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Purpose: This study aimed to assess the predictive ability of 18F-FDG PET/CT radiomic

features for MYCN, 1p and 11q abnormalities in NB.

Method: One hundred and twenty-two pediatric patients (median age 3. 2 years,

range, 0.2–9.8 years) with NB were retrospectively enrolled. Significant features by

multivariable logistic regression were retained to establish a clinical model (C_model),

which included clinical characteristics. 18F-FDG PET/CT radiomic features were

extracted by Computational Environment for Radiological Research. The least absolute

shrinkage and selection operator (LASSO) regression was used to select radiomic

features and build models (R-model). The predictive performance of models constructed

by clinical characteristic (C_model), radiomic signature (R_model), and their combinations

(CR_model) were compared using receiver operating curves (ROCs). Nomograms based

on the radiomic score (rad-score) and clinical parameters were developed.

Results: The patients were classified into a training set (n = 86) and a test set (n =

36). Accordingly, 6, 8, and 7 radiomic features were selected to establish R_models

for predicting MYCN, 1p and 11q status. The R_models showed a strong power for

identifying these aberrations, with area under ROC curves (AUCs) of 0.96, 0.89, and

0.89 in the training set and 0.92, 0.85, and 0.84 in the test set. When combining clinical

characteristics and radiomic signature, the AUCs increased to 0.98, 0.91, and 0.93 in

the training set and 0.96, 0.88, and 0.89 in the test set. The CR_models had the greatest

performance for MYCN, 1p and 11q predictions (P < 0.05).

Conclusions: The pre-therapy 18F-FDG PET/CT radiomics is able to predict MYCN

amplification and 1p and 11 aberrations in pediatric NB, thus aiding tumor stage, risk

stratification and disease management in the clinical practice.
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INTRODUCTION

Neuroblastoma (NB), the most common extracranial solid
pediatric tumor, accounts for about 8–10% of all childhood
cancer and 12–15% of childhood cancer mortality (1). Using
selected clinical, pathologic, and genetic factors, patients
diagnosed with NB can be classified into different risk groups
for treatment (2). Previous studies have shown that patient
outcomes of NB are highly correlated with risk stratification,
with more than 90% cure in non-high risk patients and <50%
event-free survival rate in high risk patients (3). It is therefore
very important to obtain a better understanding of risk factors
so that treatment strategies for children with NB can be tailored
accordingly. Previous studies have demonstrated the value of
prognostic factors such as patients age, tumor stage using
the International Neuroblastoma Staging System (INSS), tumor
histopathology using the International Neuroblastoma Pathology
Classification (INPC) system, DNA ploidy, cytogenetics such as
MYCN amplification status and chromosome aberrations of 1p
and 11q (1, 4, 5). In addition, CT or MR image-defined risk
factors (IDRFs) were used to distinguish low-risk tumors from
high-risk tumors (6, 7). However, the predictive value of nuclear
medicine functional imaging techniques on tumor biology has
been less studied.

Nuclear medicine functional imaging plays an
important role in the assessment of NB. Currently, 123I-
Metaiodobenzylguanidine (123I-MIBG) scintigraphy is a
standard practice in the diagnosis of NB (6), with ∼90%
of patients having MIBG avid tumors. However, in some
countries, including China, 123I-MIBG has not been approved
for clinical use and cannot be included in the standard clinical
protocols for NB patients. In our practice, we have utilized 18F-
fluorodeoxyglucose positron emission tomography/computer
tomography (18F-FDG PET/CT) in the diagnosis and follow-up
of NB patients. 18F-FDG PET imaging has been reported to be
equal or superior to 123I-MIBG scan for delineating NB disease
extent in the chest, abdomen, and pelvis (8). In case the tumor
is not MIBG avid, 18F-FDG PET is also recommended as a
complementary option to 123I-MIBG scintigraphy (9).

The purpose of this study aims to evaluate whether
diagnostic 18F-FDG PET/CT imaging plays a role in risk
stratification prediction in children with NB. The relationship
between diagnostic 18F-FDG PET/CT image features and
the tumor biology of NB were investigated to answer this
question. Specifically, cytogenetic factors, MYCN amplification
status and chromosome aberrations of 1p and 11q, are
chosen as representative indicators of tumor biology. It was
well-documented that MYCN amplification and chromosome
aberrations of 1p and 11q are powerful prognostic markers
and have a strong association with worse outcome in NB (5).
Amplification of MYCN can be detected in 20% of cases with
NB and is closely linked with high-risk disease and poorer
outcome (10). Loss of heterozygosity on chromosome 1p and
11q are correlated with increased disease severity (2, 11). For
the PET/CT image analysis method, radiomic analysis was
chosen in this study. In contrast to conventional visual image
features, radiomics is expected to provide more comprehensive

description of tissues, with the potential to aid clinical care
in several aspects including diagnosis, prognosis and treatment
selection (12, 13). Currently, a number of studies demonstrated
the value of 18F-FDG PET/CT-based radiomics in predicting
the histological subtypes of lung cancer (14) and distinguishing
breast carcinoma from breast lymphoma (15). So far, there is little
study to investigate the predictive value of 18F-FDG PET/CT on
the status of MYCN, 1p and 11q in pediatric NB. Therefore, this
study was designed to evaluate whether 18F-FDG PET/CT-based
radiomics can predict the status of MYCN, 1p and 11q, which
in turn, can be used in risk stratification prediction in children
with NB.

METHODS

Patients
The records of 139 pediatric patients with newly diagnosed
NB were reviewed retrospectively between March 2018 and
November 2019 in our hospital. The inclusion criteria were as
follows: (1) pathologically confirmed NB; (2) age ≤ 18 years
at diagnosis; (3) complete PET/CT imaging data; (4) complete
clinical information; (5) no cancer therapy before PET/CT
imaging; (6) complete MYCN amplification and 1p and 11q
aberrations data. Subsequently, 17 cases were excluded because
of unavailable MYCN, 1p and 11q information, and 122 patients
were included in this study. These patients were randomly
divided into training set and test set with a ratio of 7:3. This
retrospective study was approved by Institutional Review Board
of our hospital and the requirement of written informed consent
was waived.

Determination of MYCN Amplification and
1p and 11q Aberrations by FISH
MYCN amplification and 1p and 11q aberrations were
determined using FISH from paraffin-embedded tissue
obtained by biopsy or surgery at initial diagnosis according
to the previously published method (16). According to the
recommendations of the European Neuroblastoma Quality
Assessment group (17, 18), MYCN amplification was defined as
a > four-fold increase of signals.

Clinical Data and 18F-FDG PET/CT Imaging
Clinical Characteristics

Patient gender, age, neuron-specific enolase (NSE), serum
ferritin (SF), lactate dehydrogenase (LDH), vanillylmandelic acid
(VMA), homovanillic acid (HVA), maximum tumor diameter
(MTD) in Ultrasound, and MTD in CT and/or MRI.

All patients underwent whole body scan on the PET/CT
scanner (Biograph mCT-64 PET/CT; Siemens, Knoxville,
Tenn) in accordance with EANM guidelines (19, 20) and a
biopsy/surgery for pathological diagnosis of NB was performed
within 3 months. The PET scan was carried out with 3min per
bed position immediately after the whole body CT scan. PET
images were reconstructed using the ordered subsets-expectation
maximization algorithm with time-of-flight. The regions-of-
interest (ROIs) of primary tumor were manually drawn by an
experienced nuclear medicine physician using the longitudinal
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FIGURE 1 | The flow chart shows the process of ROI segment, feature extraction, feature selection, and model construction and prediction.

PET/CT module in 3D Slicer (version 4.10.1). ROIs were
delineated along the edge of NB on CT images, which included
the entire tumor, metastatic lesions and unclear demarcations
between the primary tumor and its surrounding metastasis. In
order to map to the PET image, the ROIs were resampled based
on B-spline interpolation to ensure that it had the same pixel
spacing as the PET image.

Feature Extraction and Selection and
Model Construction
Univariate analysis was performed to compare the differences
in clinical characteristics. Based on the selected characteristics,
a clinical model (C-model) was established.

Radiomic features from CT and PET images were computed
separately using pyradiomics, an open-source python package
for the extraction of radiomic features from medical imaging
(21). First order features (n = 18), shape features (n = 14), gray
level co-occurrence matrix (GLCM) features (n = 24), gray level
run length matrix (GLRLM) features (n = 16), gray level size
zone matrix (GLSZM) features (n = 16), neighboring gray tone
difference matrix (NGTDM) features (n = 5), and gray level
dependence matrix (GLDM) features (n = 14) were extracted
from the original and the pre-processed images. The following
methods were used in the imaging processing: wavelet filtering,
square, square root, logarithm, exponential and gradient filtering
(Figure 1).

Intraclass correlation coefficients (ICC) were obtained to
assess the reliability of variables using the features extracted from
the two sets of ROIs portrayed separately by two different nuclear

medicine physicians in 24 out of the 122 patients with NB after
2 months. Because of imbalanced datasets, synthetic minority
oversampling technique (SMOTE) was used to improve random
oversampling in the training set. Least absolute shrinkage and
selection operator (LASSO) was applied for variable selection and
regularization in the training set. Predictive R_models were built
by logistic regression and the radiomic score (rad-score) for each
patient was computed based on the selected radiomic features.
Additionally, the selected clinical characteristics combined with
radiomics features were used to construct the combinationmodel
(CR_model). All models were built and trained in the training
set, and the prediction performance was evaluated in the training
and test sets. Ten-fold cross-validation was applied to prevent
model overfitting in the training process. Receiver operating
characteristic (ROC) curve and area under curve (AUC) were
employed for the evaluation of the diagnostic performance in the
training and test sets.

Statistical Analysis
Statistical analyses were performed with Python (ver. 3.7.8,
www.python.org) and R (ver. 4.0.3, www.r-project.org). The
Python packages of “sklearn,” “numpy,” and “pandas” were
used for LASSO binary logistic regression and ROC curve; the
“scipy” was for analyzing statistical properties; the “imblearn”
was for SMOTE. The R package “rms” was employed to create
nomograms. The t-test or Mann-Whitney U-test was applied for
univariate analysis, and p < 0.05 with a 95% confidence interval
was considered as statistical significance. AUC-ROC curve was
calculated for evaluating the diagnostic performance of models.
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TABLE 1 | Clinical features of NB patients.

Clinical features Total MYCN 1p 11q

Positive Negative p-value Positive Negative p-value Positive Negative p-value

Number 122 20 102 47 75 48 74

Gender 0.224 0.062 0.345

Male 52 11 41 25 27 23 29

Female 70 9 61 22 48 25 45

Age (year) 3.2 (0.2–9.8) 2.5 3.4 0.1082 3.4 2.8 0.0885 4.0 2.3 0.0002

NSE (ng/ml) 219.1 (14.7–2627.1) 666.5 152.6 0.0046 370.0 129.1 0.0004 336.2 128.8 0.2977

SF (ng/ml) 210.2 (8.1–1807.0) 216.6 202.0 0.0744 220.1 189.5 0.0929 247.8 117.8 0.0019

LDH (U/L) 553 (177–6029) 2261 427 0.0001 936 386 <0.0001 596 411 0.0460

VMA 236.2 (5.2–5975.0) 28.6 364.8 <0.0001 164.2 396.9 0.0055 507.6 98.3 0.0080

HVA 54.7 (1.5–1532.0) 42.5 69.3 0.1169 51.1 61.8 0.0526 108.6 33.4 0.0141

MTD Ultra (cm) 9.1 (2.2–20.0) 11.3 9.0 0.0820 10.5 8.4 0.0161 9.6 8.7 0.0882

MTD CT/MRI (cm) 9.3 (2.1–17.4) 11.4 9.1 0.0382 11.1 9.0 0.0044 10.1 9.1 0.1196

Each feature was expressed as median (minimum–maximum) except for gender.

NSE, neuron-specific enolase; SF, serum ferritin; LDH, lactate dehydrogenase; VMA, Vanillylmandelic Acid; HVA, homovanillic acid; MTD Ultra, maximum tumor diameter (MTD) in

ultrasound; MTD CT/MRI, MTD in CT/MRI.

AUC ranging from 0.5 to 1.0 is commonly used as a measure of
classifier performance. A value of 0.5 is equal to random guessing,
while 1.0 means a perfect classifier.

RESULTS

Clinical Characteristics of Patients
According to the inclusion criteria, 122 out of 139 patients
with NB were enrolled in this study. Eighty six patients were
assigned to the training set and 36 patients were assigned to the
test set. All clinical characteristics are summarized in Table 1,
including gender, age, neuron-specific enolase (NSE), serum
ferritin (SF), lactate dehydrogenase (LDH), vanillylmandelic acid
(VMA), homovanillic acid (HVA), maximum tumor diameter
(MTD) in Ultrasound, and MTD in CT and/or MRI. The
percentages of MYCN-, 1p- and 11q-positive cases were 16.4%
(20/122), 38.5% (47/122), and 39.3% (48/122), respectively.
Among these variables, NSE, LDH, VMA, and MTD in CT/MRI
were significantly different betweenMYCN-positive and negative
groups (All p < 0.05). Between 1p-positive and negative cases,
NSE, LDH, VMA, MTD in Ultrasound and MTD in CT/MRI
were distinct (All p < 0.05). Between 11q-positive and negative
cases, age, SF, LDH, VMA, and HVA were distinct (All p < 0.05)
(Table 1).

Predictive Model Construction
The total of 2,632 radiomic features were extracted from PET/CT
images using pyradiomics. After assessing the robustness,
1,623 out of 2,632 features retained for model building, with
intraclass correlation coefficients (ICC) > 0.75. In respect of
C-model (clinical variables) constructed by logistic regression
and trained in the training set, 4 clinical characteristics (LDH,
NSE, VMA, and SF) were selected for MYCN prediction, with
3 characteristics (LDH, NSE and age) for 1p prediction and

3 characteristics (LDH, SF and HVA) for 11q prediction. As
for R_model (radiomics signature) establishment, 6 radiomic
features were chosen for MYCN prediction, with 8 features for
1p prediction and 7 features for 11q prediction (Table 2 and
Supplementary Table 1).

In regard to CR_model (combinations of clinical and
radiomic features) construction, eight features were chosen
for MYCN prediction, which included 4 clinical characteristics
(NSE, LDH, VMA, and MTD in CT/MRI) and 2 PET, 2
CT features (Tables 1, 3). Eleven features were selected for
1p prediction, which included 5 clinical characteristics (NSE,
LDH, VMA, MTD in Ultrasound and MTD in CT/MRI)
and 5 PET, 1 CT features (Tables 1, 3). Eleven features
were picked up for 11q prediction, which included 5 clinical
characteristics (age, SF, LDH, VMA, and HVA) and 1 PET, 5 CT
features (Tables 1, 3).

Rad-scores were calculated by the following formula:
Rad_score_MYCN=−2.6446
+ 0.17750 × PET_wavelet-LLH_glszm_GrayLevelNonUnifor
mity
+ 0.88251 × PET_wavelet-HHH_glszm_SizeZoneNonUnifor
mity
– 0.00069× CT_exponential_glrlm_LongRunEmphasis
– 0.02217× CT_wavelet-HHL_firstorder_Maximum
Rad_score_1p= 2.9612
– 115.24× PET_squareroot_ngtdm_Contrast
– 0.29673× PET_logarithm_firstorder_Minimum
+ 0.04218× PET_wavelet-LLH_glrlm_LongRunLowGrayLev
elEmphasis
+ 2.1217× PET_wavelet-HHH_glszm_SmallAreaHighGrayL
evelEmphasis
– 5.5262 × PET_wavelet-HHH_glszm_LowGrayLevelZoneE
mphasis
– 5.1213× CT_exponential_glszm_SmallAreaEmphasis
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TABLE 2 | Comparison of the radiomic features between positive and negative in

training sets of R_model.

Radiomic feature p-value

MYCN

PET_squareroot_gldm_HighGrayLevelEmphasis 0.0234

PET_wavelet-LHL_gldm_DependenceNonUniformity 0.0233

PET_wavelet-HHH_glszm_SizeZoneNonUniformity 0.0361

CT_logarithm_firstorder_Skewness 0.0001

CT_wavelet-LLL_gldm_DependenceVariance 0.0009

CT_wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis 0.0156

1p

PET_squareroot_glcm_Idmn 0.0009

PET_logarithm_firstorder_Minimum 0.0940

PET_wavelet-LLL_glcm_InverseVariance 0.0061

PET_wavelet-HHL_gldm_DependenceVariance 0.0436

PET_wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis <0.0001

PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis 0.0002

CT_exponential_glszm_SmallAreaEmphasis 0.0554

CT_wavelet-HHH_glszm_SizeZoneNonUniformityNormalized 0.0885

11q

PET_original_glszm_GrayLevelNonUniformity 0.0108

PET_wavelet-LHL_gldm_DependenceNonUniformityNormalized 0.0271

CT_original_shape_Flatness 0.0043

CT_wavelet-LLL_glrlm_RunVariance 0.0006

CT_wavelet-LHL_firstorder_Median 0.0613

CT_wavelet-LHL_glcm_Imc1 0.0166

CT_wavelet-HHH_firstorder_Entropy 0.0291

Rad_score_11q=−2217.3
– 147.63 × PET_wavelet-LHL_gldm_DependenceNonUnifor
mityNormalized
– 0.41560× CT_wavelet-LLL_glrlm_RunVariance
– 0.59915× CT_wavelet-LHL_firstorder_Median
+ 58.736× CT_wavelet-LHL_glcm_Imc1
– 14.536 × CT_wavelet-HLL_glrlm_LowGrayLevelRunEmph
asis
+ 2232.9× CT_wavelet-HHH_firstorder_Entropy.

The p-values of radiomic features are shown in Table 3.
Rad-scores presented significant difference between positive
and negative groups in the training and test sets (p <

0.001). NB with MYCN, 1p and 11q positive had higher
Rad-score than those with negative in both the training
and test sets.

Nomogram score (Nomo_score) was calculated by the
following formula (Figure 2):

Nomo_score_MYCN = −0.7569 + 0.0064 × LDH + 2.4857
× Rad_score_MYCN
Nomo_score_1p = −0.5175 + 0.0017 × LDH + 1.0476
× Rad_score_1p
Nomo_score_11q =−0.3897 – 0.0020× LDH+ 0.0088× SF
+ 1.6657× Rad_score_11q

TABLE 3 | Comparison of the radiomic features between positive and negative in

training sets of CR_model.

Radiomic feature p-value

MYCN

PET_wavelet-LLH_glszm_GrayLevelNonUniformity 0.0125

PET_wavelet-HHH_glszm_SizeZoneNonUniformity 0.0361

CT_exponential_glrlm_LongRunEmphasis 0.0224

CT_wavelet-HHL_firstorder_Maximum 0.0832

1p

PET_squareroot_ngtdm_Contrast 0.0286

PET_logarithm_firstorder_Minimum 0.0940

PET_wavelet-LLH_glrlm_LongRunLowGrayLevelEmphasis 0.0105

PET_wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis <0.0001

PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis 0.0002

CT_exponential_glszm_SmallAreaEmphasis 0.0554

11q

PET_wavelet-LHL_gldm_DependenceNonUniformityNormalized 0.0271

CT_wavelet-LLL_glrlm_RunVariance 0.0006

CT_wavelet-LHL_firstorder_Median 0.0613

CT_wavelet-LHL_glcm_Imc1 0.0166

CT_wavelet-HLL_glrlm_LowGrayLevelRunEmphasis 0.0037

CT_wavelet-HHH_firstorder_Entropy 0.0291

The nomogram was created based on the training set, which
represented individualized prediction and visualized proportion
of each factor (Figure 3).

Model Performance
To evaluate the performance in predicting MYCN, 1p and 11q
status, C_model, R_model and CR_model were compared. The
predictive abilities of models (sensitivity, specificity, and AUC)
were shown in Table 4, and ROC curves were displayed in
Figure 4. Obviously, the CR_models were the best predictive
models for MYCN, 1p and 11q abnormalities, with AUCs of
0.98 (sensitivity, 0.93; specificity, 0.93), 0.91 (sensitivity, 0.85;
specificity, 0.83), and 0.93 (sensitivity, 0.82; specificity, 0.90)
in the training set, respectively. In the test set, their AUCs
were 0.96 (sensitivity, 0.83; specificity, 0.87), 0.88 (sensitivity,
0.79; specificity, 0.77), and 0.89 (sensitivity, 0.86; specificity,
0.72), sequentially. The CR_model for MYCN prediction had the
greatest performance in the training and test sets compared to the
CR_models for 1p and 11q prediction. In addition, the R_models
for predicting 1p and 11q performed better than the C_models in
the test set (AUCs= 0.85 vs. 0.77 for 1p; AUCs= 0.84 vs. 0.74 for
11q). In contrast, the C_model for MYCN prediction was better
than the R_model in the test set (AUCs= 0.94 vs. 0.92).

DISCUSSION

Considering the well-established role of MYCN, 1p and
11q abnormalities in the prognosis of NB, identifying these
events are crucial for risk stratification. This study provided
three distinct forms of predictive models (clinical variables,
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FIGURE 2 | Nomo_score for every patient in each set. The red marks indicate negative samples, while the blue marks indicate the positive samples. (A) Nomo_score

of MYCN status prediction. (B) Nomo_score of 1p status prediction. (C) Nomo_score of 11q status prediction.
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FIGURE 3 | The nomograms. (A) Nomogram based on rad-score and LDH for MYCN status prediction. (B) Nomogram based on rad-score and LDH for 1p status

prediction. (C) Nomogram based on rad-score, LDH and SF for 11q status prediction.
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TABLE 4 | The predictive value of the models in MYCN, 1p and 11q.

Model Training set Test set

Sensitivity Specificity Accuracy AUC (95%CI) Sensitivity Specificity Accuracy AUC (95%CI)

MYCN

C_model 1.00 0.88 0.90 0.96 (0.93–0.99) 0.83 0.93 0.92 0.94 (0.85–1.00)

R_model 0.86 0.92 0.91 0.96 (0.93–0.99) 0.83 0.90 0.89 0.92 (0.82–1.00)

CR_model 0.93 0.93 0.93 0.98 (0.96–0.99) 0.83 0.87 0.86 0.96 (0.90–1.00)

1p

C_model 0.64 0.71 0.68 0.79 (0.73–0.85) 0.79 0.59 0.67 0.77 (0.62–0.91)

R_model 0.73 0.75 0.74 0.89 (0.85–0.93) 0.93 0.64 0.75 0.85 (0.73–0.97)

CR_model 0.85 0.83 0.84 0.91 (0.87–0.95) 0.79 0.77 0.78 0.88 (0.78–0.98)

11q

C_model 0.71 0.73 0.72 0.77 (0.71–0.83) 0.64 0.64 0.64 0.74 (0.60–0.88)

R_model 0.76 0.83 0.80 0.89 (0.85–0.93) 0.79 0.68 0.72 0.84 (0.73–0.95)

CR_model 0.82 0.90 0.87 0.93 (0.90–0.96) 0.86 0.72 0.77 0.89 (0.79–0.99)

radiomic signature and their combinations) for identifying
MYCN and chromosomal abnormalities in a non-invasive
way, demonstrating that pre-therapy 18F-FDG PET/CT-based
radiomics had an extremely important role in predicting
MYCN amplification and 1p and 11q aberrations. In particular,
CR_model was suggested to be the best model for the prediction
of MYCN, 1p and 11q status with the largest AUCs in the training
and test sets.

Recently, clinical variables (such as LDH and SF) have been
demonstrated to be prognostic biomarkers in large-scale studies,
which suggested to reconsider utilizing LDH and SF as NB risk
stratification factors (22, 23). In the present study, LDH and SF
were also predictors of MYCN, 1p and 11q abnormalities. The
radiomics models had a power to predict these aberrations, but
models integrating PET and CT features with clinical variables
led to higher predictive performance for training and test cohorts,
in comparison with models with radiomic features or clinical
parameters alone (Table 2). In line with other studies (24), the
integration of radiomic features with clinical parameters has a
complementary and added impact in abnormal genetic and/or
molecular prediction.

In this study, radiomic features were selected to construct
CR_model for predicting MYCN, 1p and 11q abnormalities,
including: PET_wavelet-LLH_glszm_GrayLevelNonUniformity,
PET_wavelet-HHH_glszm_SizeZoneNonUniformity,
CT_exponential_glrlm_LongRunEmphasis, CT_wavelet-
HHL_firstorder_Maximum, PET_squareroot_ngtdm_Contrast,
PET_logarithm_firstorder_Minimum, PET_wavelet-
LLH_glrlm_LongRunLowGrayLevelEmphasis, PET_wavelet-
HHH_glszm_SmallAreaHighGrayLevelEmphasis,
PET_wavelet-HHH_glszm_LowGrayLevelZoneEmphasis,
CT_exponential_glszm_SmallAreaEmphasis, PET_wavelet-
LHL_gldm_DependenceNonUniformityNormalized,
CT_wavelet-LLL_glrlm_RunVariance, CT_wavelet-
LHL_firstorder_Median, CT_wavelet-LHL_glcm_Imc1,
CT_wavelet-HLL_glrlm_LowGrayLevelRunEmphasis, and
CT_wavelet-HHH_firstorder_Entropy. The majority of these

features (12/16) were not derived from the primary image but
from wavelet decomposition images, possibly because wavelet
transformed features contained high-order information that
may be more helpful for MYCN, 1p and 11q prediction. Previous
studies have revealed the potential value of wavelet features
in histologic subtype prediction and prognostic assessment
(25, 26). In agreement with that, our data also indicated that
wavelet features possess remarkable abilities in MYCN, 1p
and 11q prediction models. In addition, approximately half
of the selected features were extracted from GLRLM (4/16)
and GLSZM (5/16). Long run emphasis (LRE) in GLRLM
quantifies the distribution of long run lengths, with a larger
value representing longer run lengths and more coarse structural
textures. Size-zone non-uniformity (SZN) in GLSZM quantifies
the variability of size zone volumes in the image, with a smaller
value representing more homogeneity in size zone volumes.
Our results showed that the greater value of LRE or SZN was
correlated with the higher possibility of MYCN amplification
and 1p and 11q aberrations.

Currently, 123I-MIBG scan is the most frequently used
imaging modality and is regarded as standard of care in patients
with NB. In comparison with 18F-FDG PET/CT, 123I-MIBG scan
is carried out over 2 days and the image quality is less ideal
that could post a challenge to inexperienced physicians (27). At
many centers, planar I-MIBG imaging scans are performed, but
radiomics based on these images was very limited. Moreover,
false- negative MIBG scans were reported as early as 1990,
which may result in incorrect down-staging (9). In about 8% of
NB patients, false-negative scans at diagnosis occurred despite
the solid evidence of disease. 18F-FDG PET/CT describes the
metabolic state of cancer cells and provides information about
malignancy (28). The value of 18F-FDG PET/CT in NB has
been investigated in many studies. For example, Shulkin et al.
demonstrated that 18F-FDG uptake was increased in the most
of lesions, with about 94% of NB showing elevated 18F-FDG
activity (28). Melzer et al. reported that 123I-MIBG SPECT/CT
and 18F-FDG PET/CT had significant differences in their uptake
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FIGURE 4 | The ROC curves of the C_model (green line), R_model (yellow line), and CR_model (blue line) in both training (left) and test (right) set. (A) The ROC curves

of MYCN status prediction. (B) The ROC curves of 1p status prediction. (C) The ROC curves of 11q status prediction.

patterns. In NB patients, 18F-FDG PET/CT had higher sensitivity
and specificity for the detection of lesions (9), and showed
more extensive primary and/or residual lesions in stage 1 and

2 (8). Overall, 18F-FDG PET/CT was superior in depicting
NB, although 123I-MIBG might be needed to exclude higher-
stage (8). Interestingly, the FDG-avid but MIBG-negative and
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MIBG-avid but FDG-negative NB can coexist in the same
tumor (28).

The potential clinical significance of the present study
included: (1) radiomics based on pre-therapy 18F-FDG PET/CT
provides a relatively accurate method in a non-invasive way
for predicting MYCN, 1p and 11q, which can be applicable to
pediatric NB patients; (2) the status of MYCN, 1p and 11q can
be used for risk stratification, therapy selection, therapy response
monitor and prognosis prediction.

This study had limitations. Small size cohort from single
center may influence the generalized ability, sensitivity and
specify of the predictive models. Therefore, prospective larger
cohort from multi-center is necessary to validate the results
and improve the reliability of models for MYCN, 1p and 11q
predictions in NB.

CONCLUSION

The models developed by the pre-therapy 18F-FDG PET/CT
radiomic signature and clinical parameters are able to predict
MYCN amplification and 1p and 11 aberrations in pediatric
NB, thus risk stratification, disease management and guiding
personalized malignancy therapy in the clinical practice.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Materials, further inquiries can be
directed to the corresponding author/s.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Beijing Friendship Hospital, Capital Medical

University. Written informed consent from the participants’
legal guardian/next of kin was not required to participate in
this study in accordance with the national legislation and the
institutional requirements.

AUTHOR CONTRIBUTIONS

LQ, SY, and SZ made substantial contributions to study design,
image acquisition, data analysis and interpretation, and new
software creation in this work. SZ, HQ, WW, YK, LL, JL, and
HZ contributed writing and/or revising the manuscript. JY and
JL approved all versions to be published and were responsible for
all aspects of this study. All authors contributed to the article and
approved the submitted version.

FUNDING

This study was supported by Capital Health Development
Research Project (No. 2020-2-2025), National Natural
Science Foundation of China (Nos. 81971642, 82001861,
and 82102088), and National Key Research and Development
Plan (No. 2020YFC0122000).

ACKNOWLEDGMENTS

We would like to thank Dr Dehui Sun for helping us in imaging
analysis of this research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmed.
2022.840777/full#supplementary-material

REFERENCES

1. Dzieran J, Rodriguez Garcia A, Westermark UK, Henley AB, Eyre Sánchez

E, Träger C, et al. MYCN-amplified neuroblastoma maintains an aggressive

and undifferentiated phenotype by deregulation of estrogen and NGF

signaling. Proc Natl Acad Sci USA. (2018) 115:E1229–38. doi: 10.1073/pnas.

1710901115

2. Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, et al.

Children’s Oncology Group’s 2013 blueprint for research: neuroblastoma.

Pediatr Blood Cancer. (2013) 60:985–93. doi: 10.1002/pbc.24433

3. Matthay KK, George RE, Yu AL. Promising therapeutic

targets in neuroblastoma. Clin Cancer Res. (2012) 18:2740–

53. doi: 10.1158/1078-0432.CCR-11-1939

4. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect

Med. (2013) 3:a014415. doi: 10.1101/cshperspect.a014415

5. Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine.

Pediatr Clin North Am. (2015) 62:225–56. doi: 10.1016/j.pcl.2014.

09.015

6. Bar-Sever Z, Biassoni L, Shulkin B, Kong G, Hofman MS, Lopci

E, et al. Guidelines on nuclear medicine imaging in neuroblastoma.

Eur J Nucl Med Mol Imaging. (2018) 45:2009–24. doi: 10.1007/s00259-

018-4070-8

7. Phelps HM, Ndolo JM, Van Arendonk KJ, Chen H, Dietrich

HL, Watson KD, et al. Association between image-defined risk

factors and neuroblastoma outcomes. J Pediatr Surg. (2019)

54:1184–91. doi: 10.1016/j.jpedsurg.2019.02.040

8. Sharp SE, Shulkin BL, Gelfand MJ, Salisbury S, Furman WL. 123I-MIBG

scintigraphy and 18F-FDG PET in neuroblastoma. J Nucl Med. (2009)

50:1237–43. doi: 10.2967/jnumed.108.060467

9. Melzer HI, Coppenrath E, Schmid I, Albert MH, von Schweinitz D,

Tudball C, et al.123 I-MIBG scintigraphy/SPECT versus 188F-FDG PET in

paediatric neuroblastoma. Eur J Nucl Med Mol Imaging. (2011) 38:1648–

58. doi: 10.1007/s00259-011-1843-8

10. Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet. (2007)

369:2106–20. doi: 10.1016/S0140-6736(07)60983-0

11. Bosse KR, Maris JM. Advances in the translational genomics of

neuroblastoma: from improving risk stratification and revealing novel

biology to identifying actionable genomic alterations. Cancer. (2016)

122:20–33. doi: 10.1002/cncr.29706

12. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures,

they are data. Radiology. (2016) 278:563–77. doi: 10.1148/radiol.2015151169

13. Ligero M, Garcia-Ruiz A, Viaplana C, Villacampa G, Raciti MV, Landa J,

et al. A CT-based radiomics signature is associated with response to immune

checkpoint inhibitors in advanced solid tumors. Radiology. (2021) 299:109–

19. doi: 10.1148/radiol.2021200928

14. Hyun SH, AhnMS, KohYW, Lee SJ. Amachine-learning approach using PET-

based radiomics to predict the histological subtypes of lung cancer. Clin Nucl

Med. (2019) 44:956–60. doi: 10.1097/RLU.0000000000002810

Frontiers in Medicine | www.frontiersin.org 10 March 2022 | Volume 9 | Article 840777

https://www.frontiersin.org/articles/10.3389/fmed.2022.840777/full#supplementary-material
https://doi.org/10.1073/pnas.1710901115
https://doi.org/10.1002/pbc.24433
https://doi.org/10.1158/1078-0432.CCR-11-1939
https://doi.org/10.1101/cshperspect.a014415
https://doi.org/10.1016/j.pcl.2014.09.015
https://doi.org/10.1007/s00259-018-4070-8
https://doi.org/10.1016/j.jpedsurg.2019.02.040
https://doi.org/10.2967/jnumed.108.060467
https://doi.org/10.1007/s00259-011-1843-8
https://doi.org/10.1016/S0140-6736(07)60983-0
https://doi.org/10.1002/cncr.29706
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2021200928
https://doi.org/10.1097/RLU.0000000000002810
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Qian et al. PET/CT Radiomics Study in Neuroblastoma

15. Ou X, Zhang J, Wang J, Pang F, Wang Y, Wei X, et al. Radiomics based

on (18)F-FDG PET/CT could differentiate breast carcinoma from breast

lymphoma using machine-learning approach: a preliminary study. Cancer

Med. (2020) 9:496–506. doi: 10.1002/cam4.2711

16. Yue ZX, Huang C, Gao C, Xing TY, Liu SG, Li XJ, et al. MYCN amplification

predicts poor prognosis based on interphase fluorescence in situ hybridization

analysis of bone marrow cells in bone marrow metastases of neuroblastoma.

Cancer Cell Int. (2017) 17:43. doi: 10.1186/s12935-017-0412-z

17. Theissen J, Boensch M, Spitz R, Betts D, Stegmaier S, Christiansen H, et al.

Heterogeneity of the MYCN oncogene in neuroblastoma. Clin Cancer Res.

(2009) 15:2085–90. doi: 10.1158/1078-0432.CCR-08-1648

18. Villamon E, Berbegall AP, Piqueras M, Tadeo I, Castel V, Djos A, et al.

Genetic instability and intratumoral heterogeneity in neuroblastoma

with MYCN amplification plus 11q deletion. PLoS ONE. (2013)

8:e53740. doi: 10.1371/journal.pone.0053740

19. Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent

J, et al. Guidelines for 18F-FDG PET and PET-CT imaging

in paediatric oncology. Eur J Nucl Med Mol Imaging. (2008)

35:1581–8. doi: 10.1007/s00259-008-0826-x

20. Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA,

et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J

Nucl Med. (2006) 47:885–95.

21. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V,

et al. Computational radiomics system to decode the radiographic phenotype.

Cancer Res. (2017) 77:e104–7. doi: 10.1158/0008-5472.Can-17-0339

22. Morgenstern DA, London WB, Stephens D, Volchenboum SL, Hero B, Di

Cataldo A, et al. Metastatic neuroblastoma confined to distant lymph nodes

(stage 4N) predicts outcome in patients with stage 4 disease: a study from

the International Neuroblastoma Risk Group Database. J Clin Oncol. (2014)

32:1228–35. doi: 10.1200/jco.2013.53.6342

23. Moroz V, Machin D, Hero B, Ladenstein R, Berthold F, Kao P,

et al. The prognostic strength of serum LDH and serum ferritin

in children with neuroblastoma: a report from the International

Neuroblastoma Risk Group (INRG) project. Pediatr Blood Cancer. (2020)

67:e28359. doi: 10.1002/pbc.28359

24. Zhang J, Zhao X, Zhao Y, Zhang J, Zhang Z, Wang J, et al. Value of pre-

therapy (18)F-FDG PET/CT radiomics in predicting EGFRmutation status in

patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging. (2020)

47:1137–46. doi: 10.1007/s00259-019-04592-1

25. Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano

J, et al. CT-based radiomic analysis of stereotactic body radiation

therapy patients with lung cancer. Radiother Oncol. (2016)

120:258–66. doi: 10.1016/j.radonc.2016.05.024

26. Wu W, Parmar C, Grossmann P, Quackenbush J, Lambin P, Bussink

J, et al. Exploratory study to identify radiomics classifiers for lung

cancer histology. Front Oncol. (2016) 6:71. doi: 10.3389/fonc.2016.

00071

27. Wen Z, Zhang L, Zhuang H. Roles of PET/computed

tomography in the evaluation of neuroblastoma.

PET Clin. (2020) 15:321–31. doi: 10.1016/j.cpet.2020.

03.003

28. Shulkin BL, Hutchinson RJ, Castle VP, Yanik GA, Shapiro B, Sisson

JC. Neuroblastoma: positron emission tomography with 2-[fluorine-

18]-fluoro-2-deoxy-D-glucose compared with metaiodobenzylguanidine

scintigraphy. Radiology. (1996) 199:743–50. doi: 10.1148/radiology.199.

3.8637999

Conflict of Interest: LL was employed by the company Sinounion Medical

Technology (Beijing) Co., Ltd.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Qian, Yang, Zhang, Qin, Wang, Kan, Liu, Li, Zhang and Yang.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Medicine | www.frontiersin.org 11 March 2022 | Volume 9 | Article 840777

https://doi.org/10.1002/cam4.2711
https://doi.org/10.1186/s12935-017-0412-z
https://doi.org/10.1158/1078-0432.CCR-08-1648
https://doi.org/10.1371/journal.pone.0053740
https://doi.org/10.1007/s00259-008-0826-x
https://doi.org/10.1158/0008-5472.Can-17-0339
https://doi.org/10.1200/jco.2013.53.6342
https://doi.org/10.1002/pbc.28359
https://doi.org/10.1007/s00259-019-04592-1
https://doi.org/10.1016/j.radonc.2016.05.024
https://doi.org/10.3389/fonc.2016.00071
https://doi.org/10.1016/j.cpet.2020.03.003
https://doi.org/10.1148/radiology.199.3.8637999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Prediction of MYCN Amplification, 1p and 11q Aberrations in Pediatric Neuroblastoma via Pre-therapy 18F-FDG PET/CT Radiomics
	Introduction
	Methods
	Patients
	Determination of MYCN Amplification and 1p and 11q Aberrations by FISH
	Clinical Data and 18F-FDG PET/CT Imaging
	Clinical Characteristics

	Feature Extraction and Selection and Model Construction
	Statistical Analysis

	Results
	Clinical Characteristics of Patients
	Predictive Model Construction
	Model Performance

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


