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Introduction: Chronic kidney disease (CKD) is a progressive disease with

high incidence but early imperceptible symptoms. Since China’s rural areas

are subject to inadequate medical check-ups and single disease screening

programme, it could easily translate into end-stage renal failure. This study

aimed to construct an early warning model for CKD tailored to impoverished

areas by employing machine learning (ML) algorithms with easily accessible

parameters from ten rural areas in Shanxi Province, thereby, promoting a

forward shift of treatment time and improving patients’ quality of life.

Methods: From April to November 2019, CKD opportunistic screening was

carried out in 10 rural areas in Shanxi Province. First, general information,

physical examination data, blood and urine specimens were collected from

13,550 subjects. Afterward, feature selection of explanatory variables was

performed using LASSO regression, and target datasets were balanced

using the SMOTE (synthetic minority over-sampling technique) algorithm,

i.e., albuminuria-to-creatinine ratio (ACR) and α1-microglobulin-to-creatinine

ratio (MCR). Next, Bagging, Random Forest (RF) and eXtreme Gradient

Boosting (XGBoost) were employed for classification of ACR outcomes and

MCR outcomes, respectively.

Results: 12,330 rural residents were included in this study, with 20 explanatory

variables. The cases with increased ACR and increased MCR represented 1,587

(12.8%) and 1,456 (11.8%), respectively. After conducting LASSO, 14 and 15

explanatory variables remained in these two datasets, respectively. Bagging,

RF, and XGBoost performed well in classification, with the AUC reaching

0.74, 0.87, 0.87, 0.89 for ACR outcomes and 0.75, 0.88, 0.89, 0.90 for MCR

outcomes. The five variables contributing most to the classification of ACR
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outcomes and MCR outcomes constituted SBP, TG, TC, and Hcy, DBP and age,

TG, SBP, Hcy and FPG, respectively. Overall, the machine learning algorithms

could emerge as a warning model for CKD.

Conclusion: ML algorithms in conjunction with rural accessible indexes boast

good performance in classification, which allows for an early warning model

for CKD. This model could help achieve large-scale population screening for

CKD in poverty-stricken areas and should be promoted to improve the quality

of life and reduce the mortality rate.

KEYWORDS

machine learning, chronic kidney disease, albuminuria-to-creatinine ratio, α1-
microglobulin-to-creatinine ratio, auxiliary diagnosis, warning model

Introduction

Chronic kidney disease (CKD) is defined as renal structural
or functional abnormalities for 3 months, with a prevalence
of 13.4% worldwide (1). In recent years, CKD has gradually
moved away from the perception of “disease of the elderly,”
with a growing trend toward age groups. Yet, imperceptible
symptoms at the initial stages and lower public awareness are
often responsible for the missing of golden treatment time (2).
More seriously, it may develop into end-stage renal disease that
requires renal replacement therapy, leading to a decrease in
quality of life and an increase in mortality. What’s worse, it’s
highly related to complications such as cardiovascular disease
(3), becoming another “silent killer” after tumours and diabetes.
As such, its early screening enables patients and their families
to plan ahead, consult professional doctors for treatment,
and discuss lifestyle modifications, which contribute to the
alleviation of CKD.

Accurate diagnosis is closely related to the detection of
CKD. Undoubtedly, albuminuria and α1-microglobulin serve as
a good approach for early CKD screening in tertiary hospitals.
Yet, when it comes to the rural areas in China, health care
workers, critical care units, emergency facilities, health services
and medical examinations are not necessarily guaranteed (4–
6). In such a situation, it is not practical for primary health
care institutions to make an early CKD screening using urine
protein (7). Therefore, it is worth considering how to maximise
the accessible medical parameters to construct a warning model
for CKD in rural areas under the existing health care conditions.

Previous studies demonstrated that some risk factors, such
as demographic, lifestyle, and blood biochemical parameters
could be used to predict disease occurrence (8, 9). Also, it has
been documented that the machine-learning approach allows
for higher accuracy of disease risk prediction using routine
clinical data, facilitating better decision support for clinicians
(10). Accordingly, it is of great significance to combine machine

learning algorithms with those easily accessible medical indexes
to construct a warning model for CKD in poverty-stricken areas.

In this study, we aimed to employ machine learning
algorithms for early screening of CKD and developed a warning
model targeted at poverty-stricken areas using demographic,
blood biochemical and physical examinations data from ten
rural areas in Shanxi Province, intending to achieve a larger-
scale CKD screening programme at a lower cost (reduced
financial expenditure, reduced burden on medical staff) where
possible, thus shifting forward its treatment window and
improving quality of life.

Participants and methods

Study participants

From April 2019 to November 2019, Shanxi Provincial
People’s Hospital carried out opportunistic screening for chronic
kidney disease for residents over 40 years old in Ningwu County,
Lu County, Yangqu County, Linxian County, Shouyang County,
Zezhou County, Huozhou City, Hejin City, Linyi County and
Ruicheng County in Shanxi Province. Up to 13,550 residents
participated in this screening and 12,285 eventually enrolled
in the study, including 5,206 men and 7,079 women aged 41–
91 years. All study subjects signed informed consent forms
and it was approved by the Shanxi Provincial Hospital Ethics
Committee (No. 2021213).

Inclusion criteria: (1) Residents aged 40 years and above; (2)
Participants without communication barriers; (3) Participants
understanding the study significance and willing to sign a
written informed consent; (4) participants without cognitive
impairment or mental illness. Exclusion criteria: (1) incomplete
information recorded; (2) poor compliance; (3) pregnant
women or those with a history of drug abuse.
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Data collection

Data is collected through questionnaires, physical
examinations, and laboratory analysis. The questionnaire
included demographic information (including age, sex, annual
income, educational levels), lifestyle (including smoking,
alcohol consumption, diet and exercise). Questionnaires
were conducted online and were completed by the subjects
themselves or their family members. Physical examination
comprised height, weight and systolic blood pressure (SBP),
diastolic blood pressure (DBP), measured twice and averaged.
All data were measured by medical professionals. Body mass
index (BMI) was calculated by weight in kilograms divided by
the square of height in meters.

Fasting venous blood was collected from subjects for
fasting blood glucose (FPG), glycated haemoglobin (GHb),
homocysteine (Hcy), total cholesterol (TC), triglycerides (TG),
low-density lipoprotein cholesterol (LDL-C) and high-density
lipoprotein (HDL-C). Urine specimens were collected from
subjects. After centrifugation of 3,000 r/min for 10 min, the
supernatant (low-speed centrifuge Anhui Zhongke Zhongke
A SC3616) was extracted, and latex turbidity, sarcosine
oxidase and immunoturbidimetry were employed for detection
of α1-microglobulin (α1MG), urine creatinine (UCr) and
microalbuminuria (MAU), respectively.

Variable assignments

Study participants’ annual income, educational levels, health
history, and lifestyle information was obtained from the
questionnaire. Annual income was defined as <5K yuan, 5–
10K yuan, 10–20K yuan, >20K yuan; educational attainment
was defined as ≤ primary school, ≤ middle school, ≤ high
school, ≥ college; smoking was classified as yes or no; alcohol
consumption was classified as always (>100 g/time and 3
times/week), sometimes (<3 times/week or < 100 g/time) and
rarely; exercise was classified as “none or a little” or “regular” (≥3
times/week, ≥30 min/time). BMI was defined as underweight
(<18.5 kg/m2), normal (18.5–24.0 kg/m2), overweight (24.0–
28.0 kg/m2), obesity (≥28 kg/m2). ACR was defined as MAU
divided by UCr multiplied by 8.84; MCR was defined as α1MG
divided by UCr multiplied by 8.84.

Explanatory variables include demographic information
(age, sex, educational levels, annual income, residence), lifestyle
(smoking, alcohol, exercise, salt consumption, diet), blood
biochemistry (HDL, LDL, TG, TC, Hcy, FPG, GHb), physical
examination indexes (SBP, DBP, BMI), a total of 20 variables.
The response variables were defined as ACR outcomes or MCR
outcomes with two classes (increased ACR or normal ACR and
increased MCR or normal MCR) ACR ≥ 30 mg/g was defined
as increased ACR; MCR > 23 mg/g was defined as increased

MCR. The increased ones were assigned 1, and the normal ones
were assigned as 0.

Data preprocessing

Since missing data is not an issue of great severity in
this study, we excluded those samples with missing values,
without making a data imputation. Then, Absolute Shrinkage
and Selection Operator (LASSO) was used to select features
that are more relevant to the response variables, the increased
ACR and the increased MCR. Afterward, Synthetic Minority
Over-Sampling Technique (SMOTE) was utilized to balance the
classes to enable the machine learning models to better learn the
data features, thus making the best classification. The workflow
was shown in Figure 1.

LASSO represents one of the commonly used feature
selection methods. It is characterized by adding L1
regularization penalty term when fitting generalized linear
regression, so that the sum of absolute values of regression
coefficients is less than a certain value. Its purpose is to
minimize the sum of squares of residuals, and force the
regression coefficients of variables that contribute less to the
model to compress to zero, enabling a feature sparsity process
(11, 12). It could eliminate predictors with autocorrelation or
redundancy, allowing for automated variable selection within

FIGURE 1

Workflow of the model construction.

Frontiers in Medicine 03 frontiersin.org

https://doi.org/10.3389/fmed.2022.930541
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-930541 December 30, 2022 Time: 15:36 # 4

Song et al. 10.3389/fmed.2022.930541

FIGURE 2

Before and after SMOTE of response variables for ACR and MCR outcomes. SMOTE, Synthetic Minority Over-Sampling Technique. It’s a good
and powerful way to handle imbalanced data, and it was conducted under the parameters of k = 5, C.perc = “balance”, dist = “Overlap”. (A) ACR
outcomes (before SMOTE); (B) MCR outcomes (before SMOTE); (C) ACR outcomes (after SMOTE); and (D) MCR outcomes (after SMOTE).

the model, and significantly contributing to the performance of
classification models (13, 14).

Imbalanced datasets are not unusual in medical research,
because the number of non-patients is extremely larger than
that of patients, which serves as an obstacle to predictive
performance (15). The Synthetic Minority Over-Sampling
Technique (SMOTE) is an oversampling technique that is an
effective algorithm for handling imbalances between data classes
(16). It uses k-neighbour synthesis to amplify minority classes to
obtain a balanced data set (17) that exhibits good performance
in areas such as network intrusion detection systems and
disease detection. In this study, there is a serious imbalance
in the response variables, ACR outcomes and MCR outcomes
(Figures 2A, B).

Three classifiers and evaluation
parameters

Three models, i.e., RF (18, 19), Bagging (20, 21) and
XGBoost (22, 23) were employed to make a classification
of ACR outcomes and MCR outcomes, respectively. More
detailed information about the models could be obtained in the
Supplementary material.

Evaluation parameters include Accuracy (1), Specificity (2),
Sensitivity (3) and Area under the receiver operating curve

(AUC). When patients with kidney disease are classified as
patients, the prediction is defined as True Positive (TP), and
when a healthy person is classified as healthy, the prediction is
defined as True Negative (TN). In addition, if healthy subjects
are considered patients, the prediction is False Positive (FP);
Similarly, False Negative (FN) if patients are considered healthy
subjects. Accuracy is to evaluate how accurate the machine
learning algorithms are to detect what it is supposed to measure.
Specificity is the ability to correctly exclude those without renal
conditions and Sensitivity is to correctly identify those with
renal conditions.

Accuracy =
(TN+TP)

(TP+TN+FP+FN)
× 100% (1)

Specificity =
TN

(TN+FP)
× 100% (2)

Sensitivity =
TP

(TP+FN)
× 100% (3)

Statistical methods

Qualitative data are described as percentages (%), and
quantitative data are expressed as mean standard deviation
(M ± SD) or median± interquartile (P25, P75), as appropriate.
Model construction: The datasets were divided into training

Frontiers in Medicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2022.930541
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-930541 December 30, 2022 Time: 15:36 # 5

Song et al. 10.3389/fmed.2022.930541

set (80%) and testing set (20%). The former is used for model
training, i.e., e, RF, Bagging, and XGBoost, while the latter
is used for model performance evaluation. The comparisons
between training set and testing set were conducted using t-test
or non-parameter test for quantitative variables, and Chi-square
test for qualitative variables. All analyses were implemented in R
software (version 4.0.3).

Results

Baseline characteristics

A total of 12,330 rural residents participated in this study, of
whom 5,230 were men and 7,100 were women aged 40–91 years.
There were 1,587 (12.8%) cases with increased ACR and 1,456

TABLE 1 Baseline characteristics of participants in this study.

Variables Levels Men (N = 5,230) Women (N = 7,100)

Age Median (IQR) 59.0 (52.0, 67.0) 57.0 (51.0, 65.0)

Education levels ≤Primary 1,394 (26.7%) 2,632 (37.1%)

≤Junior 2,811 (53.7%) 3,470 (48.9%)

≤Senior 761 (14.6%) 703 (9.9%)

≥Bachelor 264 (5%) 295 (4.2%)

Annual income <5K 1,563 (29.9%) 3,594 (50.6%)

5–10K 1,396 (26.7%) 1,745 (24.6%)

10–20K 641 (12.3%) 633 (8.9%)

>20K 1,630 (31.2%) 1,128 (15.9%)

TG (mmol/L) Median (IQR) 1.5 (1.1, 2.1) 1.6 (1.1, 2.2)

TC (mmol/L) Median (IQR) 4.0 (3.5, 4.6) 4.6 (4.0, 5.2)

LDL (mmol/L) Median (IQR) 2.1 (1.6, 2.6) 2.4 (1.9, 3.0)

HDL (mmol/L) Median (IQR) 1.2 (1.0, 1.4) 1.3 (1.1, 1.5)

FPG (mmol/L) Median (IQR) 4.6 (4.1, 5.1) 4.8 (4.4, 5.4)

GHB (mmol/L) Median (IQR) 5.4 (5.0, 5.8) 5.4 (5.0, 5.8)

SBP (mmHg) Median (IQR) 133.5 (123.0, 146.0) 134.0 (122.0, 148.5)

DBP (mmHg) Median (IQR) 82.5 (77.5, 90.0) 81.0 (75.5, 88.5)

Hcy (mmol/L) Median (IQR) 21.7 (15.5, 34.0) 16.6 (12.5, 23.7)

BMI Underweight 80 (1.5%) 124 (1.7%)

Normal 2,046 (39.1%) 2,828 (39.8%)

Overweight 2,231 (42.7%) 3,017 (42.5%)

Obesity 873 (16.7%) 1,131 (15.9%)

Smoking No 2,415 (46.2%) 6,977 (98.3%)

Yes 2,815 (53.8%) 123 (1.7%)

Alcohol consumption Rarely 3,421 (65.4%) 7,024 (98.9%)

Sometimes 1,549 (29.6%) 73 (1%)

Always 260 (5%) 3 (0%)

Exercise Regular 2,189 (41.9%) 2,952 (41.6%)

None or a little 3,041 (58.1%) 4,148 (58.4%)

Salt consumption Light 1,242 (23.7%) 2,002 (28.2%)

Moderate 3,157 (60.4%) 4,308 (60.7%)

Salty 831 (15.9%) 790 (11.1%)

Diet Vegetable 1,541 (29.5%) 2,590 (36.5%)

Balanced 3,322 (63.5%) 4,308 (60.7%)

Meat 367 (7%) 202 (2.8%)

ACR Normal 4,745 (90.7%) 5,998 (84.5%)

Increased 485 (9.3%) 1,102 (15.5%)

MCR Normal 4,473 (85.5%) 6,401 (90.2%)

Increased 757 (14.5%) 699 (9.8%)
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TABLE 2 Comparisons of quantitative clinical indexes between training set and testing set.

ACR outcomes MCR outcomes

Training
(N = 9,864)

Testing
(N = 2,466)

P Training
(N = 9,864)

Testing
(N = 2,466)

P

Age (y) 59.00 (52.00,67.00) 59.00 (53.00, 67.00) 0.199 61.00 (54.00, 68.00) 60.00 (54.00, 68.00) 0.147

TG (mmol/L) 1.63 (1.17, 2.27) 1.69 (1.20, 2.34) 0.02 1.61 (1.15, 2.23) 1.66 (1.15, 2.34) 0.052

TC (mmol/L) 4.42 (3.78, 5.08) 4.39 (3.77, 5.04) 0.273

FPG (mmol/L) 4.80 (4.30, 5.50) 4.80 (4.30, 5.60) 0.333 4.80 (4.30, 5.50) 4.80 (4.30, 5.50) 0.611

GHB (mmol/L) 5.40 (5.00, 5.90) 5.40 (5.00, 6.00) 0.17 5.40 (5.00, 6.00) 5.40 (5.10, 6.00) 0.749

SBP (mmHg) 137.50 (126.00, 152.00) 137.50 (125.00, 152.00) 0.948 137.00 (126.00, 151.00) 137.00 (125.00, 151.00) 0.813

DBP (mmHg) 83.00 (77.50, 91.00) 83.000 (77.50, 91.00) 0.529 82.00 (77.00, 90.00) 82.50 (77.50, 90.50) 0.113

Hcy (mmol/L) 18.60 (13.60,27.90) 18.55 (13.60, 28.13) 0.611 19.30 (14.00, 29.60) 19.10 (13.80, 29.05) 0.087

TABLE 3 Comparisons of qualitative clinical indexes between training set and testing set.

Variables ACR outcomes MCR outcomes

Training
(N = 9,864)

Testing
(N = 2,466)

P Training
(N = 9,864)

Testing
(N = 2,466)

P

Education

≤Primary 3,591 (36.4) 860 (34.9) 0.093 3,749 (38.0) 924 (37.5) 0.554

≤Junior 4,929 (50.0) 1,288 (52.2) 4,829 (49.0) 1,193 (48.4)

≤Senior 969 (9.8) 243 (9.9) 974 (9.9) 262 (10.6)

≥Bachelor 375 (3.8) 75 (3.0) 312 (3.2) 87 (3.5)

Exercise

Regular 4,215 (42.7) 1,026 (41.6) 0.312

None or a little 5,649 (57.3) 1,440 (58.4)

BMI

Underweight 158 (1.6) 34 (1.4) 0.784 165 (1.7) 41 (1.7) 0.748

Normal 3,426 (34.7) 867 (35.2) 3,753 (38.0) 951 (38.6)

Overweight 4,225 (42.8) 1,041 (42.2) 4,220 (42.8) 1,026 (41.6)

Obesity 2,055 (20.8) 524 (21.2) 1,726 (17.5) 447 (18.1)

Alcohol

Rarely 8,677 (88.0) 2,129 (86.3) 0.05 8,329 (84.4) 2,095 (85.0) 0.09

Sometimes 1,009 (10.2) 294 (11.9) 1,327 (13.5) 304 (12.3)

Always 178 (1.8) 43 (1.7) 208 (2.1) 66 (2.7)

Smoking

No 7,849 (79.6) 1,943 (78.8) 0.391 7,267 (73.7) 1,824 (74.0) 0.744

Yes 2,015 (20.4) 523 (21.2) 2,597 (26.3) 641 (26.0)

Diet

Vegetable 3,273 (33.2) 831 (33.7) 0.798 3,448 (35.0) 835 (33.9) 0.569

Balanced 6,188 (62.7) 1,530 (62.0) 6,024 (61.1) 1,534 (62.2)

Meat 403 (4.1) 105 (4.3) 392 (4.0) 96 (3.9)

Salt consumption

Light 2,606 (26.4) 678 (27.5) 0.173

Moderate 6,065 (61.5) 1,467 (59.5)

Salty 1,193 (12.1) 321 (13.0)

Sex

Male 3,523 (35.7) 934 (37.9) 0.046 4,551 (46.1) 1,124 (45.6) 0.631

Female 6,341 (64.3) 1,532 (62.1) 5,313 (53.9) 1,341 (54.4)
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FIGURE 3

Results of feature selection using LASSO. When Lamda is minimum, corresponding features were taken into model construction, that is, 14
features for ACR outcomes (A) and 15 feature for MCR outcomes (B).

(11.8%) cases with increased MCR, as shown inTable 1. Features
in the training set and testing set are comparable for both ACR
outcomes (except TG and sex) and MCR outcomes (P < 0.05),
as shown in Tables 2, 3.

Feature selection and results of SMOTE

As shown in Figures 3A, B, after LASSO feature selection,
14 and 15 explanatory variables remained in the two datasets,
respectively. Dataset with ACR outcomes as the response
variable excluded six variables of annual income, residence,
LDL, HDL, smoking, and exercise; while dataset with MCR
outcomes as the response variable excluded five variables of
TC, LDL, HDL, exercise, and salt consumption. As shown in
Figures 2C, D, after SMOTE resampling, the number of patients
and normal ones were 6,165, 6,165 for ACR outcomes, and
6,165, 6,164 for MCR outcomes, respectively.

Model performance

When constructing models for ACR outcomes, the number
of increased ACR and normal ACR in the training set
were both 4,932, and 1,233 in the testing set, respectively.
When constructing model for MCR, the number of increased
MCR and normal MCR in the training set were 4,973 and
4,891, respectively, and 1,273 and 1,192 in the testing set.
The Accuracy, Sensitivity and Specificity of Bagging, RF and
XGBoost reached over 99.00% in the training sets, and the AUC

reached 0.99, as shown in Table 4. In the testing sets, XGBoost
performed best, with Accuracy, Specificity and Sensitivity
standing at 80.17, 77.05, and 83.29% for ACR outcomes and
82.27, 82.91, and 81.71% for MCR outcomes, and the AUC
standing at 0.90. The performance of Bagging and RF is similar,
as shown in Table 5.

Feature importances

Since XGBoost performs best in the classification, we
indicated the contribution of the explanatory variables to the
model by Gain, and the larger the Gain, the more important
the variables were for the XGBoost model. The five variables
that contributed most to the classification of ACR outcomes in
the XGBoost model represented SBP, TG, TC, and Hcy, DBP.
The five variables that were most important for the classification
of MCR outcomes constituted age, TG, SBP, Hcy and FPG
(Figure 4).

Discussion

To our knowledge, this study was the first one to employ
machine learning algorithms in conjunction with existing
indicators readily available in rural areas to construct an
early warning model for CKD. In constructing the model,
demographic information, physical examination and blood
biochemical were taken as the explanatory variables; ACR (7)
and MCR (24), early CKD screening parameters, collected and
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TABLE 4 Performance evaluation of the three classifiers on the training set (ACR/MCR outcomes).

Model Accuracy (%) Sensitivity (%) Specificity (%) AUC

Bagging 99.91/99.91 99.96/99.90 99.96/99.92 0.99/0.99

RF 99.90/99.89 99.96/99.90 99.84/99.88 0.99/0.99

XGBoost 99.89/99.59 99.96/99.82 99.82/99.38 0.99/0.99

TABLE 5 Performance evaluation of the three classifiers on the testing set (ACR/MCR outcomes).

Model Accuracy (%) Specificity (%) Sensitivity (%) AUC

Bagging 78.30/80.37 74.05/82.36 82.56/78.77 0.87/0.88

RF 78.14/80.20 74.29/81.88 82.00/78.84 0.87/0.89

XGBoost 80.17/82.27 77.05/82.91 83.29/81.71 0.89/0.90

FIGURE 4

Contributions of explanatory variables to the XGBoost algorithm. The “Gain” means the relative contribution of the corresponding feature to the
model calculated by taking the contribution of each feature to each tree in the model. The high value of this metric compared to other
characteristics means that it is more important for generating predictions. Therefore, a larger value indicates that the variable is more important;
ACR outcomes (A) and MCR outcomes (B).

calculated from urine samples were taken as response variables.
This study suggested that machine learning approaches show
good performance in achieving early CKD-aided screening, as
reflected by excellent Accuracy, Sensitivity, Specificity and AUC.

In 2012, Logistic Regression (LR) was employed for CKD
prediction, but the model is accompanied by some defects
(2), one of which concerns its sensitivity to multicollinearity.
The second one relates to maximum likelihood estimation,
unable to fit the true distribution of the data well. Recently,
data-driven algorithms pick up pace, boasting great potential
in cardiovascular diseases (25), tumors (26), immune diseases
(27), and neurological diseases (28). Also, its application in
renal diseases is increasing, ranging from acute kidney injury
prediction (29) to kidney transplantation outcome prediction
(30), interstitial fibrosis, and tubular atrophy detection (31).

In our previous work (32), we also employed LR, RF
and Naive Bayes algorithms to make a classification of
glomerular injury and tubular injury with the same population.
The results suggested that RF performs best and could
be employed as a novel auxiliary diagnostic approach for
glomerular injury and tubular injury. To further compare the
performance of other well-established algorithms, we, in this
study, employed RF, Bagging and XGBoost to construct a
warning model for CKD targeted at poverty-stricken areas with
easily accessible parameters.

This study demonstrates that XGBoost represents the best
classifier because the algorithm is a serial integrated learning
algorithm based on Gradient Boosting Decision Tree that builds
boosting trees in parallel by dependency generation (23). The
objective function is improved by adding a regular term to
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the original function, thus reducing overfitting and speeding
up convergence (33). Its extraordinary classification power in
other diseases has also been demonstrated (34, 35). Besides,
the five explanatory variables with the greatest output weight
of XGBoost classifier for ACR outcomes represented SBP, TG,
TC, and Hcy, DBP; and the five explanatory variables for MCR
outcomes constituted age, TG, SBP, Hcy and FPG.

In hypertension, the early glomerular filtration rate could
remain normal, but when arterial pressure is constantly
rising, exceeding the kidney’s ability to self-regulate, it leads
to glomerular hyperperfusion, which leads to damage to
the visceral epithelial cells of the renal tubules, increasing
the permeability of the glomerular basement membrane and
thus causing proteinuria (36), while leading to glomerular
duct wall hardening thickening, lumen stenosis, resulting
in renal parenchymal ischemia, which eventually leads to
glomerulosclerosis. Hyperhomocysteinemia is an important
player involved in the progression of end-stage renal disease,
acting directly on glomerular cells, inducing glomerular
dysfunction and tubular fibrosis (37). Renal dyslipidemia is
characterized by the accumulation of TG, which accelerates
damage to the glomerular and tubular interstitials (38).
Hyperglycemia levels not only enhance oxidative stress
and hemodynamic factors such as activation of the renin-
angiotensin-aldosterone system and impaired self-regulation
due to systemic hypertension, but also increase the load
of glucose delivered to the proximal tubules, triggering
maladaptive hypertrophy (39) and hyperplasia of cortical
tubules, and upregulation of glucose transport (40), and
activation of globular feedback, leading to hyperfiltration of
glomeruli and tubular fibrosis.

We think our early warning model is practical and down-
to-earth in rural China. As the largest developing country
confronted with underdeveloped healthcare systems and aging
population (41), China is struggling to address the issue of
health care coverage in rural areas. Despite the tremendous
achievements in health care in rural China over the past 30 years,
the problem of “difficult and expensive access to health care”
still exists in the countryside. Promoting the establishment of
a digital healthcare system in rural areas can greatly enhance the
efficiency and accuracy of the public service system. Our study
involves 12,330 participants from rural areas and how to better
use such large-scale collected data to make a warning model
for CKD is of great significance. Rather than considering these
available indicators in isolation, holistically exploring their full
potential, and seeking to explore a warning model for rural areas
is a thing of great significance. Thus, early interventions tailored
to CKD in improvised areas could be made in advance to lower
its progression.

Some limitations also stand out in this manuscript. First,
this study was based on a cross-sectional survey, and we did
not conduct a follow-up for patients with proteinuria. Second,
we constructed the models with data from Shanxi Province, and

there is no other data for verification. Our next step is to collect
more data from other regions to test the models’ generalization.
Additionally, cost-effectiveness was initially considered in this
study, and other indicators reflecting CKD, such as blood
creatinine, were not collected, which is our next focus. Besides,
we did not collect a detailed history of smoking, alcohol
consumption and dietary intake. More detailed information
would allow for a more accurate and valid model.

In short, CKD has emerged as a global public health
issue and its early diagnosis is of great importance. In rural
China where primary health care service system and health
education remain to be improved and strengthened, how to
construct a warning model for CKD targeted at poverty-
stricken areas is of great necessity and significance. In this
study, we proposed a warning model using the available and
accessible demographical, blood biochemical and lifestyle data
in conjunction with machine learning approaches for rural
areas. This model offers a leg-up for early CKD-assisted
diagnosis in rural areas, which facilitates tailoring precise
management and therapy for patients, thus, improving their
quality of life and slowing the mortality rate.
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