Colorectal cancer (CRC) is a common gastrointestinal tumor with high morbidity and mortality. At the molecular level, patients at different stages present considerable heterogeneity. Although the miRNA in exosome is an effective biomarker to reveal tumor progression, studies based on stage-associated exosome miRNA regulatory network analysis still lacking. This study aims to identify CRC stage-associated exosome miRNAs and reveal their potential function in tumor progression.
In this study, serum and cellular exosome miRNA expression microarrays associated with CRC were downloaded from GEO database. Stage-common (SC) and stage-specific (SS) differentially expressed miRNAs were extracted and their targets were identified based on 11 databases. Furthermore, miRNA SC and SS regulatory function networks were built based on the CRC phenotypic relevance of miRNA targets, and the corresponding transcription factors were identified. Concurrently, the potential stage-associated miRNAs were identified by receiver-operating characteristic (ROC) curve analysis, survival analysis, drug response analysis, ceRNA analysis, pathway analysis and a comprehensive investigation of 159 publications.
Ten candidate stage-associated miRNAs were identified, with three SC (miR-146a-5p, miR-22-3p, miR-23b-3p) and seven SS (I: miR-301a-3p, miR-548i; IIIA: miR-23a-3p; IV: miR-194-3p, miR-33a-3p, miR-485-3p, miR-194-5p) miRNAs. Additionally, their targets were enriched in several vital cancer-associated pathways such as TGF-beta, p53, and hippo signaling pathways. Moreover, five key hotspot target genes (
These CRC stage-associated exosome miRNAs aid to further mechanism research of tumor progression and provide support for better clinical management in patients with different stages.