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Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with

poor outcomes. Although the management strategies have evolved in recent

years, the PDAC 5-year survival rate remains at only 9%; it may become

the second leading cause of cancer death in the USA by 2030. Only 15–

20% of PDAC patients are eligible to undergo surgery; diagnostic biopsies

and individualized treatment present a more significant challenge for the

remaining group. Endoscopic ultrasound-guided tissue acquisition (EUS-

TA) has been widely used in the diagnosis of pancreatic masses. With

the advancement of this sampling technique, adequate specimens can be

obtained from all patients with PDAC in both early and late clinical stages.

Recent data suggest that the specimens obtained from EUS-TA might be used

to establish viable preclinical models, which conserve the genetic mutation

and preserve the heterogeneity of the original tumors. Additionally, any drug

sensitivity evident in the EUS-TA-derived preclinical models might predict the

clinical response, thus guiding the prospective therapeutic selection. As we

move toward the era of precision medicine, this review provides an update

on the role of EUS-TA as a method for obtaining genetic material used in

preclinical models that can assess and stratify individuals according to their

individual cancer biology.
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1. Introduction

Pancreatic cancer (PC) is an aggressive and lethal tumor
(1–3). The 5-year survival rate for all stages combined stands
at a mere 9% (1, 4, 5). In contrast to the steady increase
in survival for most cancer types, the limited improvement
for PC is partly because up to four-fifths of cases are
diagnosed at an advanced stage (1, 2, 4, 6) Several projections
indicate that PC will surpass breast cancer as the second
and third leading cause of cancer death in the USA (7–
9) and the European Union (10, 11), respectively, by 2030.
Pancreatic ductal adenocarcinoma (PDAC) and its variants
account for over 90% of PC (7, 12). Surgical resection is the only
potentially curative treatment for patients with PDAC (2, 3).
However, the majority of patients (80–85%) are diagnosed with
locally advanced or metastatic disease, thus becoming ineligible
for surgery (13, 14). Additionally, post-operative PDAC
recurrence might be observed in up to 80% of the cases (15). The
therapeutic options for these patients are limited to combination
chemotherapy regimens (1, 3). Gemcitabine/nab-paclitaxel
or FOLFIRINOX (5-Fluorouracil, leucovorin, irinotecan, and
oxaliplatin) remain the gold standard for PDAC chemotherapy
with a significant average increase of survival of up to 1 year
(15). Therefore, chemotherapy is essential for the treatment
of late-stage PDAC. Many PDAC tumors are chemorefractory
owing to an unknown mechanism, yet a smaller subset of
patients exhibit a significant response to chemotherapy (6, 16).
Reportedly, the objective response rates stand at 31.6% for
FOLFIRINOX-treated patients and 10–23% for gemcitabine-
treated patients, while 70 and 80–90% of these patients are non-
responders, respectively (17, 18). Hence, it is crucial to identify
the subgroups sensitive to current chemotherapy drugs and
determine individualized treatment options for those resistant
to the approved therapeutic regimens.

The term “individualized medicine” or “precision medicine”
refers to the delivery of custom-designed treatments to patients
(19). The goal of precision medicine should be to cure cancer,
or at least to increase the overall disease-free and progression-
free survival rates (20). In contrast to conventional therapy for
a specific pathological type of cancer, individualized medicine
considers individual patient differences and stratifies patients
accordingly (21). This would optimize the effectiveness of
the treatment and contribute to avoiding the side effects
of ineffective therapies. Given the low response rate to
current chemotherapy regimens, precision medicine has a good
application prospect in PDAC treatment. However, since few

Abbreviations: EUS-TA, endoscopic ultrasound-guided tissue
acquisition; EUS-FNA, endoscopic ultrasound-guided fine-needle
aspiration; EUS-FNB, endoscopic ultrasound-guided fine-needle biopsy;
PC, pancreatic cancer; PDAC, pancreatic ductal adenocarcinoma;
PDC, patient-derived cell; PDX, patient-derived xenograft; PDO,
patient-derived organoid; TA-PDC, EUS-TA specimen-derived
PDC; TA-PDX, EUS-TA specimen-derived PDX; TA-PDO, EUS-TA
specimen-derived PDO.

patients are eligible to undergo surgical resection of the lesions,
it is difficult for most patients to obtain adequate tumor
specimens. Therefore, the widespread application of precision
medicine is limited. Besides, studies based on surgical specimens
alone, such as genetic analyses, drug response analyses, and
multi-omics analyses, among others, may be biased due to
the early and middle clinical stages of patients, affecting
further application.

Endoscopic ultrasound-guided tissue acquisition (EUS-
TA) now is a widely used method to obtain specimens and
diagnoses of PDAC. Endoscopic ultrasound (EUS), which is
combination of B-mode and color Doppler EUS imaging,
operating at 7.5 MHz, could not only delineate tumor location
and size, but also presents a good accuracy for detecting lymph
node metastasis, vascular invasion and predicting resectability
(8). Particularly, when combined with tissue acquisition, i.e.,
endoscopic ultrasound-guided tissue acquisition (EUS-TA),
the pretreatment diagnostic yields and staging accuracy have
been increased (8, 22–24). Recent data suggest that EUS-TA,
including endoscopic ultrasound-guided fine-needle aspiration
[EUS-FNA; including EchoTip Ultra (Cook Medical), EZ Shot 3
Plus (Olympus Medical Systems), etc.] (25, 26) and endoscopic
ultrasound-guided fine-needle biopsy [EUS-FNB; including
EchoTip ProCore (Cook Medical), SharkCore (Medtronic),
Acquire (Boston Scientific), Sono Tip Topgain (MediGlobe),
etc.] (25–28), could obtain adequate specimens for diagnosis and
personalized treatment (27, 29–31), with a sensitivity of 86.3–
98.4% and a specificity of 100% for the diagnosis of pancreatic
malignancy (32). Furthermore, EUS-TA is generally considered
a safe procedure with low morbidity (0.59–0.98%) and mortality
(0.02%) rates (6, 33). To overcome the clinical challenge
of recruiting more patients for subsequent individualized
treatment, many studies use EUS-TA as an alternative to procure
biological material (2, 34–36).

In general, precision medicine for cancer includes two key
aspects: Genetic profiling and drug target validation through
patient-derived models (37). The former aspect has been studied
and reviewed in depth (27, 38, 39). Here we review the advances
in establishing and applying different patient-derived preclinical
models of PDAC isolated from EUS-TA specimens for drug
target validation.

2. Characteristics of EUS-TA
specimens for establishing
patient-derived preclinical models

2.1. Characteristics of EUS-TA
specimens compared to surgical
specimens

The differences between specimens obtained from EUS-TA
and surgery are mainly reflected in the following three aspects.
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First, compared to surgical specimens, EUS-TA specimens can
be obtained at any stage of the disease, and the procedure is
easier to repeat than other biopsy techniques. Furthermore,
EUS-TA can be used to obtain specimens from patients with
PDAC before administering neoadjuvant chemotherapy, since
neoadjuvant chemotherapy may reduce the number of viable
tumor cells in a sample, leading to a 40% drop in engraftment
rates (40, 41). Additionally, surgical specimens contain large
amounts of stromal tissue, while EUS-TA samples contain a
higher proportion of cancer cells but typically contain blood,
inflammatory cells, and even gastrointestinal wall epithelial
cells (6). Therefore, it was postulated that the differences
seen in the transcriptome profile from EUS-TA and resection
specimens may reflect differences in the nature and degree
of “contaminating” cells rather than differences in the tumor
profile (6).

Although the specimens obtained by different methods have
their own characteristics, the genomes they contain do not differ
significantly. Several studies showed that the gene mutations of
most EUS-FNA and EUS-FNB specimens were similar to those
of surgical specimens (6, 42), revealing that EUS-TA samples can
retain the genetic signature of the original tumor and be used
for individualized treatment and further research. Besides, EUS-
FNB has the potential for superior performance compared to
that of EUS-FNA in obtaining specimens for precision medicine,
especially when the evaluated lesion was small (42).

2.2. Number of passes of EUS-TA
needed for establishing preclinical
models

The amount of the specimens is crucial for model
establishment. However, different studies have come to different
conclusions regarding the amount of specimens required for
modeling, and there is not uniform yet. Since there is no
study report on the number of cells, grams, milliliters, or
size required to successfully culture the preclinical model,
we used the number of passes as a criterion to assess
the amount of samples required to culture the preclinical
model. The study of Lee et al. showed that there was no
statistically significant difference (87.5 vs. 100%, P = 0.58)
between two passes and three passes in acquiring the
histological core when used a 20-gauge (G) FNB needle
(EchoTip ProCoreTM Endoscopic Ultrasound Needle, Cook
Medical Inc., Bloomington, IN, USA), both of which could
successfully establish the patient-derived cell (PDC) model (43).
In another study, the endoscopists determined the number
of passes according to the results of macroscopic on-site
evaluation (MOSE), and compared the different success rates
of PDAC organoid isolation (P0) and establishment (P5) in
cell culture from a single FNB (22-gauge, SharkCore FNB

Exchange System, Medtronic Inc., Minneapolis, MN, USA;
or Acquire FNB Device, Boston Scientific Inc., Marlborough,
MA, USA) pass and a double FNB pass. The results showed
that there was no statistical significance (P0: P = 0.5175; P5:
P = 0.3287) between the two groups. However, the success
rates of organoid isolation (P0) and proliferation from P0
to P5 were slightly higher in single-pass biopsies [P0: 88%
(22/25); P5: 81% (34/42)] than in double-pass biopsies [P0:
76% (19/25); P5: 60% (25/42)], respectively (44). This might
be explained by the learning curve effect with organoid
creation in the laboratory, as the single-pass specimens were
obtained further along within this study protocol. Additionally,
two patients developed acute pancreatitis, and two patients
experienced bleeding at the FNB site after the EUS-FNB
procedure in the double-pass cohort (44), suggesting that
two passes are not superior to a single pass for the model
establishment and they may increase the risk of adverse
events.

Both of the FNA and FNB are used in obtaining
specimens for preclinical model creation, but there is no
comparison revealed which one is more suitable. In spite
of this, EUS-FNB has been reported to require fewer passes
to achieve a conclusive diagnosis, and immunohistochemistry
was more successfully performed in FNB samples (31, 45,
46). Additionally, some studies comparing whether the two
types of needle can obtain adequate specimen for genomic
profiling, yield of DNA, and theranostic potential have revealed
that EUS-FNB were considerably superior to EUS-FNA in
these aspects (27, 47). Moreover, FNB should be given
priority when tumors are ≤ 3 cm or for tumors located
in the head/neck of the pancreas (47). Hence, the FNB
needle is expected to perform better in obtaining tissue
for establishing preclinical models. However, the question of
which is better, FNA or FNB, and whether the application
of rapid on-site evaluation (ROSE), MOSE, fanning, wet
suction technique, or other techniques, will improve the culture
success rate, still needs to be confirmed by high-quality
clinical trials.

2.3. Processing method of EUS-TA
specimens and the medium of
preclinical models in vitro

Unlike the surgical specimens obtained as large cell blocks,
EUS-TA specimens are recovered as strips or fragments. Because
of this, EUS-TA specimens can be directly used for cell isolation
and culture regardless of the use of enzymatic digestion. Several
studies showed that FNA samples were directly mixed with
100 mL of Matrigel and injected in the upper right flank of
a nude mouse to establish patient-derived xenografts (PDXs)
(36, 48, 49), or embedded in Matrigel and overlaid with a
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basal culture media with several niche factors to create patient-
derived organoids (PDOs) (5, 50). Although there is no study
to compare the effects of digestion versus non-digestion of TA
specimens for the establishment of PDAC preclinical models,
one study has assessed the impact of digestion on immune cells
(51). Vilgelm et al. demonstrated that despite the same initial cell
plating density, the immune cell survival in FNA-PDOs (without
digestion) culture was significantly higher than digestion-based
PDOs at 2 weeks (p < 0.05) (51). Besides, the study indicated
that FNA, a gentler extraction technique, might be beneficial
for immune cell survival (51). Additionally, because EUS-TA
specimens contain more blood than surgical specimens, red
blood cells need to be lysed with Red Blood Cell Lysis Buffer
before culturing (5, 50).

Appropriate niche factors are important for the
establishment and passage of in vitro models and for screening
cancer cells. Table 1 lists the medium, including the niche
factors, used in the previous studies for culturing PDCs and
PDOs derived from EUS-TA samples.

2.4. Success rate of establishing
patient-derived preclinical models

In different models, the success rate in establishing patient-
derived preclinical models ranges from 36.4 to 87% (Table 2).
Previously, Lee et al. showed that the establishment rate of PDC
was 36.4% (8/22) using the FNB samples (43). Hermans et al.
showed that the engraftment rate of FNB samples (6/10, 60%)
was lower than that of surgical samples (4/4, 100%). However, it
seemed that FNB-derived PDXs needed a shorter time to tumor
formation at F1 (17.2 vs. 19 weeks; P = 0.67); the period of time
became statistically difference at F3 (6.3 vs. 11.3 weeks; P = 0.02)
when compared to surgery-derived PDXs (52). In 2018, a clinical
trial was conducted to evaluate the feasibility of creating human
PDAC organoids by EUS-FNB (2, 44). After obtaining sufficient
samples to reach a diagnosis, one to two additional passes
were performed for organoid creation. Successful creation of
organoids (P0) was achieved in 87% (33/38) tumors, and 66%
(25/38) organoids could grow ≥ 5 passages, demonstrating that
EUS-FNB can successfully and rapidly create pancreatic cancer
organoids at the time of initial diagnosis (2). The failure to reach
P5 in some specimens is likely due to the organoid medium
lacking the growth factors when a high number of normal
epithelial cells are present (44).

Studies have also evaluated the utility of collecting tissues
of patients with PDAC using EUS-FNA to create organoids. The
results of Lee and colleagues’ study showed a 70% success rate for
PDO isolation (14/20) and 60% (12/20) for PDO growing more
than 5 passages (53). In addition, for EUS-FNA, a success rate of
between 62 and 100% for PDAC original tumors and up to 70%
for PDAC liver metastases was previously reported in another
study (15).

3. Application of different types of
EUS-TA specimen-derived PDAC
preclinical models in precision
medicine

3.1. EUS-TA specimen-derived PDC
models

Patient-derived cell (PDC) plays a vital role in precision
medicine. It is a type of 2D cell, which is generally easy to culture,
propagate, cryopreserve, and manipulate both genetically and
chemically, and the cost is relatively low (34, 54, 55). Recently,
a novel type of PDC, named conditionally reprogrammed cells
(CRCs), has been reported. Researchers co-cultured PDC with
J2 murine fibroblast feeder cells and a medium containing the
Rho-kinase inhibitor (Y-27632) and proved that PDC could
be constructed using a small piece of tumor tissue obtained
from EUS-FNB (34, 43). The CRC cultures can be passaged for
long periods without genomic alterations and could maintain
the heterogeneity of cells present in a biopsy and make
high throughput drug screening possible owing to their rapid
expansion (4–6 weeks) (34, 56, 57). Additionally, there is no
need for Matrigel, an extracellular matrix that may interfere with
drug penetration or cause adverse drug screening results (34).
A study tested drug sensitivity using CRCs obtained from EUS-
TA, revealing that the IC50 value of each drug was statistically
lower in the responder group than in the non-responder group
(34; Table 2). Therefore, by evaluating the drug sensitivity of
a large panel of clinical agents, the EUS-TA specimen-derived
PDC (TA-PDCs) platform might identify the new drugs useful
as therapeutic options for individual patients.

Despite the advantages listed above, TA-PDCs also have
some limitations as PDC derived from other approaches,
including surgery (Table 3). First, compared to PDXs, the
monolayer cells lack the gradients and extracellular matrix
scaffold. Cell-cell contact and cellular polarity are difficult to
model in this setting, and cancer cells lack the structural
organization and functional differentiation present in vivo (34,
54, 58, 59). The tumor microenvironment is not a bystander
but rather an active participant in tumor progression (60),
and evaluating the impact of the tumor microenvironment,
such as stromal cells, on tumor cell growth is much more
challenging (34). Recent studies reported organoid culture after
CRC establishment, which can be a solution to this problem in
cancer research (34, 61). Additionally, some TA-PDCs derived
from malignant tumors were often non-malignant, without
tumor derived mutations. The growth factor consumption of
non-malignant cells may impact the proliferation of tumor cells
(44). Detecting the PDAC markers by PCR aimed at detecting
a common gene such KRAS, performing tumor formation
assays, and performing targeted sequencing to identify tumor
cells at the start may resolve this situation. Despite the above

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.934974
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-934974 December 23, 2022 Time: 15:6 # 5

Tong et al. 10.3389/fmed.2022.934974

TABLE 1 Culture medium and co-culture cells of patient-derived cells (PDCs) and patient-derived organoids (PDOs) derived from pancreatic ductal
adenocarcinoma (PDAC) specimens obtained by endoscopic ultrasound-guided tissue acquisition (EUS-TA).

References Culture medium Co-culture cells

PDCs

Lee et al. (43) Rho-kinase inhibitor (Y-27632). The rest were not detailed. J2 mouse fibroblasts after
lethal irradiation.

Lee et al. (34) Ham’s F-12 nutrient mix (70%), complete DMEM (25%), hydrocortisone (0.4 mg/mL), insulin (5 mg/mL),
8.4 ng/mL cholera toxin (8.4 ng/mL), EGF (10 ng/mL), FBS (5%), adenine (24 mg/mL), gentamycin
(10 mg/mL), Amphotericin B (250 ng/mL), Y-27632 (5 mM).

J2 mouse fibroblasts after
lethal irradiation.

PDOs

Tiriac et al. (2) Advanced DMEM/F12, HEPES 10 mM, Glutamax (1X), A83-01 (500 nM), hEGF (50 ng/mL), mNoggin
(100 ng/mL), hFGF10 (100 ng/mL), hGastrin I (0.01 µM), N-acetylcysteine (1.25 mM), Nicotinamide
(10 mM), PGE2 (1 µM), B27 (1X), R-spondin1 conditioned media (10%), Afamin/Wnt3A conditioned
media (50%).

NM

Juiz et al. (82) Advanced DMEM/F12, HEPES (10 mM), Glutamax (1X), penicillin/streptomycin, animal-free
recombinant hFGF10 (100 ng/mL), animal-free recombinant hEGF (50 ng/mL), recombinant hNoggin
(100 ng/mL), Wnt3a-conditioned medium (30%), RSPO1-conditioned medium (10%), hGastrin 1
(10 nM), Nicotinamide (10 mM), N acetylcysteine (1.25 mM), B27 (1x), A83-01 (500 nM), Y27632
(10.5 µM).

NM

Armstrong et al. (88) Advanced DMEM/F12, HEPES (1 M), B27 (1X), N2 (1X), N-Acetylcysteine (1 mM), nicotinamide
(10 mM), hGastrin (0.1 mol/L), hEGF (50 ng/mL), A83-01 (500 nM), Y-27632, hFGF-10 (100 ng/mL),
Wnt3A-R-spondin1-Noggin condition media (50%).

NM

Lee, et al. (53) Advanced DMEM/F12, Gluta MAX (2 mM), HEPES (10 mM), penicillin (100 U/mL), hygromycin B
(100 U/mL), streptomycin (100 µg/mL), Wnt-3A (50%), R-spondin 1 (50%), mNoggin conditioned
medium (50%), hEGF (50 ng/mL), hFGF-10 (100 ng/mL), nicotinamide (10 mM), A83-01 (500 nM), B27
(1X), N-acetylcysteine (1.25 mM), FBS (10%), hGastrin I (0.01 µM).

NM

Boj et al. (80) Advanced DMEM/F12, HEPES (1X), Glutamax (1X), penicillin/streptomycin (1X), B27 (1X), Primocin
(1 mg/ml), N-acetyl-L-cysteine (1 mM), Wnt3a-conditioned medium (50%), RSPO1-conditioned medium
(10%), Noggin-conditioned medium (10%) or recombinant protein (0.1 mg/ml), EGF (50 ng/ml), Gastrin
(10 nM), FGF-10 (100 ng/ml), Nicotinamide (10 mM), A83-01 (0.5 mM).

NM

Tiriac et al. (3) Advanced DMEM/F12, HEPES (10 mmol/L), Glutamax (1X), A83-01 (500 nmol/L), hEGF (50 ng/mL),
mNoggin (100 ng/mL), hFGF10 (100 ng/mL), hGastrin I (0.01 µmol/L), N-acetylcysteine (1.25 mmol/L),
nicotinamide (10 mmol/L), PGE2 (1 µmol/L), B27 (1X), R-spondin1 conditioned media (10%), and
afamin/Wnt3A conditioned media (50%).

NM

Seino et al. (5) Advanced DMEM/F12, penicillin/streptomycin, HEPES (10 mM), GlutaMAX (2 mM), B27 (1X), Gastrin I
(10 nM), N-acetylcysteine (1 mM), recombinant mEGF (50 ng/ml), recombinant mNoggin (100 ng/ml),
R-spondin-1 conditioned medium (10%), Afamin-Wnt-3A serum-free conditioned medium (25%),
A83-01 (500 nM), SB202190 (10 mM).

CAFs

Bian et al. (50) Advanced DMEM/F12, HEPES (10 mM), Glutamax (1X), penicillin/streptomycin, Animal-Free
Recombinant Human FGF10 (100 ng/ml), Animal-Free Recombinant hEGF (50 ng/ml), Recombinant
hNoggin (100 ng/ml), Wnt3a-conditioned medium (30%), RSPO1-conditioned medium (10%), hGastrin 1
(10 nM), Nicotinamide (10 mM), N acetylcysteine (1.25 mM), B27 (1x), A83-01 (500 nM), Y27632
(10.5 µM).

NM

Hennig et al. (83) Advanced DMEM/F12, Wnt3a-conditioned medium (50%), noggin conditioned medium (10%),
RSPO1-conditioned medium (10%), B27 (1X), nicotinamide (10 mM), gastrin (1 nM), N-acetyl-Lcysteine
(1 mM), primocin (1 mg/ml), recombinant mEGF (50 ng/ml), recombinant hFGF10 (100 ng/ml), A83-01
(0.5 µM), N2 (1X).

NM

Dantes et al. (35) Advanced DMEM/F12, HEPES (10 mM), GlutaMax (1X), B27 (1X), Primocin (100 µg/mL),
N-acetyl-L-cysteine (1.25 mM), recombinant hWnt3a protein (100 ng/mL) or Wnt3a-conditioned
medium (50%), RSPO1-conditioned medium (10%) or recombinant hR-Spondin 1 protein (500 ng/mL),
mNoggin (100 ng/mL), EGF (50 ng/mL), Gastrin (10 nM), FGF10 (100 ng/mL), Nicotinamide (10 mM),
Y-27632 (10 µM), A83-01 (0.5 µM).

NM

PDC, patient-derived cell; PDO, patient-derived organoid; PDAC, pancreatic ductal adenocarcinoma; EUS-TA, endoscopic ultrasound-guided tissue acquisition; DMEM, Dulbecco’s
modified Eagle’s medium; EGF, epidermal growth factor; FGF, fetal growth factor; FBS, fetal bovine serum; CAF, cancer-associated fibroblasts; NM, not mentioned.
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TABLE 2 Data on the establishment of preclinical models for pancreatic ductal adenocarcinoma (PDAC) patients using endoscopic
ultrasound-guided tissue acquisition (EUS-TA) alone and combined with other approaches as well as the accuracy of drug screening results.

References Tissue acquisition
approaches

Time to model
formation

Number of models
created

Number of
passages

Correlation between
drug screening results
and clinical effect

PDCs

Lee et al. (43) FNB (20 G, 2–3 passes) 7–14 d 8/22 (36.4%) >20 NM

Lee et al. (34) FNB; Surgery; Percutaneous
biopsy

NM FNB: 15; Surgery: 12;
Percutaneous biopsy: 1

NM The IC50 value of each drug was
statistically lower in the responder
group than in the non-responder
group.

PDXs

Berry et al. (67) FNA (22 G, 1 pass) 3–6 m (1,000 mm3) 2 NM NM

Duconseil et al. (48) FNA; Surgery 2–6 m (1,000 mm3) FNA: 6; Surgery: 11 ≥6 NM

Gayet et al. (68) FNA; Surgery NM Total: 17 NM NM

Hermans et al. (52) FNB (22 G); Surgery Passage 1:
8–27 d/Passage 3:
5–8 d
(1,000–1,500 mm3)

FNB: 6/10 (60%); Surgery:
4/4 (100%)

5 NM

Allaway et al. (62) FNA (1–2 passes); Surgery 18 w (5 mm3) FNA: 9/24 (37.5%); Surgery:
10/10 (100%)

5 NM

Barraud et al. (69) FNA; Surgery NM Total: 23 NM NM

Nicolle et al. (36) FNA; Surgery NM Total: 30 NM NM

Bian et al. (49) FNA; Surgery 2–6 m (1,000 mm3) FNA: 25; Surgery: 30 ≥6 NM

PDOs

Tiriac et al. (2) FNB (22 G, 1–2 passes) 2 w (P0) 33/38 (87%) 5 NM

Juiz et al. (82) FNB NM 20 NM NM

Armstrong et al. (88) FNB NM 15/18 (83.33%) NM NM

Lee, et al. (53) FNA (19G or 20G, 1 pass) NM P0: 14/20 (70%);
P5: 12/20 (60%)

≥5 The moderate tendency of correlation
was found between the organoid’s
drug response and the patient’s OS
(Spearman correlation coefficient,
ρOS = 0.48).

Boj et al. (80) FNA; Surgery NM FNA: 2; Surgery: NM Indefinitely NM

Tiriac et al. (3) FNB; Surgery; Rapid autopsy;
VATSR

NM FNB: 43/60 (72%); Surgery:
61/78 (78%); Rapid
autopsy + VATSR: 10/21
(48%)

≥5 The clinical results showed that 5, 1,
and 2 patients were sensitive,
moderately sensitive and resistant to
the corresponding chemotherapy
agents, which was consistent with the
drug screening results.

Seino et al. (5) FNA; Surgery; Aascites;
ERCP

NM FNA: 33; Surgery: 12;
Aascites: 3; ERCP: 1

NM NM

Bian et al. (50) FNA; Surgery 2–3 w FNA: 85%; Surgery: NM NM NM

Hennig et al. (83) FNA; Surgery NM FNA: 5/6 (83%); Surgery:
17/25 (68%)

>10 NM

Dantes et al. (35) FNA (19/20/22 G, 1 pass);
Surgery

NM FNA: 6; Surgery: 4 ≥5 NM

PDAC, pancreatic ductal adenocarcinoma; EUS-TA, endoscopic ultrasound-guided tissue acquisition; PDC, patient-derived cell; FNB, fine-needle biopsy; G, gauge; d, days; NM, not
mentioned; PDX, patient-derived xenograft; FNA, fine-needle aspiration; m, months; w, weeks; PDO, patient-derived organoid; VATSR, video-assisted thoracoscopic surgical resection;
ERCP, endoscopic retrograde cholangiopancreatography.
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TABLE 3 The characteristics of preclinical models for human pancreatic ductal adenocarcinoma (PDAC) derived from endoscopic
ultrasound-guided tissue acquisition (EUS-TA).

Model type Advantages Disadvantages

TA-PDCs ¬ Can be constructed with a small piece of tumor tissue.
 Rapid generation of model.
® Retain genetic characteristics and heterogeneity of tumor.
¯ Easy to culture, propagate, cryopreserve, and manipulate.
° Suitable for high throughput drug screening.
± Longitudinal assessment of chemosensitivity.
² Relative low cost.

¬ Absence of gradients, extracellular matrix scaffold, and
tumor microenvironment.
 Difficult to model cell-cell contact.
® Lack the structural organization and functional
differentiation.

TA-PDXs ¬ Can be constructed with a small piece of tumor tissue.
 Retain genetic characteristics and heterogeneity of tumor.
® Model the cross-talk between cancer cells and stromal components.
¯ Separately analyze the human grafted cancerous and infiltrating
mouse stromal cells.
° Longitudinal assessment of chemosensitivity.

¬ Expensive.
 Low survival rate of immunocompromised mice.
® Time delay to engraftment and drug screening.
¯ Suitable for low throughput drug screening.
° Not suitable to model the interactions between cancer cells
and immune cells.

TA-PDOs ¬ Can be constructed with a small piece of tumor tissue.
 Rapid generation of model.
® Retain genetic characteristics and heterogeneity of tumor.
¯ Relatively easy to culture, propagate, cryopreserve, and manipulate.
° Longitudinal assessment of chemosensitivity.
± Suitable for high throughput drug screening.
² Model the interactions between cancer cells and stromal components
when co-culture with stromal cells.
³ Explore the immunotherapy when co-culture with immune cells.

¬ Expensive.
 Relatively immature technique.

PDAC, pancreatic ductal adenocarcinoma; EUS-TA, endoscopic ultrasound-guided tissue acquisition; TA, tissue acquisition; PDC, patient-derived cell; PDX, patient-derived xenograft;
PDO, patient-derived organoid.

limitations, TA-derived PDC can provide helpful information
for personalized treatments via drug screening or toxicity tests.

3.2. EUS-TA specimen-derived PDX
models

As the in vivo counterpart to cell lines, PDX tumor
models can also retain the patient’s genome and have been
widely used. The data from some researches showed that
PDX models could be constructed from EUS-TA samples,
which are obtained from both primary and metastatic lesions
of PDAC (62). EUS-TA specimen-derived PDX (TA-PDX)
models can capture the clones with metastatic potential
present within the primary tumor, provide a platform for
comparing genome-driven therapies before recurrence, and
identify potential therapies (62). Additionally, the ability to
engraft was negatively correlated with disease-free survival time
of patients and could serve as a predictor of the patients’
disease-free survival (63–65). Hermans et al. selected two FNB-
PDXs respectively from poorly and moderately differentiated
tumors (52, 66). They observed that the growth-rate of the
poorly differentiated tumor was higher than that of the
moderately differentiated tumor, and poor tumor differentiation
exhibited a clear association with epithelial-mesenchymal
transition (EMT). Although gemcitabine treatment could
reduce the tumor volume and proliferation, it also increased
EMT and enhanced the ability of cancer cells to metastasize

(66). In contrast to PDC, PDX could model the cross-
talk between stromal components and epithelial tumor cells,
while maintaining a high genetic stability and preserving
the molecular and cellular heterogeneity of the primary
tumor (61).

Indeed, each TA-PDX can be molecularly analyzed and
concomitantly used for testing biological hypotheses or
putative therapeutic targets derived from these analyses.
Some studies used TA-samples for sequencing and stratified
patients according to molecular signatures, such as a KRAS
wild type/mutation and c-MYC low/high, using the TA-samples
to establish PDX cohort according to this stratification. Then,
corresponding target inhibitors were applied to treat the
PDXs. The results showed that the growth of KRAS wild-type
and c-MYC high PDXs was selectively inhibited by EGFR
inhibitors and BET inhibitors, respectively (49, 67). Besides,
TA-PDXs were used to profile the PDAC, confirming that
there was no relationship between the consensus multi-
omics classification and genomic alterations. The most likely
explanation was that genetic mutations, amplifications, and
deletions were involved in the transformation process of
PDAC, whereas the clinical outcome, response to treatments,
and the phenotype of the tumors were controlled at the
epigenetic level (36). It revealed that the multi-omics
analysis is a rich source of novel and reliable therapeutic
targets for treating patients with PDAC (36). Through
the transcriptomic analysis, the heterogeneity in the RNA
expression profile of tumors could be observed, discriminating
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between potential short-and long-term survivors, and
predicting the sensitivity to a set of anticancer drugs (49,
68, 69).

One of the features of the TA-PDX models is that
the tumor cell architecture is maintained while the murine
stroma replaces human stroma during their construction
and passaging, making it a growing chimeric tumor, which
better reflects the properties of the original human tumors
(36, 60, 66). Sequencing profiles of a mix of human
grafted cancerous and infiltrating mouse stromal cells can
be analyzed separately in silico by unambiguously assigning
each sequence to the human or mouse genome (70). With
the advent of sequencing-based transcriptomic profiling, TA-
PDX offers an ideal setting to study the interactions between
the tumor and stromal cells. These works reveal that TA-
PDX is a suitable model for preclinical studies, representing
the diversity of the primary cancers in which the stroma
is reconstituted.

Despite the TA-PDX has the ability to adequately model
the in vivo condition, it is not perfect (Table 3). First,
time is a critical factor in personalized medicine. However,
generation of a cohort of PDXs for drug testing might
require 2–8 months (55, 71); small biopsy samples may
take longer (55). Additionally, waiting for active therapies in
relevant TA-PDX, and TA-PDX may be more suitable for low-
throughput rather than high-throughput drug screening, which
also need extra time (60, 61, 72). Obviously, time-consuming
methods are incompatible with the urgency of selecting and
implementing treatment regimens for patients because the
disease often progresses swiftly. Meanwhile, the generation
and maintenance of large numbers of immunocompromised
mice to passage the TA-PDXs can be costly (54, 58, 61).
Finally, owing to the immunodeficient host, the interactions
of cancer cells with the various immune cell types cannot
be modeled properly, and it may lead to unforeseeable
problems when translating the results of ligand–receptor
interactions obtained through this model (55, 73). Nevertheless,
Nicolle et al. believed that though the mouse hosts were
immunocompromised, the extrathymic maturation such as
intestinal T cell differentiation was not precluded. Thus, they
believed that TA-PDX tumor models can reproduce partial
immune-related phenotype observed in human primary tumors
(36). Therefore, whether TA-PDX is appropriate for screening
and functional analysis of new immune-therapeutic drugs
requires further study.

3.3. EUS-TA specimen-derived PDO
models

In recent years, based on the successful findings with
3D culture and tumor organoids, a new ex vivo preclinical
model has been developed and several respective studies

have been published. The term refers to a group of cells
growing in a 3D structure and using specifically defined
media and conditions. It can be generated from primary
tissues, metastatic tumors, embryonic stem cells, or pluripotent
stem cells (74–76). Generally, 3D spheres and 3D organoids
are regarded as the same model, though 3D cultures
originate from cell lines in monolayer, and 3D organoids
come directly from tissues (58, 77). The current criteria
to define a genuine organoid are the following: (1) it
recapitulates the identity of the organ it is supposed to
model, (2) it mirrors the organ’s cell type diversity, (3) it
reproduces the organ-specific functions, and (4) it follows
the same self-organization of the tissue it should reproduce
(15, 78).

Organoids have been generated using EUS-TA samples
with high levels of success in a time frame of just weeks
and maintained through indefinite passages while preserving
genetic stability, and successfully frozen and thawed, allowing
for long-term storage (79–81). It has been widely used in
molecular subtyping (50, 82, 83), detection of intratumoral
heterogeneity (82, 84, 85), and individualized chemosensitivity
testing (50, 53, 83, 86). An EUS-TA specimen-derived PDO
(TA-PDO) library or a tumor-chip (incorporating PDOs and
stromal cells) could recapitulate the mutational spectrum,
transcriptional subtypes and microenvironment of primary
PDAC (3, 87). Single-cell transcriptomic analysis showed
that a subtype of TA-PDOs could contain more than one
phenotype and revealed an unanticipated high heterogeneity
of PDAC (82, 84, 85). TA-PDOs also enable longitudinal
assessment of chemosensitivity and evaluation of synchronous
metastases (3).

Stratification of patients with PDAC is essential to
predict their responses to therapies and choose the best
treatment due to the heterogeneity of PDAC. Hennig et al.
categorized the patients into the established quasimesenchymal,
exocrine-like, and classical subtypes based on KRT81 and
CFTR immunoreactivity. At the same time, they found that
KRT81− PDAC organoids tended to be more resistant toward
5-Fluorouracil and oxaliplatin (83). Bian et al. classified
patients into two subgroups, MYC-high and MYC-low, and
inhibitors of c-MYC transcription were administered in two
subgroups. The results showed that these compounds were
more efficient in MYC-high than in MYC-low TA-PDOs
(50). Armstrong et al. generated a series of TA-PDOs
and used them to screen for sensitivity to 18 compounds.
A transcriptomic signature associated with resistance to
conventional therapies was identified through RNA sequencing,
and it was found that low expression of this “resistance”
signature was associated with greater survival in patients with
PDAC (88). All the above means that subtyping combined
next-generation sequencing using TA-derived PDAC organoids
might be beneficial to predict the clinical response. It
was reported that PDOs exhibited 100% sensitivity, 93%
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FIGURE 1

Patient-derived preclinical models for individualized cancer therapy. In the case of imaging highly suspect of pancreatic malignancy,
endoscopic ultrasound-guided tissue acquisition is performed to achieve diagnosis and obtain specimens to determine individualized treatment
options. If the specimens are adequate for sequencing, DNA methylation, multi-omics, or other molecular studies, as well as construction of
preclinical models, studies and model construction can be conducted simultaneously (relatively rare). Otherwise, the models are established
first and then various studies are conducted (relatively common). The patient-derived preclinical models might be used for drug screening
and/or verification, as well as diverse studies. With the progress of individualized treatment, clinicians will decide whether longitudinal sampling
is needed and whether the above process needs to be repeated according to the treatment effect of patients.

specificity, 88% positive predictive value, and 100% negative
predictive value for the drug response in gastrointestinal
cancers (89).

In addition to the above, PDO platforms are also a
multipurpose system that can be used to perform a wide
spectrum of studies. It can be used for exploring predictive
biomarkers of drug response and acquiring specific molecular
profiles of patients who may benefit from the tested targeted
therapy, which may improve the response rate of patients to
targeted or other therapies. Besides, PDOs are also widely
used in molecular research. After using cultured PDO for
drug screening, Armstrong et al. performed an enrichment
analysis to identify pathways based on the genes associated with

sensitivity to each of the tested targeted therapies, and showed
that multiple growth and signaling pathways (i.e., PI3K, MAPK,
Rap1, and Ras) could predicted response to the targeted drugs.
For example, the ERBB1 downstream pathway was identified to
be associated with sensitivity to ERBB1 inhibitor, erlotinib. The
PARP inhibitor olaparib is shown to be associated with multiple
pathways of DNA damage repair and chromosome organization
(88). Seino et al. used the PDAC TA-PDOs to identify three
functional subtypes based on their stem cell niche dependencies
on Wnt and R-spondin. The results of their study revealed that
niche independency was mainly acquired through driver gene
(KRAS, CDKN2A, TP53, SMAD2) mutations, whereas the Wnt
niche independency was predominantly regulated by epigenetic
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mechanisms, highlighting a unique niche adaptation process
during pancreas tumorigenesis. Their results also provide
novel insights into Wnt-based therapeutic strategies against
PDACs (5).

Based on the study by Dantes et al., the mutational profile
of the primary tumor could be recapitulated by cell-free DNA
(cf-DNA) in the TA-PDO supernatant as early as 72 h after
the biopsy. This indicated the suitability of this approach to
subject TA-PDOs to drug testing in a reduced time frame. This
is particularly important for patients for whom biopsy samples
were rejected from all genetic testing owing to insufficient
tumor quantity (35). Thus, combined with molecular profiling
and drug testing, it might facilitate the integration of PDO
technology and have a broad implication in clinical practice.

EUS-TA specimen-derived PDOs (TA-PDOs) could be
generated not only from neoplastic cells, but also from normal
pancreatic ductal cells and pluripotent stem cells after induced
differentiation into specific phenotypes (79, 80). These enable
PDOs to help study the early stages of disease progression.
Based on these characteristics and advantages, TA-PDOs are
poised to play an increasingly important role in precision
medicine of PDAC, and also can simulate the whole process
of tumor development and provide a platform for exploring
genetic cooperation.

Notably, though TA-PDOs are attractive for their potential,
they still have some limitations (Table 3). One is the high
cost. The culture setting of TA-PDOs is complicated, and TA-
PDOs need more supplements than primary cells to propagate.
Second, similar to PDC, the TA-PDO lack stromal cells present
in vivo, including cancer-associated fibroblasts, extracellular
matrix, pancreatic stellate cells, endothelial cells, immune cells,
and various growth factors (15), which represent up to 90%
of the tumor volume. The tumor-infiltrating lymphocytes are
initially retained within PDOs cultures, which enables to
study endogenous immune tumor micro-environmental cells
at the beginning. However, the immune cells will be lost
over culture propagation (90), and all of these lacked stromal
cells and microenvironmental components are required for
PDO to closely model PDAC in vivo. To surmount this
limitation, several groups developed a 3D co-culture system
with organoids, fibroblasts, and immune cells to model the
interaction between cancer cells and the most abundant
cellular components of the tumor microenvironment (87, 91).
Through the co-culture model, Öhlund et al. observed an
increase in the proliferative rate of organoids and fibroblasts
and found heterogeneity between cancer-associated fibroblasts.
These findings reflect the complexity of the stroma and its
influence on epithelial tumorigenesis (91). Finally, in principle,
TA-PDOs are suitable for high throughput screening, but
the technical constraints and extensive manipulation have
hampered progress toward simple clinical applications (38).
Further development is needed to make it more adaptable to
high-throughput screening.

4. Conclusion and perspectives

Endoscopic ultrasound-guided tissue acquisition (EUS-TA),
as a candidate or even a substitute for surgery, is competent
in obtaining specimens from patients with all clinical stages
of chemo-naive PDAC and providing biological material for
genetic analysis, molecular research, stratification, as well as
preclinical models establishment, including PDC, PDX, and
PDO. In recent years, a variety of TA-derived human PDAC
preclinical models have been used for basic and translational
studies, which have helped to generate a holistic view of
the genetic features of this disease. However, much effort is
still needed to optimize the preclinical models derived from
EUS-TA, including its establishment and application. First,
the sampling and culture protocol needs to be improved and
standardized, such as the needed number of passes or length
of core tissues, most suitable needle type and gauge, the
generation steps of different models, the needed supplements,
and culture-supporting matrices, to improve the success rate
of model construction, simplify complex manipulation, and
reduce the time and cost. Second, different models should
be applied according to their different advantages, limitations,
and research purposes. For example, TA-PDC, has a relatively
fast reproduction, low culture difficulty and cost, is suitable
for high-throughput drug screening, and can also be used
for the expansion of tumor cells when the initial tumor cells
are insufficient, and then used for genetic testing and/or
creation of other models (35, 92). TA-PDX, which could
simulate the tumor microenvironment present in vivo, could
be used to study cross-talk between different tumor cells
as well as tumor cells and stromal cells. TA-PDO can be
propagated in just weeks and obtain accurate drug screening
results through high-throughput screening. When co-culturing
with immune cells, TA-PDO can also be used to explore the
immunotherapy of PDAC. Additionally, when the above three
models are combined with sequencing, omics data, or molecular
study, they can help identify gene signatures associated with
response to novel therapies, stratify patients, and achieve
individualized treatment.

Collectively, in the era of individualized treatment, EUS-TA
specimen-derived PDAC preclinical models will certainly bring
substantial changes to medicine. However, precision medicine
for PDAC is still challenging owing to the short median survival
of patients with advanced stage disease (3). Before using the
models to guide treatment, it is important to determine the
successful matching between preclinical models derived from
EUS-TA specimens and original tumors and between the drug
screening results obtained by the EUS-TA specimen-derived
preclinical models and the clinical effects. New high-quality
clinical trials and research on individualized PDAC treatment
should strive to solve the existing limitations (Table 3).
Researchers should also pay attention to the ethical constraints
associated with the development of cancer preclinical models.
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It is expected that routine preparation and application of
preclinical models derived from EUS-TA will be a big step in
precision medicine and treatment of the disease and benefit
more patients with PDAC (Figure 1).
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