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The implication of the Estimation of Stromal and Immune cells in Malignant tumor tissues

using expression data (ESTIMATE) method to determine the tumor microenvironment

(TME) and tumor immune score including tumor purity represents an efficient method

to identify and assess biomarkers for immunotherapy response in precision medicine.

In this study we utilized a machine learning algorithm to analyze the Cancer Genome

Atlas (TCGA) and Gene Expression Omnibus database (GEO) lung adenocarcinoma

(LUAD) transcriptome data to evaluate the association between TME and tumor purity.

Furthermore, we investigated whether fewer TME components or a few dominant genes

can infer tumor purity. The results indicated that the 29 immune infiltrating components

determined by the ssGSEA method could screen the 5 TME components [chemokine

C-C-Motif receptor (CCR), T-helper-cells, Check-point, Treg, and tumor-infiltrating

lymphocytes (TIL)] that significantly contributed the most to tumor purity prediction

through regression tree and random forest regression methods. The findings revealed

that higher activity of these five immune infiltrating components significantly lowered the

tumor purity. Moreover, 5 TME components contributed significantly to the improvement

of Mean Square Error (MES); therefore, we selected these five sets’ genes and analyzed

survival data to establish a prognostic model. We screened out 11 prognostic-related

genes and constructed a risk model comprising 11 genes with good predictive value

for patients’ prognosis. Furthermore, we obtained four genes (GIMAP6, CD80, IL16,

and CCR2) that had predictive advantages for tumor purity using random forest

classification and random forest regression. The comprehensive score of genes for tumor

purity prediction (CSGTPP) was obtained by least absolute shrinkage and selection

operator (LASSO) regression indicated that four genes could be successfully used to

classify high and low CSGTPP samples and that tumor purity was negatively correlated

with CSGTPP. Survival analysis revealed that the higher the CSGTPP, the better the
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prognosis of patients. The association between a cluster of differentiation 274 (CD274)

and CSGTPP revealed a higher expression of CD274 in the high CSGTPP group.

Collectively, we speculated that CSGTPP could serve as a predictor of the response

to immunotherapy and a promising indicator of immunotherapy effect.

Keywords: lung adenocarcinoma, machine learning, tumor immune microenvironment, tumor purity, gene

expression, signature genes

INTRODUCTION

The tumor microenvironment (TME) represents a dynamic
cellular milieu consisting of tumor cells, extracellular matrix
(ECM), the blood and lymphatic vasculature, stroma, fibroblasts,
infiltrating immune cells, and neighboring tumor related non-
tumor cells. The immune system plays a critical role in
immunosurveillance, as the immune cells of the immune system
can recognize and eliminate tumor cells within the TME,
thereby contributing to tumor progression. However, to evade
the immune surveillance, tumor cells adopt multiple strategies to
avoid immune recognition and instigate an immunosuppressive
TME. Accumulating evidence indicates that defects in any
of these mechanisms might contribute to the failure of
the anti-tumor immunity and immune escape (1). Different
tumor types adopt different strategies to escape the immune
surveillance and killing of tumor cells by the immune system,
thereby generating immune tolerance and promoting tumor
occurrence and development (2). Immunotherapy, aiming to
restore and boost the body’s natural defenses to eradicate tumor
cells, has emerged as a breakthrough therapeutic strategy for
cancer. Several classes have emerged within immunotherapeutic
agents, including monoclonal antibody immune checkpoint
inhibitors, therapeutic antibodies, cancer vaccines, cell therapy,
and small molecule inhibitors (3). In particular, the immune
checkpoint inhibitors have shown potent anti-tumor activity
across multiple malignancies such as melanoma, non-small
cell lung cancer, kidney cancer, and prostate cancer. Several
immunotherapy drugs have been approved by the US FDA
(Food and Drug Administration, FDA) for clinical application
(4). Immunotherapy can produce a more significant sustained
response in patients with advanced cancer than conventional
chemotherapy (5). However, this response only occurs in a
small subset of patients. The efficacy of immunotherapy usually
depends on the infiltration of immune cells into the TME.
The immune cells of immune systems infiltrate into the TME
and contribute to the modulation of tumor progression. TME
is highly heterogeneous and consists of tumor cells, stromal
cells, ECM, and immune cells that drive tumor cells fate to
progression and metastasis. The immune system in vitro can
recognize tumor antigens and kill tumor cells. Increasing studies
have highlighted the complex and dynamic interactions between
cells of the immune system and the TME in cancer progression.
Moreover, TME plays an essential role in suppressing or
enhancing the immune response. Understanding the complexity
of interactions between TME and the immune cells will help
select patients for immunotherapy and improve the curative

effect of patients with immunotherapy. Tumor purity represents
the proportion of tumor cells in tumor tissue (6). Studies have
shown that tumor purity is significantly associated with the
clinical characteristics, genome expression, tumor’s biological
characteristics, and prognosis of patients with cancer. It is
noteworthy that ignoring the impact of tumor purity can lead
to systematic bias in tumor genomic analyses, recurrence risk,
and efficacy prediction. An accurate assessment of tumor purity
is helpful to analyze tumor samples objectively. Therefore, the
present study aimed to investigate the relationship between
the immune microenvironment and Lung adenocarcinoma
(LUAD) tumor purity throughmachine learning algorithms. And
explored if tumor purity can be inferred from the genomic
analyses, and investigated the correlation between tumor purity
and immunotherapy.

MATERIALS AND METHODS

Data Source and Pre-processing
The RNA-Seq based transcriptome profiles (FPKM; Fragments
per Kilobase of transcript per Million mapped reads) and
corresponding clinical data of LUAD patients were downloaded
from the TCGA portal, the gdc-client software download
tool. Additionally, the expression profiles of LUAD patients
(GSE68465, sequenced using Affymetrix, HG-U133A plus 2.0
Array, up to November 2020) were also obtained from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). All analyses
were performed using R software (R Foundation for Statistical
Computing, Vienna, Austria, 3.4.1 Version).

Assessment of the Degree of Tumor
Immune Infiltration
Using the most well-recognized and commonly used immune
cell marker genes (7), we assessed the infiltration of different
types of immune cells by single-sample Gene Set Enrichment
Analysis (ssGSEA) with Gene Set Variation Analysis (GSVA)
package in R package. Subsequently, based on the ssGSEA value,
the samples were divided into high, medium, and low immune
activity clusters.

Calculation of the Immune Score of the
TME
We obtained stromal score, immune score, estimate score, and
tumor purity based on the transformed expression matrix,
and tumor purity was calculated through the “Estimate” R
package (8).
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FIGURE 1 | Heatmap of the correlation between TME sets and immune score in different immunologically active samples.

FIGURE 2 | The relationship between the scale of the regression tree and the

relative error.

Determination of the Primary Immune
Infiltration Gene Sets Using Machine
Learning
Using regression trees and random forest regression, we
established a regression model and assumed that immune

infiltration and immune purity were correlated. Then, based
on the ssGSEA sets, we selected the ssGSEA sets that most
significantly contributed to the improvement in Mean Square
Error (MES) with “partykit” and caret package in R. TCGA data
were randomly divided into training set and validation set with
the ratio of 7:3, GSE68465 data were used as the test set.

Correlation Between Target ssGSEA Sets
and Tumor Purity
The association between the target ssGSEA sets value and tumor
purity in high, medium, and low immunocompetent samples was
determined using the “ggally” package in R.

Survival Analysis of Target ssGSEA Sets
and Tumor Purity
According to the target, ssGSEA sets value and tumor purity;
the samples were divided into high and low groups. We further
investigated the clinical data and survival outcome (excluding
samples with missing clinical data and survival time of fewer
than 30 days) to assess the association between each clinical
characteristic and prognosis with the “survminer” package in
R software.

LASSO Regression Analysis for the
Construction of the Prognostic Gene
Model
Univariate Cox proportional hazards regression analysis was
performed to screen target ssGSEA sets genes significantly
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FIGURE 3 | Pruning tree containing the number of splits, nodes, observation TME sets, and prediction results.

associated with overall survival (OS) in the TCGA LUAD
dataset. Then, using R-glmnet package, we performed LASSO
Cox regression analysis of the identified OS-related genes.
Multivariable Cox proportional hazards regression analysis was
performed to establish the prognosis model of target ssGSEA
sets genes. The LUAD samples were divided into high risk
and low risk by the median risk score; the Kaplan–Meier
curve was constructed, and the log-rank test was conducted to
compare the survival differences between the two groups. The
ROC curve was used to evaluate the accuracy of the model.
GSE68465 data was utilized as the validation set to further
evaluate the model.

The Implication of Target Genes for Tumor
Purity Classification
We established the corresponding relationship between the
sample gene expression matrix and the tumor purity after
screening the target gene using Cox proportional hazards
regression analysis. Using the random forest regression method
R-random Forest package, we constructed the model to evaluate
the linear relationship between the target genes and the tumor
purity and screen the most significantly contributed genes to
the improvement in MES value. Then, we divided the samples
into two groups according to tumor purity. Subsequently, a
relationship with gene expression data was analyzed to evaluate

FIGURE 4 | The relationship between split tree count and error.

the effect of the target genes’ classification on tumor purity
by random forest classification method achieved by R-random
Forest package. At the same time, the average reduction of the
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Gini index was used to evaluate the contribution of the genes to
the classification, and significantly associated genes were selected
based on the method of random forest regression. TCGA data
were divided into a training set and validation set at a ratio of 7:3;
GSE68465 data was used as a test set.

The Implication of Target Genes in the
Sample Classification
In order to visualize the effect of the target genes on the
sample classification, we used Principal Component Analysis
(PCA) to classify the samples corresponding to the target gene
by using the R packages “FactoMineR” and “factoextra.” In
this step, we sorted the samples of TCGA and GEO according
to tumor purity. The first 33% of samples presented low
purity samples, and the last 33% of samples represented high
purity samples.

Lasso Regression Analysis of Target Gene
to Predict the Effect of Immunotherapy
We constructed a LASSO regression model from the target
genes screened in TCGA LUAD data and the tumor purity

of the corresponding sample to calculate the comprehensive
score of genes for tumor purity prediction (CSGTPP) =

∑

Xα∗ coef α, where coef α is coefficient, and Xα is gene relative
expression, the samples were divided into high CSGTPP and
low groups. PCA was applied to analyze the classification
effect of the target genes and the survival prognosis of the
two groups. And then, we analyzed the differences in target
genes and tumor purity between the two groups. Finally,
we further explored immunotherapy’s effect by comparing
the differences in the immune target gene, CD274, in the
two groups.

RESULTS

ssGSEA Sets Value and Tumor Purity
We identified 535 TCGA LUAD gene expression matrices and
443 GEO gene expression matrices and analyzed the results
of 29 immune infiltration sets in LUAD. Simultaneously, we
determined tumor purity scores by the ESTIMATE method.
We excluded samples with incomplete survival data and
survival time <30 days after sorting out the clinical data.
A total of 443 TCGA clinical survival samples and 442

FIGURE 5 | Statistical chart of important TME sets contributed to tumorpurity and MES improvement percentage (IncNodePurity).
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GEO clinical samples were included to construct the LASSO
regression model. However, we eliminated clinical samples
with incomplete TNM data, and finally, 307 TCGA clinical
samples and 339 GEO clinical samples were selected for
subsequent analysis.

Distribution of Immune Infiltrating Gene
Sets and Tumor Purity in Different Immune
Active Samples
Using the 29 immune infiltration sets with the “sparcl” package
in R, we calculated the immune activity of 535 TCGA and 443
GEO LUAD samples and divided them into three groups of
low, medium, and high. Cluster analyses indicated the immune
infiltration and immune scores of the three groups of tumor
samples, and further analysis of the results revealed that with
the increase in immune activity, 29 immune infiltrating gene sets
and estimateScore were positively correlated. In contrast, tumor
purity decreased with the increase in tumor immune activity
(Figure 1).

Predominant Immune Infiltration Gene Sets
We transformed 29 immune infiltration sets and tumor purity
into corresponding matrices, divided TCGA LUAD data into

training set and validation set at a ratio of 7:3, and used regression
tree to build the predictive model, GEO LUAD data was used as
the test set to verify the model. MES is an excellent indicator
of the calibration model. After constructing the model with
the “Rpart” function and using 10-fold cross-validation, it was
found that when the number of splits was 6, there was the
smallest splitting error (xerror = 0.175; Figure 2); therefore, we
chose the tree size to be 7, and used the “partykit” package to
reduce branches, and apparently received 8 prediction results
(Figure 3). Moreover, we used the “predict” function to envisage
the validation set and the calculated MES to be 0.004, indicating
that model was stable. Similarly, we used GEO data for testing,
and the calculated MES value was 0.083. The model exhibited a
good countermeasure effect.

Next, we used the “randomForest” function to perform
regression analysis on the aforementioned data. We estimated
that the number of specific optimal trees was 419, but from the
relationship between the MES and the number of trees in the
model, it could be observed that as the number of trees increases
to about 100 trees, the error improvement was not evident,
therefore, we chose 100 trees as the random forest regression
(Figure 4). The resulting MES obtained was 0.002, and nearly
89.28% of the variance was explained. To end, we analyzed the

FIGURE 6 | Scatter plot of correlation matrix between target TME sets and tumor purity in different immunocompetent samples.
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FIGURE 7 | Kaplan-Meier curve of patients with high and low TME sets and tumor purity group. (A) Kaplan-Meier curve of patients with high and low CCR2 group;

(B) Kaplan-Meier curve of patients with high and low T-helper-cells group; (C) Kaplan-Meier curve of patients with high and low Check-point group; (D) Kaplan-Meier

curve of patients with high and low Treg group; (E) Kaplan-Meier curve of patients with high and low TIL group; (F) Kaplan-Meier curve of patients with high and low

Tumorpurity group.

critical scalar that drives the result. As represented in Figure 5,
CCR, T-helper-cells, Check-point, Treg, and TIL contributed
significantly to the improvement of MES. The model presented
good MES values with the validation and test sets, which were
found to be 0.002 and 0.087, respectively. On comparison of the
two methods of regression tree and random forest regression,
the results indicated that both models had good predictive value.
Therefore, we selected CCR, T-helper-cells, Check-point, Treg,
and TIL immune infiltration sets as our target sets.

Association Between Target ssGSEA Sets
and Tumor Purity
We used the “Ggally” package in R software to estimate the
correlation between target immune infiltration sets and tumor
purity among different immunologically active samples from
TCGA LUAD data. The results revealed that tumor purity and
immune infiltration among different immunologically active
samples were significantly negatively correlated (Figure 6).

Survival Prognosis Analysis of Target
ssGSEA Sets and Tumor Purity
We used 443 TCGA LUAD samples to investigate further
the relationship between target immune infiltration sets and

tumor purity and survival prognosis; the results suggested
that the lower the purity of the tumor, the better the
prognosis. Conversely, it was also evident that the higher
the degree of immune infiltration, the better the patient’s
survival (Figure 7).

Prognostic Model and Genes Associated
With Prognosis
One hundred and three immune infiltrating genes from CCR,
T-helper-cells, Check-point, Treg, and TIL sets of TCGA
LUAD data were analyzed by Univariate Cox regression.
There were 21 genes associated with a prognosis and entered
into the LASSO regression analysis (Figure 8); a total of 11
genes (IL3RA, MAGEH1, CCR2, ACP5, TGFBI, CHRNA6,
KSR1, GIMAP6, CD80, IL16, and CD52) were identified for
building model. The coefficients of each gene were presented in
Table 1.

We assessed the prognostic value of risk scores, which were
estimated with the formula risk score=

∑
Xβ∗ coef β, where coef

βwas coefficient, and Xβwas gene relative expression. For TCGA
LUAD data, the risk score in both univariate and multivariate
analysis was significantly related to overall survival (OS) (HR
= 3.179, 95% CI = 2.111–4.786, P < 0.001; HR = 2.069, 95%
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FIGURE 8 | Target genes screened by univariate prognostic analysis.

TABLE 1 | The coefficients of genes for building model.

Genes Coefficients

IL3RA −0.0323529240412679

MAGEH1 −0.0313240392509636

CCR2 −0.258547384333454

ACP5 −0.00104506851750573

TGFBI 0.00291649350382021

CHRNA6 −0.473404652074516

KSR1 −0.0660881115987976

GIMAP6 0.020759981275271

CD80 −0.188951143790105

IL16 0.128342508954468

CD52 −0.000223112433304806

CI = 1.363–3.139, P < 0.001, respectively.) (Figures 9A,B). It
was observed that the patients with low-risk scores exhibited
significantly better prognosis than those with a high-risk score
(Figures 10A,B) both in TCGA and GEO LUAD data by the
Kaplan–Meier cumulative curve. The AUC of risk score was 0.68,
which implied that the Cox model could pretty well-predict the
prognosis (Figure 9C).

The Implication of Target Genes for Tumor
Purity Classification
We established the corresponding relationship between the 11
genes expression matrix and the tumor purity and performed
random forest regression to predict the linear relationship
between 11 gene expression and tumor purity. As mentioned
before, 465 TCGA LUAD data were divided into a training set
and validation set at a ratio of 7:3, while 443 GEO LUAD data
was used as the test set to verify the model. We selected 100 trees
for the random forest regression analysis, the resulting MES was
0.003, and almost 85.45% of the variance was explained. Finally,
we obtained four genes (CD80, CCR2, GIMAP6, and IL16) that
significantly improved MES. The model exhibited good MES
values on the validation and test sets, which were 0.003 and 0.094,
respectively (Figures 11, 12).

Next, the above data were classified by random forest, and
the classification tree was selected as 47 trees for the model
construction; therefore, the error rate obtained was 11.41%
with an accuracy rate of 88.59% (accuracy = (146+149)/333).
The accuracy of the prediction results on the validation set
and test set was 90.91% (accuracy = (61+59)/132) and 97.41%
(accuracy = (224+229)/465), respectively. Using the correlation
between genes and Gini index, we obtained 4 most contributing
genes (GIMAP6, CD80, IL16, and CCR2), which were consistent
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FIGURE 9 | Construction of TME-related genes model for patients with LUAD. (A) Prognostic values of TME-related genes by univariate Cox regression analysis. (B)

Prognostic values of TME-related genes by multivariate Cox regression analysis. (C) ROC curve of TME-related genes.

FIGURE 10 | Kaplan-Meier analysis of OS for LUAD patients using TCGA and GEO database. (A) Kaplan-Meier survival curves of the relative OS of high- and low-risk

groups in TCGA database. (B) Kaplan-Meier survival curves of the relative OS of high- and low-risk groups in GEO database.

with the random forest regression for the target genes
(Figures 13, 14).

The Implication of Target Genes in the
Sample Classification
Four genes labeled tumor samples, and PCA analysis revealed
that four genes could be better divided into high and low
purity groups. The proportions of the first and second principal
components of TCGA data and GEO data were 90.5 and 82.4%,
respectively. The results indicated that the sample’s tumor purity
could be inferred through the expression of the four genes,
and the gene expression and tumor purity were associated
(Figure 15).

LASSO Regression Analysis of Target Gene
and Tumor Purity
We divided the 443 TCGA LUAD samples with complete clinical
data into high and low groups according to tumor purity, and
obtained CSGTPP (0.21∗CCR2+ 0.06∗GIMAP6+0.64∗CD80+
0.21∗IL16) with LASSO regression analysis, and then
divided the samples into high and low two groups. The
simultaneous analysis revealed that the four genes were
highly expressed in the high CSGTPP group (p < 0.0001)
(Supplementary Figures 1A–D), and tumor purity was
negatively correlated with CSGTPP (Supplementary Figure 2A).
Using PCA, we determined the expression of four genes
can be used to classify the two groups well with the first
principal component and the second principal component
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FIGURE 11 | Pruning tree containing the number of splits, nodes, observation genes, and prediction results.

value of 89.1% (Supplementary Figure 2B). Survival analysis
revealed that patients in the high CSGTPP group exhibited
a prognostic benefit (P < 0.0001), which echoed the
poor prognosis of patients with higher tumor purity, as
mentioned above (Supplementary Figure 2C). Finally, we
explored the difference of CD274 gene expression in the
CSGTPP two groups, and the results showed that the higher
expression of CD274 in the high CSGTPP group (p < 0.0001)
(Supplementary Figure 2D).

DISCUSSION

Recent advancement of omics technologies has significantly
improved our understanding of the complexity and diversity of
the immune components of the TME and its important impact
on response to immunotherapy (9, 10). Further understanding
of the tumor immune microenvironment will help improve the
efficacy and response rates to immunotherapy. Therefore, an
increasing number of studies have been conducted to study the
TME and analyze immune cells’ composition in tumor tissues.
A large number of immune cells often gathered in and around
tumors. There exist an inextricably link between these immune

cells and tumor cells. Therefore, analyzing the composition
and proportion of immune cells constitutes an integral part of
studying the TME (11). Presently, there are twomainmethods for
exploring the immune components of tumors. The first method
includes high-precision single-cell-sequencing and single-cell-
RNA-sequencing (scRNA-seq); the other method includes the
speculationmethod that enables prediction based on the program
using bulk RNA-seq data. However, estimation of tumor purity is
considered crucial and warrants further investigation (12–14).

Recently, immunotherapy has emerged as a novel alternative
therapeutic strategy for patients without driver genes mutation
and has changed the treatment landscape of non-small cell
lung cancer (NSCLC) (15, 16). Immunotherapy is an expensive
therapy with significant clinical side effects; therefore, it
remains critical to identify patients who will benefit from
treatment with cancer immunotherapy. Therefore, it becomes
increasingly essential to identify immune cells that exist in
tumors; besides, deciphering immune cells present within the
TME represents a significant area of implication in basic and
clinical research.

Machine learning, an artificial intelligence method, utilizes
complex algorithms in analyzing large-scale and heterogeneous
data sets to extract useful patterns (17, 18). Machine learning
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FIGURE 12 | Statistical chart of important TME-related genes contributed to the model and MES improvement percentage (IncNodePurity).

has shown great potential with promising results in biomedicine,
human genome project, cancer whole-genome project,
international machine learning competition project, and
other projects (19). Collection and analyses of large data sets
related to medical treatment and patient prognosis can transform
medicine into a data-driven and result-oriented discipline, which
profoundly impacts disease detection diagnosis, prognosis,
and response to therapy (20). We focused on the TCGA
and GEO data of lung adenocarcinoma patients with high
morbidity and high mortality rates globally to explore and
mine the immune microenvironment and tumor purity in
lung adenocarcinoma and identified some potential data-level
relationships using existing research findings, based on the
algorithms of regression trees, random forest regression, and
random forest classification.

We used regression trees and random forest regression
methods to analyze the predictive value of LUAD immune
microenvironment for tumor purity and selected five immune
microenvironment components that contributed the most to
predicting tumor purity (CCR, T-helper-cells, Check-point,
Treg, and TIL), which were negatively associated with tumor

purity and tumor T, M and stage but not with N stage. A
prognostic model was constructed based on 5 TIM genes, and
11 TIM-related genes were screened, which confirmed that
immune risk characteristics were significantly related to the
OS of LUAD patients. This relationship was still valid after
controlling for clinicopathological characteristics. The risk score
constructed based on 11 genes can be used as an independent
prognostic factor for LUAD patients. We hypothesized whether
tumor purity can be predicted at the gene expression level.
Therefore, we investigated the predictive ability of 11 genes
for tumor purity using random forest regression and random
forest classification. Both TCGA and GEO data showed a
good predictive value, and four genes (GIMAP6, CD80, IL16,
CCR2) contributed the most to predicting tumor purity.
GIMAP6, CD80, IL16, and CCR2 in LUAD were reported to
be related to immune tolerance in NSCLC (21–24). CSGTTP
was further estimated by LASSO regression and was found
to be significantly associated with the patient’s prognosis. The
four genes’ mRNA levels can clearly stratify high and low
tumor purity and CSGTTP, confirming our hypothesis that
these four genes could predict the tumor purity at the gene
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FIGURE 13 | Statistical graph of the relationship between the prediction error

and the number of split trees.

level. These four genes were derived from CCR, TIL, and
checkpoint immune infiltration components; thereby, we further
analyzed the association between TIM, gene, and tumor purity.
In order to further explore whether tumor purity could be
used as a predictive indicator of immunotherapy, we excavated
that PD-L1 expression was positively correlated with CSGTTP,
while tumor purity was negatively correlated with CSGTTP.
PD-L1, as an effective indicator of immunotherapy, has been
studied extensively. Although there are difficulties in estimating
tumor purity, we can convert the estimation of tumor purity
to the estimation of CSGTTP, thereby indirectly establishing
the relationship between tumor purity and PD-L1. The higher
CSGTTP indicates lower tumor purity, implying that patients
may benefit from immunotherapy.

Currently, detection of PD-L1 expression remains the marker
for identifying NSCLC patients that are more possibly respond
to immunotherapy. Many chemoimmunotherapy trials have
demonstrated the benefits of checkpoint inhibitors combined
chemotherapy for LUAD (25) for all PD-L1 levels. Notably,
patients with low PD-L1 expression exhibit poorer clinical
outcomes, emphasizing PD-L1 as a biomarker even with
chemotherapy as the first-line treatment. Although PD-L1
expression is important for predicting response, many trials
highlighted that checkpoint inhibitor still cannot benefit from
these drugs in sub-sets of patients with high PD-L1 expression.
Tumormutational burden (TMB)may be a potentially important
biomarker for immunotherapy response, and the correlation
between TMB and the response of immunotherapy has been
demonstrated in a variety of tumor types (26). While limited
by lack of testing platforms standardization and “high” TMB
threshold, this indicator can only be applied to subsets of
patients. The degree of lymphocyte infiltration observed in

FIGURE 14 | Statistical chart of important TME-related genes contributed to

the model and Gini Index.

tumor tissue may have prognostic value. Previous studies have
demonstrated high levels of tumor-infiltrating lymphocytes
(TIL) with promising prognosis in NSCLC, which infiltrated
more CD8 positive, CD3 positive, and CD4 positive TIL (27).
High TIL density is believed to reflect the patient’s tumor
microenvironment, where T cells are inflamed. Therefore,
the predictive value of TIL density as a biomarker of
immunotherapy has also been studied. The five immune
infiltration components we selected also included TIL. Immune
gene expression characteristics represent a novel area of
research on predictive indicators of immunotherapy. Studies
have shown that it has potential use as a biomarker for anti-
PD-1 and PD-L1 therapy, and may have predictive value, and
is compatible with several cancer types and related to treatment
response (28, 29).

The tumor immune score and matrix score can be obtained
based on many algorithms to estimate tumor purity and
the relationship between immune microenvironment and
immunotherapy. Thus, the investigation of each component as
the effect of immunotherapy remains an active area of research.
However, thus far, tumor purity has not been thoroughly accessed
as immunotherapy-associated markers. Tumor heterogeneity
affects tumor immunotherapy, and tumor purity represents
the homogeneity of tumors from a particular perspective,
and it is easier to establish a relationship with the immune
microenvironment, thereby guiding immunotherapeutic
decisions. Although it remains challenging to estimate tumor
purity accurately, the relationship between immune genes
and tumor purity using the value of dominant genes on
tumor purity is expected to infer tumor purity at the level of
dominant genes and the correlation between tumor purity
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FIGURE 15 | PCA chart of the classification effect of four genes on tumor purity. (A) PCA chart of the classification effect of four genes on tumor purity in TCGA

database. (B) PCA chart of the classification effect of four genes on tumor purity in GEO database.

and immunotherapy. We believe that this study highlights
the significance of tumor purity as an immunotherapy-related
biomarker; however, further studies are warranted to validate
these findings.

CONCLUSION

In conclusion, CCR, T-helper-cells, Checkpoint, Treg, and TIL
as the main immune infiltration components could better
reflect tumor purity. We speculated that CSGTPP, derived
from immune-related genes, could serve as a predictor of
the response to immunotherapy and could stratify candidate
for immunotherapy.
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