracy (20). Several multivariate outcome
prediction models have evolved in many aspects of health
care research in these years. They include artificial neural
networks (ANN), logistic regression (LR) models, random forest
(RF) models, and support vector machines (SVM) (21–26).
Machine learning (ML) is a subject of computer science that
incorporates numerous components to empower the systems
to learn from currently acquired data, predict the outcome,
and make changes in action when faced with a new problem.
Clinically, ML could increase the prediction rate of successful
weaning from ventilatory support. The parameters considered
in the prediction of successful weaning and extubation were
based on literature (27–34) and clinical experience.

Many studies (35–38) have reported the usefulness of AI
in the ICU, such as the early warning systems that predict the
risk of physiological deterioration in acutely ill patients, the
development of acute respiratory distress syndrome, the early
development of sepsis and the pathogen that causes it, and
clinical outcome and mortality. However, studies on the utility
of AI in predicting the weaning and extubation process among
critically ill patients requiring MV are limited (39–43), while
those that explore AI’s capacity to predict the weaning timing
for intubated patients are rare.

This study aims to develop an AI digital dashboard
to remind the ICU clinicians of the optimal timing for
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FIGURE 1

Study flow.

weaning initiation, propose an individualized treatment
recommendation, and assist in making extubation decisions.
Data that can be conveniently collected were chosen as
variables for building the prediction model, including patients’
characteristics and respiratory pattern parameters during
spontaneous breathing trials (SBTs). A preliminary impact
analysis was performed after AI assistance to predict successful
extubation in ICU patients.

Materials and methods

Ethical consideration

This study was reviewed and accepted by the CMMC (IRB
Serial No.: 10912-016). The process was performed according to
the approved guidelines and regulations, and informed consent
was waived from the patients because of the nature of our
retrospective study.

Study design

The study flow chart is demonstrated in Figure 1.
In the beginning, we established a professional team,
including clinicians, respiratory therapists, data scientists,
and information technology engineers, and held regular

FIGURE 2

Two-stage weaning assessment.

meetings and discussions. We retrospectively collected data
from adult ventilated patients (≥20 years old) who stayed at the
ICU of CMMC from January 2016 to December 2019. Patients
who signed the DNR (Do not resuscitate) were excluded.
According to clinical experience, if the try-weaning timing
is appropriate, the success probability of the final complete
weaning ventilator will also increase. Therefore, this study
divided the complete assessment of ventilator use into two
stages: (1) the try-weaning stage and (2) the complete weaning
MV stage (Figure 2).
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Try-weaning stage means switching the ventilator from
control mode to support mode for an ICU patient, while
the complete weaning MV stage means transitioning from
support mode ventilation to oxygen therapy or extubation
for an ICU patient.

Setting and data source

Chi Mei Medical Center is a large hospital in Tainan, Taiwan
with 1288 beds, including 109 ICU beds. It has a comprehensive
hospital information system to store each kind of clinical data
such as demographics, diagnoses, vital signs, laboratory data,
and prescribed medications in the database. Since 2016, CMMC
adopted IoT technology to capture parameters from the MV in
ICUs automatically per minute. So far, big data from MV was
cumulated and ready for further AI and machine learning study.

Features and outcome variables

The first stage model used 25 features, including primary
patient data of age, Acute Physiology and Chronic Health
Evaluation II (APACHE II) score, Therapeutic Intervention
Scoring System (TISS) score, and the first and last Internet of
Thing (IoT) data of the respirator consisting of inspired oxygen
fraction (FiO2), positive end-expiratory pressure (PEEP),
respiratory rate (RR), minute ventilation (Mv), peak inspiratory
pressure (Ppeak), mean airway pressure (mPaw), peripheral
oxygen saturation (SpO2), expiratory tidal volume (Vte), heart
rate (HR), systolic blood pressure (SBP), and diastolic blood
pressure (DBP). Based on clinical experience, the outcome
variable was binary coded with 1 (i.e., successful try-weaning),
which means that MV was shifted from the control mode to the
support mode for at least 48 h, otherwise it was coded with 0.

The second stage model used 20 features, including primary
data consisting of age, APACHE II score, and TISS score; and
the last respirator IoT data before extubation consisting of
FiO2, PEEP, RR, Mv, Ppeak, mPaw, SpO2, pressure support
level (PSL), tidal volume with pressure support (PSLvolume),
body temperature (BT), HR, SBP, DBP, Glasgow Coma Scale
eye-opening (GCS_E), GCS motor response (GCS_M), SBT
count during support mode, and sputum suction count within
24 hours before extubation (Suction). The outcome variable
was binary coded with 1 (i.e., successful weaning MV), which
means weaning from MV for at least 48 h, otherwise coded
with 0. This is also accepted as a basis for the provision of
government-related health subsidies in Taiwan.

All potential features were selected based on the literature (6,
7, 44, 45), clinic availability and the experience of clinicians. We
performed correlation analysis between features and outcomes
to assist in feature selection decisions. Features with the raw data
were obtained from the hospital information system (HIS) and
real-time IoT transferring from ventilators.

Model building and measurement

Raw data was collected from the electronic medical records
of ICU to build the models for stage 1 and stage2. We randomly
divided the cleaned data into 70% training and 30% testing

TABLE 1 Stage 1 demography.

Feature Overall

N=5873

Age, mean (SD) 64.0 (15.3)

APACHE II score, mean (SD) 19.6 (8.5)

TISS score, mean (SD) 29.7 (7.9)

IoT data First* Last**

FiO2 , mean (SD) 45.4 (20.8) 32.3 (15.0)

PEEP, mean (SD) 5.6 (1.4) 5.8 (1.5)

RR, mean (SD) 15.8 (4.2) 14.0 (4.0)

Mv, mean (SD) 8.8 (2.8) 7.9 (2.4)

Ppeak, mean (SD) 24.3 (4.3) 23.1 (4.1)

mPaw, mean (SD) 10.6 (2.8) 10.1 (2.7)

SpO2 , mean (SD) 98.7 (2.3) 98.1 (4.7)

Vte, mean (SD) 576.0 (115.5) 576.8 (117.8)

HR, mean (SD) 93.8 (21.3) 84.4 (21.4)

SBP, mean (SD) 139.4 (37.8) 128.8 (33.1)

DBP, mean (SD) 79.2 (21.6) 68.9 (18.7)

Outcome

Successful try-weaning
within 8 h, n (%)

1,113 (19.0)

Successful try-weaning
within 12 h, n (%)

1,588 (27.0)

Successful try-weaning
within 24 h, n (%)

2,840 (48.4)

Successful try-weaning
within 36 h, n (%)

3,112 (53.0)

Successful try-weaning
within 48 h, n (%)

3,523 (60.0)

Successful try-weaning
within 60 h, n (%)

3,710 (63.2)

Successful try-weaning
within 72 h, n (%)

3,968 (67.6)

Successful try-weaning
within 84 h, n (%)

4,114 (70.0)

Successful try-weaning
within 96 h, n (%)

4,281 (72.9)

Successful try-weaning
within 108 h, n (%)

4,373 (74.5)

Successful try-weaning
within 120 h, n (%)

4,506 (76.7)

*First: data of the first record in control mode. **Last: data of the last record
in control mode. SD, Standard Deviation; IoT, Internet of Things; APACHE II, Acute
Physiology and Chronic Health Evaluation II; TISS, Therapeutic intervention scoring
system; FiO2, the fraction of inspired oxygen; PEEP, positive end-expiratory pressure;
RR, respiratory rate; Mv, minute ventilation; Ppeak, peak inspiratory pressure; mPaw,
mean airway pressure; SpO2, peripheral oxygen saturation; Vte, expiratory tidal volume;
HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure.

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.935366
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-935366 November 14, 2022 Time: 15:29 # 5

Liu et al. 10.3389/fmed.2022.935366

data. Due to the data imbalance problem (fewer cases in
the minority class), we applied the Synthetic minority over-
sampling technique (SMOTE) method to process the training
data (46). We performed a grid search for five-fold cross-
validation on the training dataset to obtain the best hyper-
parameters for modeling. Finally, we used the testing dataset
(also called hold-out dataset) for the final evaluation of the
model quality. Four model quality indicators of accuracy,

TABLE 2 Stage 2 demography.

Feature Overall

N= 4172

Age, mean (SD) 64.3 (15.3)

APACHE II score, mean (SD) 18.9 (8.0)

TISS score, mean (SD) 29.6 (7.7)

FiO2 , mean (SD) 26.1 (2.1)

PEEP, mean (SD) 5.2 (0.7)

RR, mean (SD) 16.4 (5.0)

Mv, mean (SD) 7.7 (2.4)

PSL, mean (SD) 9.4 (2.0)

PSLvolume, mean (SD) 484.4 (125.3)

Ppeak, mean (SD) 15.4 (2.0)

mPaw, mean (SD) 8.3 (1.8)

SpO2 , mean (SD) 98.7 (1.6)

BT, mean (SD) 36.6 (0.5)

HR, mean (SD) 85.4 (16.7)

SBP, mean (SD) 135.1 (23.8)

DBP, mean (SD) 72.2 (14.9)

GCS_E, mean (SD) 3.5 (0.7)

GCS_M, mean (SD) 5.7 (0.7)

SBT times, mean (SD) 1.4 (2.8)

Suction times, mean (SD) 5.0 (4.4)

Outcome

Successful weaning-MV within 24 h, n (%) 1,807 (43.3)

Successful weaning-MV within 48 h, n (%) 2,133 (51.1)

Successful weaning-MV within 72 h, n (%) 2,451 (58.7)

Successful weaning-MV within 96 h, n (%) 2,709 (64.9)

Successful weaning-MV within 120 h, n (%) 2,910 (69.8)

Successful weaning-MV within 144 h, n (%) 3,070 (73.6)

Successful weaning-MV within 168 h, n (%) 3,198 (76.7)

Successful weaning-MV within 192 h, n (%) 3,312 (79.4)

Successful weaning-MV within 216 h, n (%) 3,402 (81.5)

Successful weaning-MV within 240 h, n (%) 3,462 (83.0)

Successful weaning-MV within 264 h, n (%) 3,518 (84.3)

SD, Standard Deviation; APACHE II, Acute Physiology and Chronic Health Evaluation
II; TISS, Therapeutic intervention scoring system; FiO2, the fraction of inspired oxygen;
PEEP, positive end-expiratory pressure; RR, respiratory rate; Mv, minute ventilation;
PSL, pressure support level; PSLvolume, tidal volume with pressure support; Ppeak,
peak inspiratory pressure; mPaw, mean airway pressure; SpO2: BT, body temperature;
HR: heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; GCS_E:
Glasgow Coma Scale eye-opening; GCS_M, Glasgow Coma Scale-motor response; SBT,
spontaneous breathing trials.

sensitivity, specificity, and AUC (area under the ROC) were
applied to assess the model quality. However, the overall model
performance is generally evaluated by AUC in many medical
studies since both true/false positive and true/false negative are
fairly considered. Thus, AUC was used in this study as the main
indicator to determine the optimal model. We used the optimal
models for subsequent implementation of the predictive system.

Each outcome used a variety of ML algorithms to build
models, including LR, RF, SVM, K Nearest Neighbor (KNN),
lightGBM, XGBoost, and Multilayer Perception (MLP). The ML
models were performed based on Sklearn library and related ML
modules in Python.

The main purpose of this study was to predict the optimal
timing to wean MV, not just successful weaning or not; thus,
we divided each stage into 11 time periods based on clinical
experience, and built 11 prediction models with the period data
rather than building a single model with the end-point data of
ICU patients with MV. That is, it is of great value to predict
whether a patient can successfully wean or not over time. After
all, most patients with MV in ICU will eventually be successfully
weaned but we expect timely or even early safe weaning of
MV to avoid overuse rather than just predicting success or not
(in CMMC, the average extubation success rate exceeds 85%).
However, hospitals can reduce or increase the predictive periods
according to their needs while implementing.

Stage 1 of timing prediction for successful try-weaning
involves the following: After the patient enters the ICU for
intubation, we built 11 models for 11 prediction time points,
namely: 8th hour, 12th hour, 24th hour, 36th hour, 48th hour,
60th hour, 72nd hour, 84th hour, 96th hour, 108th hour, and
120th hour. The first stage is considered a success if the MV is
shifted from assist control to support mode for at least 48 h.

Stage 2 of timing prediction for successful weaning-MV
involves the following: We built 11 models in days (after the
patient completed the first stage successfully). The second stage
is considered a success if the patient can last longer than 48 h
after extubation from the support mode or leave the ICU safely
for shorter than 48 h (47).

The data used in each model came from the data collected
at this time point. For example, the 60th HR model used data
of patients, which was collected at or nearer the 60th hour time
point of using the respirator.

Two-stage artificial intelligence
prediction system development of the
optimal models

We chose the optimal models for each stage to develop
a two-stage prediction system in a digital dashboard style
to assist the weaning decision of respiratory medical teams.
The system was developed using Microsoft Visual Studio R©

with VB language.
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FIGURE 3

Stage 1 Spearman correlation (the 60th hour model). Note: outcome_60: Successful weaning or not before using 60 h of MV; FiO2_first, _last:
the first/last value of FiO2 after using MV within 60 h, others are labeled similar.

The web-based dashboard is linked to the real-time database
of the existing HIS which could retrieve the required feature
values of a specific model. The clinical staff could obtain the
related predictive data and figure out the best timing of MV
weaning by just previewing the patient’s data in the dashboard.
The dashboard automatically retrieves the clinical data of the
patient for AI prediction without the need for manual input and
immediately displays the probabilities of successful MV weaning
at each time from the beginning of ventilator use to the nearest
future time point. The dashboard would automatically refresh
the prediction for all patients every 60 min.

For example, if a patient has used MV for over 50 hours, the
dashboard will show the probability of the 24th, 48th, and 72nd
hour. The respiratory care team can further double-click on the
targeted patient to prompt a new page to overview the detailed

feature values at that predicting period. By monitoring the
trend curve of the successful probabilities (in colored balls) and
detailed feature values, the respiratory care team could evaluate
whether each patient is eligible to start trying weaning or liberate
the individual from MV more objectively and efficiently at this
time point.

Results

Demographics

We retrospectively collected 6,184 cases of patients who
used MV in CMMC ICU from 2016/1/1 to 2019/12/31. After
excluding the cases with missing values, 5,873 cases were
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FIGURE 4

Stage 1 Spearman correlation.

included for modeling in Stage 1 and 4,172 cases were included
in Stage 2. Tables 1, 2 show the patients’ demographics in Stage
1 and Stage 2 respectively.

For example in Stage 1, Spearman correlation analysis for
the 60th hour model (Figure 3) showed that the most relevant to
the timing of successful try-weaning was the first FiO2, followed
by APACHE II score, and the last PEEP and mPaw. Spearman
correlation analyses for all models in Stage 1 are shown in
Figure 4. Moreover, for Stage 2, Spearman correlation analysis
for the 120th hour model (Figure 5) showed that the number
of SBTs was most relevant to the timing of successful weaning-
MV, followed by the number of Suctions. Spearman correlation
analyses for all models in Stage 2 are shown in Figure 6.

Modeling results

In this study, eleven models were established in each of
the two stages. In Stage 1, the 60th-hour model was taken as
an example. Each model used seven algorithms with optimal
hyper-parameters. Models’ performances with the seven ML

algorithms are shown in Table 3 (Stage 1) (Supplementary
Table 1 for other models in Stage 1). With the 60th-hour model
as an example, according to the value of AUC model, the
lightGBM model obtained the maximum value (AUC = 0.860)
and was used as the basis for implementing the online prediction
system. Besides, ROC curve is a performance measurement for
a classification model at various thresholds. Figure 7 covers the
ROC curves of the seven algorithms and the three highest AUCs
(lightGBM, XGBoost and Random forest) ranged from 0.860 to
0.847 showing good model quality with smooth empirical ROC
curves and AUCs near to 1.

In Stage 2, the 120th hour (5th day) model was taken as an
example. The lightGBM model was selected for implementation
based on the AUCs of the seven algorithms (AUC = 0.923)
[Table 3 (Stage 2)] (Supplementary Table 2 for other models in
Stage 2). Figure 8 shows the ROC curves of the seven algorithms
and the three highest AUCs (lightGBM, Random forest and
Logistic regression) ranged from 0.913 to 0.923. It also shows
excellent models. Hyper-parameters used for building optimal
model for each algorithm are listed in Supplementary Table 3.
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FIGURE 5

Stage 2 Spearman correlation (the 120th Hour model). Note: outcome_120: Successful weaning or not before using 120 h of MV, others are
labeled similar.

Moreover, we randomly chose patients A, B, and C who
successfully weaned from MV in 2021 (weaning time points
at the 144th hr, 216th hr, and 242th hr, respectively) and
observed them retrospectively. Taking the data at the 48th-hour
ventilator use as features (the patients all failed to wean at the
48th hr), the probabilities predicted by our 48th-hr model were
all <50%, which mean a tendency for unsuccessful weaning
(probabilities were 32.58, 40.24, and 20.1%, respectively). These
predictions were correct. We then fed the same data to a single
model (usually the last model, represented here by our 264th-
hr model) and all displayed a tendency for successful weaning
(probabilities were 95.23, 79.06, and 61.38%). These predictions
were incorrect. This proves that, adopting in practical, using
multiple models is more appropriate to the prediction of
weaning time than when using a single model only.

Prediction system development and
deployment

Using the optimal prediction models, the AI Center and
the Department of Information Systems of CMMC jointly
developed the timing prediction system (a dashboard) for try-
weaning and weaning MV and integrated it with the existing
hospital information system (respiratory care system). Such
graphical presentation and drill-down interactive function help
track the status of patients and enhance users’ acceptance of
the AI dashboard. Our results showed that this system could
predict the optimal timing for try-weaning and weaning MV
during the decision-making process of the clinicians. Moreover,
the reference data from this system could be used effectively for
communication with the patient’s family.

Frontiers in Medicine 08 frontiersin.org

https://doi.org/10.3389/fmed.2022.935366
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-935366 November 14, 2022 Time: 15:29 # 9

Liu et al. 10.3389/fmed.2022.935366

FIGURE 6

Stage 2 Spearman correlation.

Use case scenario

The interface of the AI dashboard is shown in Figure 9.
Stage 1 (try-weaning) displayed the patient’s basic information
(bed number, medical record number, name), the time when
ventilator use was started, the current number of hours of use,
and the probability of success in each period. For example, the
first patient of Stage 1 had used the ventilator for 63 h; the
system captured the patient’s characteristic data and displayed
the predictions for the nearest future. It could be seen that the
probability of successful try-weaning within 72 h of this patient
was 56.35%, which implies that the medical team may switch the
mode of the patient’s ventilator (start try-weaning) during this
time. Stage 2 (weaning MV) presented content similar to Stage
1, which included basic information, starting time of support
mode, current total hours of support mode, and the success
probability of each period. For example, the first patient in Stage
2 had been in the support model for 51 h; the system predicted
that the success probability of liberating the patient in MV
within three days (72 h) was 33.36%, so it was not recommended
to wean during this period.

TABLE 3 Testing results of the predictive models: Stage 1 try-weaning
model of the 60th HR and Stage 2 MV-weaning model of the
120th HR.

Algorithm Accuracy Sensitivity Specificity AUC

Stage 1

Logistic regression 0.710 0.710 0.710 0.776

Random forest 0.760 0.760 0.760 0.847

SVM 0.716 0.778 0.609 0.759

KNN 0.686 0.749 0.578 0.730

LightGBM 0.768 0.788 0.733 0.860

MLP 0.732 0.746 0.709 0.815

XGBoost 0.774 0.806 0.718 0.853

Stage 2

Logistic regression 0.827 0.827 0.826 0.913

Random forest 0.824 0.822 0.829 0.918

SVM 0.713 0.714 0.712 0.797

KNN 0.649 0.679 0.580 0.683

lightGBM 0.842 0.842 0.842 0.923

MLP 0.805 0.804 0.807 0.905

XGBoost 0.810 0.810 0.810 0.908
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FIGURE 7

Stage 1 ROC curve (the 60th Hour model).

User evaluation and impact analysis of
artificial intelligence assistance

After the hospital launched the dashboard system and
implemented it for one month, we interviewed some of the
respiratory care members (3 physicians and 5 therapists) and
gained high positive feedback. They thought that the dashboard
was a very useful tool in helping them determine the optimal
timing for trying to wean a patient from the ventilator.
According to them, it was also a useful tool for shared decision-
making (SDM) especially when communicating with patients or
their families. Also, they raised expectations for improvement.
For example, they hoped that the predicted value at each time
point could be drawn as a polyline to easily see the trend of
the predicted probabilities for a patient. These expectations
were later realized.

So far, this AI dashboard has been online in ICU for
nearly two years. Therefore, we conducted an anonymous 5-
scaled questionnaire survey (with Google Form) for all 10 ICU

physicians during September 30, 2022 and October 5, 2022, and
received 8 valid questionnaires. Overall, they believe that the
AI is easy to use (mean = 4.5), the prediction results provided
by the AI are of reference value (mean = 4.0), and the AI is
helpful to the MV weaning decision (mean = 4.25). However,
2 physicians answered "seldom use AI", 4 physicians answered
"frequent use of AI", and the remaining 2 physicians answered
"already use AI regularly". One of the physicians who answered "
seldom use of AI" left a comment saying that physicians have had
extensive experience in assessing MV weaning and AI assistance
is not very necessary.

Moreover, we selected an ICU ward and recorded the
successful extubation time and associated data. The collected
data was then compared with that of the previous year. In other
words, the parameters collected from July to November 2019
(without AI assistance) was contrasted with those of July to
November 2020 (with AI assistance). Intubated adult patients
weaned from MV successfully were enrolled in the study
implementation. Patients with tracheostomy and transferred to
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FIGURE 8

Stage 2 ROC curve (the 120th Hour model).

FIGURE 9

A screenshot of the artificial intelligence (AI) prediction system interface.
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TABLE 4 The results of clinical evaluation and comparison.

Feature Overall 2019/07-11 (without AI) 2020/07-11 (with AI) P-Value

N=171 N=78 N=93

(A) Analysis of weaning rate

Age, mean ± SD 66.2 ± 15.7 65.7 ± 16.3 66.7 ± 15.2 0.695

Gender

Female, n (%) 58 (33.9) 29 (37.2) 29 (31.2) 0.507

Male, n (%) 113 (66.1) 49 (62.8) 64 (68.8)

APACHE II score, mean ± SD 20.8 ± 8.5 20.3 ± 8.7 21.7 ± .5 0.262

TISS, mean ± SD 30.6 ± 6.5 30.1 ± 6.8 31.0 ± 6.4 0.243

COMA scale, mean ± SD 8.7 ± 3.5 9.1 ± 3.6 8.3 ± 3.4 0.068

Extubation

Successful, n (%) 167 (97.7) 76 (97.4) 91 (97.8) 1.000

Failure, n (%) 4 (2.3) 2 (2.6) 2 (2.2)

Feature Overall 2019/07-11 (without AI) 2020/07-11 (with AI) P-Value

N=167 N=76 N=91

(B) Analysis of successful weaning use-time

Age, mean ± SD 66.0 ± 15.8 65.7 ± 16.4 66.4 ± 15.1 0.814

Gender

Female, n (%) 56 (33.5) 29 (38.2) 27 (29.7) 0.321

Male, n (%) 111 (66.5) 47 (61.8) 64 (70.3)

APACHE II score, mean ± SD 20.9 ± 8.5 20.4 ± 8.8 21.8 ± 8.5 0.278

TISS, mean ± SD 30.7 ± 6.5 30.3 ± 6.8 31.1 ± 6.4 0.318

COMA scale, mean ± SD 8.6 ± 3.5 9.0 ± 3.5 8.3 ± 3.5 0.099

Intubation hours, mean ± SD 170.9 ± 150.7 178.0 ± 147.7 156.6 ± 150.4 0.300

ICU Days, mean ± SD 9.3 ± 7.5 9.3 ± 8.0 8.8 ± 6.9 0.631

the respiratory care ward were excluded. The analysis results
of Table 4A showed no statistically significant difference in the
demographic distribution between these two groups, including
the age, gender, and disease severity (Apache II, TISS, COMA) of
patients. It provided a fair basis for AI intervention comparison.
It also showed that there was no significant difference in
successful extubation-rate, indicating that patient safety was not
compromised (actually slightly improved) with AI. However,
in Table 4B, we noticed the average intubation hours after AI
intervention were about 21 hours shorter than that without
AI intervention, and the average stay in ICU was reduced
by 0.5 days, showing that our AI-assisted system does boost
patients wean from ventilators earlier, which could improve the
quality of care.

We also performed Kappa analysis (P < 0.05 for
significance) on the patients with AI to estimate the consistency
of AI prediction and regular care procedure. As shown in
Table 5, all values of Kappa are above 0.61 indicating that all
models have substantial consistency between these two decision-
making strategies (48).

TABLE 5 Analysis of Kappa values in 11 models of Stage 2.

Stage 2 model Cohen Kappa

24 HR model 0.785

48 HR model 0.710

72 HR model 0.681

96 HR model 0.841

120 HR model 0.796

144 HR model 0.677

168 HR model 0.776

196 HR model 0.752

216 HR model 0.789

240 HR model 0.711

264 HR model 0.657

Discussion

Most related studies in the past explored the factors that
affect weaning from the ventilator or predicted the success
of weaning. However, this study argues that precise weaning
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decisions should consist of two phases, try-weaning and
complete weaning MV, and that each should have a separate
predictive model built. In addition, we believe that, clinically,
deciding on the optimal timing for weaning is more crucial
than predicting the final success, so we built 11 models at
11 time points for each stage. More importantly, we used the
optimal models to build a prediction system (AI dashboard) for
monitoring all patients with MV in ICU to validate the feasibility
of our comprehensive AI approach. The impact study confirmed
that the average intubation time was shortened by 21 h after AI
intervention. Overall, this study has significant academic and
practical values.

Mechanical ventilation use is a life-guarding technique
providing critically ill respiratory support, and it is one of
the most common interventions given to ICU patients (49).
In this study, correlation analyses for all models in Stage 1
showed that FiO2, mPaw, APACHE II score, PEEP, SpO2 tend
to be higher correlated to the predictive models. It implies
that oxygenation, hemodynamics and disease severity have great
influence on full support mode shift to partial support mode.
Increasing FiO2, mPaw and PEEP is to improve the patient’s
oxygenation status, but too high mPaw and PEEP will cause
lung overdistension and affect cardiac output. Similar, frequency
of suction, numbers of SBT, GCS_M, APACHE II score, PSL
volume, RR tend to higher correlate to the predictive models
in Stage 2. It implies that cough strength, respiratory capacity
and disease severity affected weaning success. This reminds
clinical staff to assess the amount of sputum or secretions, the
patient’s mobility, ability to cough, and breathing patterns to
ensure successful extubation. However, the biomedical etiology
and pathophysiology of weaning failure are complex and often
multifactorial, including airway and lung dysfunction, brain
dysfunction, cardiac dysfunction, diaphragm dysfunction, and
endocrine dysfunction. Accordingly, determining the reason
and subsequently developing a treatment strategy require a
dedicated clinician with in-depth knowledge of these parameters
of weaning failure (50). Moreover, earlier recognition of the
patient’s capacity for some level of autonomous respiration
is fundamental to progressively initiating the weaning of
the patient from MV and finally gaining full independent
respiratory function (51). Thus, our study provides a new AI-
enabled solution to realize the expectation.

Ideally, the clinical weaning parameters collected in critical
care need to be objective and easy to acquire, and the process
would not impede patient management. The physiological
mechanisms resulting in respiratory failure vary for different
individuals, and diverse weaning parameters will contribute
to one aspect of the pathophysiological mechanism. It has
been proved that it is insufficient to improve the outcomes of
ventilated patients by applying the weaning index only (52).
Our AI models, which incorporate a full range of patients’
basic parameters, physiological parameters, and respiratory
parameters, and consider the dynamic changes in time series,

were used to establish a two-stage, multi-time series prediction
model, which significantly improves the success in predicting
weaning and conforms to clinical experience.

There have been several studies in the past that explored the
prediction of related ICU respirator use with machine learning
methods or traditional statistical methods (e.g., regression
analysis method). Our research found that ML methods roughly
outperformed traditional statistics. In the studies of ML method,
we also obtained more excellent results. Our models are not
only of high quality (AUC >0.94) but also the two-stage
design is closer to clinical experience of weaning decision-
making than a single-stage design. Cheng (53) also proposed a
two-stage decision-making approach; however, our prediction
model quality was more superior to theirs since we also
subdivided each stage into 11 time points which helped to
precisely grasp the timing of weaning MV and even shorten
the intubation time. More importantly, among these studies,
only our research realized the ML models in practice. We
summarized the comparison of our study with previous works
(53–56) in Table 6.

Furthermore, LightGBM models were noted with the
highest AUC values amidst the seven ML algorithms, consistent
with Chen et al. (57). Moreover, LightGBM has been regarded
as the most effective model to predict extubation success when
compared with XGBoost, MLP, and SVM. LightGBM is a
gradient boosting framework of tree-based learning algorithms
with faster training speed and better accuracy, but with
lower memory usage.

Further analysis indicated that our models had
convinced predictability regarding the Swets classification
(0.5 ≤ AUC ≤ 0.7, lower predicted; 0.7 ≤ AUC ≤ 0.9, certain
predictive ability; AUC > 0.9, high predictive ability) (58).
However, it was found that the models over time have a
tendency of decreasing AUC (0.953∼0.864, lightGBM models
in Stage 1; 0.943∼916, lightGBM models in Stage 2), which
may imply that the longer the patient uses the ventilator,
the more complicated it becomes when considering whether
the patient can undergo try-weaning. This finding can also
support why we use multiple periods instead of single period to
predict weaning MV.

Our AI system could allow the clinicians to grasp the
appropriate weaning time precisely, which could prevent the
worthless dangers due to delayed or premature weaning process.
Thus, with our AI system, the risks of complications and medical
costs related to ventilatory support for patients are expected
to decrease. More importantly, our AI system could lessen
the effect of inter-clinician variability and improve the overall
ICU care quality.

The deficiency of thorough evidence and the difference of
results between individuals and subpopulations demonstrates
there is scanty consensus on the issue of the best weaning
protocol in clinical literature (59, 60). Our research results could
provide useful solution to this long-standing clinical difficulty.
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TABLE 6 A comparison with related studies.

Study Patient group Predictive
outcome

ML algorithm
(* best algorithm)

Sample size Numbers of
features

Model‘s performance (the
highest AUC)

Real world
implementation

This Study Adult ICU patients with
invasive mechanical
ventilation

(1). Timing of full
support shifting to partial
support modes
(2). Timing of weaning
MV

Seven ML algorithms:
LR, RF, SVM, KNN, LGBM, XGB,
MLP.
11 models were established in
each of the two stages.
*The best algorithm: LGBM.

Stage 1: 5,873
Stage 2: 4,172

Stage 1: 25
Stage 2: 20

Stage 1: 0.843-0.953
Stage 2: 0.889-0.944

Yes.
A predictive dashboard
with best AI models was
implemented and
integrated into the
existing HIS

(52) Adult ICU patients with
invasive mechanical
ventilation

(1). The success shifting
from full to partial
support ventilation
(2). Successful SBT

Seven ML algorithms:
LR, Ridge Regression, Elastic Net,
RF, SVM, ANN, XGB.
1 model was established in each of
the two stages.
*The best algorithm: XGB and
RF.

First model:
2,153
Second model:
3,132

First model: 16
Second model:
12

First model: 0.76
Second model: 0.79

No

(53) Cardiac Surgery patients
with invasive mechanical
ventilation

Successful weaned within
24 h

Six ML algorithms:
LR, RF, SVM, DT, ANN, XGB.
*The best algorithm: SVM.

1,439 28 0.88 No

(54) Adult ICU patients with
invasive mechanical
ventilation

Successful extubation Three ML algorithm:
RF, LGBM, XGB.
*The best algorithms: LGBM.

117 (Total
number of
labeled was
12,268)

57 0.950 No

(55) Adult ICU patients with
invasive mechanical
ventilation

Successful extubation Six ML algorithms:
CNN, ANN, LR, SVM, DT, RF
*The best algorithm: CNN.

2,299 25 0.94 No

MV, Mechanical Ventilation; LR, Logistic Regression; RF, Random Forest; SVM, Support Vector Machines; KNN, K Nearest Neighbor; LGBM, lightGBM; XGB: XGBoost; MLP, Multilayer Perception; CNN, Convolutional Neural Network, ANN, Artificial
Neural Network; DT: Decision Tree.
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AI applications should be aptly weighed parallel to other
information sources and certified by well-designed prospective
studies before comprehensive implementation. Although we
noticed a substantial and even almost perfect consistency in
the prediction of successful weaning from ventilators after AI
intervention, we position our AI system as an auxiliary, not as a
determiner for diagnosis.

Clinical decision assistance systems could aid clinicians
in their decision-making (61) and provide individualized
management protocols based on the patients’ clinical data and
updated knowledge (62). Besides, AI is a powerful instrument
that lowers the medical error rate and improves healthcare
consistency and efficacy (63). However, there has been a lot
of concern about the demerits of AI model applications in the
decision of MV weaning. First, deep learning lacks explanatory
power and related potential bias is hard to identify (64).
Moreover, new ethical issues have been presented such as issues
of erroneous decisions by AI, legal responsibility, and private
information security crisis are taken into consideration (65).

There are limitations to our study. First, it is a single-
center study, and we do not have an external cohort to validate
our obtained models despite using data routinely collected in
a real-world setting. Thus, extra care in terms of research
generality must be given when extrapolating the findings
to other centers. Second, some weaning-relevant data, like
rehabilitation program arrangement, were not assessed in our
dataset. We consider the model’s accuracy could be improved
significantly after assessing this detailed information. Third, our
enrolled patient number was relatively small, impacting the
result. Fourth, our study failed to include essential features and
modalities, like chest X-ray images, cuff-leak test, diaphragm
ultrasonography, and fluid balance, which are widely assessed
to predict successful extubation. Further, no information related
to laryngeal edema after extubation was trained in our models.
Therefore, it could be difficult for the developed model to
forecast the extubation failure rate due to post-extubation
laryngeal edema.

Conclusion

Weaning timing assessment in ICU patients with MV is
one of the most critical steps for respiratory care teams. We
employed AI technology to develop a comprehensive system
and embedded it into the existing HIS to predict the timing
of weaning MV; this proves the clinical innovation of AI
intervention in critical care. According to our knowledge, such a
study with valuable academic and practical implications is rare.

Most studies only report the quality of predictive models;
thus, it may be difficult to judge its actual clinical value.
Our study established a predictive model and validated the
model in the clinical field, which proved that it has better
benefits than traditional ones. Therefore, our study supports

that AI could be a promising approach in predicting MV
weaning timing in ICU and is expected to advance clinical
research in this field.

Although we can see that the AI prediction dashboard we
proposed can be an effective tool to assist weaning decision-
making, it should be noted that it cannot be regarded as the only
dependence for final decision-making. That is, after referring
to the AI’s prediction, the medical team still need to conduct
and discuss a professional and comprehensive observation
and evaluation of the patient again before making the final
weaning decision.

Our study showed that the use of ML approaches
could obtain better predictive ability in ICU, however, some
physicians also reported that AI assistance is not very
necessary. Thus, how to increase physicians’ willingness
to accept AI is indeed a key research topic. Besides, AI
algorithms are difficult to understand (so-called black-box),
which may affect the trust of clinical staff. Therefore,
follow-up research to improve the explainability of AI must
be done. Furthermore, intensivists expect that AI can be
applied to build a decision support tool for integrated
consideration of a patient rather than simply providing
predictions on an illness. This is a challenge that should
be taken seriously. However, we still have a long way to
go at this moment.
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