
REVIEW
published: 10 February 2022

doi: 10.3389/fmed.2022.812050

Frontiers in Medicine | www.frontiersin.org 1 February 2022 | Volume 9 | Article 812050

Edited by:

Francesco Cicone,

University of Catanzaro, Italy

Reviewed by:

Ismaheel Lawal,

University of Pretoria, South Africa

Lucia Baratto,

Stanford University, United States

Renata Mikolajczak,

Radioisotope Centre POLATOM,

National Centre for Nuclear

Research, Poland

*Correspondence:

Nicolas Lepareur

n.lepareur@rennes.unicancer.fr

Specialty section:

This article was submitted to

Nuclear Medicine,

a section of the journal

Frontiers in Medicine

Received: 09 November 2021

Accepted: 07 January 2022

Published: 10 February 2022

Citation:

Lepareur N (2022) Cold Kit Labeling:

The Future of 68Ga

Radiopharmaceuticals?

Front. Med. 9:812050.

doi: 10.3389/fmed.2022.812050

Cold Kit Labeling: The Future of 68Ga
Radiopharmaceuticals?
Nicolas Lepareur 1,2*

1Comprehensive Cancer Center Eugène Marquis, Rennes, France, 2Univ Rennes, Inrae, Inserm, Institut NUMECAN

(Nutrition, Métabolismes et Cancer), UMR_A 1341, UMR_S 1241, Rennes, France

Over the last couple of decades, gallium-68 (68Ga) has gained a formidable

interest for PET molecular imaging of various conditions, from cancer to infection,

through cardiac pathologies or neuropathies. It has gained routine use, with

successful radiopharmaceuticals such as somatostatin analogs ([68Ga]Ga-DOTATOC

and [68Ga]GaDOTATATE) for neuroendocrine tumors, and PSMA ligands for prostate

cancer. It represents a major clinical impact, particularly in the context of theranostics,

coupled with their 177Lu-labeled counterparts. Beside those, a bunch of new 68Ga-

labeled molecules are in the preclinical and clinical pipelines, with some of them

showing great promise for patient care. Increasing clinical demand and regulatory issues

have led to the development of automated procedures for the production of 68Ga

radiopharmaceuticals. However, the widespread use of these radiopharmaceuticals may

rely on simple and efficient radiolabeling methods, undemanding in terms of equipment

and infrastructure. To make them technically and economically accessible to the medical

community and its patients, it appears mandatory to develop a procedure similar to

the well-established kit-based 99mTc chemistry. Already available commercial kits for

the production of 68Ga radiopharmaceuticals have demonstrated the feasibility of using

such an approach, thus paving the way for more kit-based 68Ga radiopharmaceuticals

to be developed. This article discusses the development of 68Ga cold kit radiopharmacy,

including technical issues, and regulatory aspects.

Keywords: cold kit, gallium-68, molecular imaging, positron emission tomography (PET), radiolabeling,

radiopharmaceuticals

INTRODUCTION

Today, medicine makes an extensive use of various imaging modalities based on different physical
properties, including CT, ultrasonography, MRI, optical imaging or radionuclide-based single-
photon emission computed tomography (SPECT), and PET, alone or in combination, to get
anatomical and/or functional information in a non-invasive way. In particular, molecular imaging,
always making use of more precise contrast agents, enables the visualization, characterization,
and measurement of biological processes at molecular and cellular levels in humans and other
living systems (1). Among available modalities, PET imaging has the advantage of unlimited
depth penetration, very high sensitivity, capability to detect early changes at cellular or even
molecular level, and superior resolution and quantification compared to SPECT (2–5). This type of
examination allows for functional exploration of biological processes in order to obtain a diagnosis,
prognosis, follow-up, or preselection for targeted therapy depending on the drug used (6–8). PET
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imaging and its hybrid derivatives PET/CT and the more recent
PET/MR have had a tremendous impact on patient management,
and have now become the new standard for functional imaging,
both in oncology and non-oncological setting (9–14).

Positron emission tomography (PET) imaging is currently
dominated by 18F-fluorinated radiotracers, and particularly the
glucose analog 18F-fluorodeoxyglucose ([18F]-FDG), covering
about 90% of PET scans in oncology, neurology, and cardiology.
This tracer has found wide applications, taking advantage of
increased glucose metabolic rates under several conditions,
especially most cancers (2, 15). However, because of its
mechanism of action, [18F]-FDG lacks specificity and cannot
differentiate between a tumor-associated high metabolic rate
and one due to infection or inflammation. Moreover, some
tumors are non-FDG-avid and, thus, can hardly be imaged
by it (16). This is the case, for instance, of early-stage
prostate cancer and some types of gastric cancers (17, 18).
This and a better understanding of biological mechanisms
underlying metabolic and pathogenic pathways coupled with
progress in radiochemistry have stimulated the development
of novel PET radiopharmaceuticals (19–25). Initially, PET
radiotracers were small endogenous molecules in which one
atom was replaced with an equivalent or similar positron-
emitting atom (11C, 13N, 18F, and 124I), thus minimally
altering their in vivo behavior. With the expansion of medical
applications, the quest for new PET nuclides has extended to
radiometals, such as 64Cu, 68Ga, and 89Zr, to cite the most
prominent ones (25–27).

Gallium-68 belongs to the family of post-transition metals
including, among others, indium-111 and thallium-201. It
decays to 89% by positron emission and to 11% via electron
capture, with average positron energy per disintegration of
740 keV (Eβ + max = 1.899 keV). Its 67.8-min physical
half-life is compatible with the pharmacokinetics of most
radiopharmaceuticals of low molecular weight, such as small
organic molecules, peptides, or even antibody fragments, and
oligonucleotides. It allows comfortable use from radiolabeling of
PET tracers to acquisition of PET images. Another advantage of
its short half-life is limited irradiation of a patient for an injected
activity compatible with good PET image quality. In addition,
gallium-68 can be conveniently obtained from a germanium-
68/gallium-68 (68Ge/68Ga) generator, which can be used within
a nuclear medicine department for 1 year thanks to the long
half-life of the parent element (t1/2 Ge = 270.8 days). Besides,
possible combination with 90Y, 177Lu, or, more recently, 225Ac to
form a theranostic pair is another valuable feature (28). All these
advantages make gallium-68 a powerful alternative to fluorine-
18 (29), and have stirred an ever-increasing interest in 68Ga-
based radiopharmacy and the number of patents pertaining to
gallium-68 issued over the last decade (30). Spurred by the
clinical and commercial success of 68Ga-labeled somatostatin
analogs and PSMA ligands, numerous 68Ga-labeled agents have
been reported, with some encouraging preclinical and clinical
outcomes (31–36). 68Ga has even been described as a potential
PET surrogate for 99mTc, the workhorse for SPECT imaging
(31, 37). Like the latter, it is expected that the development
of kit-based 68Ga radiopharmacy would further expand its

clinical usefulness by simplifying and reducing investment costs
necessary for automated procedures while still respecting good
radiopharmacy practice.

68GA PRODUCTION
68Ge/68Ga Generators
One of the main advantages of 68Ga is its cyclotron-independent
mode of production. It is conveniently produced “on-demand”
with a 68Ge/68Ga generator, in a similar way to the well-known
99Mo/99mTc generator (38). 68Ga radiotracers can, thus, be
available worldwide in a flexible way, even in centers far away
from cyclotrons or production sites.With the secular equilibrium
between the parent radionuclide 68Ge and its daughter 68Ga, the
maximum theoretical activity generated is reached 14.1 h after
last elution. However, after a time equal to three half-lives of
68Ga, or 3.4 h, nearly 91% of the maximum theoretical activity
has already been generated. This allows, if necessary in clinical
use, for an elution approximately every 4 h (up to 3 elutions/day),
depending on the initial activity of the generator and its
age (39).

The production of 68Ga from 68Ge has been described since
the 1950s, and the first generator dates from 1960 and relied on a
liquid/liquid extraction process (40). This extraction process was
quickly supplanted by solid/liquid extraction via an ion exchange
resin (41). The stationary phase (matrix) selectively retains
Ge4+ ions while facilitating the elution of Ga3+ ions, which
have chemical properties sufficiently different to allow several
various methods for efficient separation (38). Currently, several
generators are commercially available. They all consist of a solid
matrix and are eluted with an HCl solution to obtain 68Ga3+.
These generators differ from each other by the composition
of their matrix, which is either inorganic or organic, and the
concentration of HCl used for elution (ranging from 0.01M for
nano-zirconia matrix to 1M for tin dioxide matrix) (39). As a
result, they each have specific characteristics, which represent
a major difference with 99Mo/99mTc generators and one of the
foremost challenges to develop cold kit formulations. Up to
recently developed GMP-generators, obtained 68Ga eluate was
not directly amenable to direct radiolabeling because of high
volume, thus low 68Ga concentration, high [H+] concentration,
68Ge breakthrough, and presence of other potentially competing
metallic cation impurities. Different elution procedures
and Post-processing methods include: eluate fractionation,
anion exchange, cation exchange, and a combination
thereof (39, 42–44).

At this time, two TiO2-based 68Ge/68Ga generators are
available for human clinical use, with marketing authorizations
from the American Food and Drug Administration (FDA)
and the European Medicines Agency (EMA): GalliaPharm R©

(Eckert & Ziegler AG, Berlin, Germany) and GalliAd R© (IRE
Elit, Fleurus, Belgium). The 68Ge/68Ga generator (GeGrant R©) of
ITG (Garching, Germany), with a dodecylgallate-modified SiO2

resin, has recently been granted a Type II Drug Master File
from the FDA (Figure 1). Eluates of these generators comply
with Pharmacopeia and can be used as is, without the need for
post-processing, notably for reconstitution of cold kits.
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FIGURE 1 | Radiopharmaceutical grade germanium-68 (68Ge)/gallium-68 (68Ga) generators from left to right: Galliapharm®, Galli Ad®, and GeGant®.

Cyclotron Production
Although 68Ge/68Ga-generators represent a convenient option
for PET molecular imaging, there remains several limitations.
First, the cost of generators can be high, depending on the
supplier and/or the grade, and is only amortized if a sufficient
amount of exams is performed. Second, because of constant
increase in demand in recent years, there was shortage in
generators from 2017 to 2018, which posed a threat on the
development of clinical use of 68Ga-based imaging agents
(45). Other supply issues are anticipated in the future, with
increasing demand for 68Ga-imaging, particularly when PSMA
imaging agents are approved and become reimbursable (46).
Production capacities have been increased and secured. They
will, non-etheless, remain limited and may not fulfill the global
demand, with a maximum of about 3 preparations of 3 patient
doses per day. Alternative production routes have, thus, been
investigated (47). In this context, production of 68Ga with
existing medical cyclotrons looks particularly attractive. Indeed,
the global worldwide network of medical cyclotrons has quickly
expanded over the last years.

Production of 68Ga in cyclotrons is usually done via the
68Zn(p, n)68Ga reaction., This reaction has high cross-section
in the energy range of 11–14 MeV; thus, it is easily accessible
in small medical cyclotrons (< 20 MeV). Either solid or
liquid targets can be used, both having their advantages and
limitations. For instance, with solid targetry, it is possible to
obtain high amounts of 68GaCl3, up to 194 GBq, but with
complex and expensive infrastructures (target holder, cooling,

target transfer, and target processing) (48, 49). Utilization of
a liquid target (dissolution of 68Zn in nitric acid) leads to
lower amounts of radioactive material but offers a cost-effective
alternative to solid targets, needing less investments, notably
for 18F-producing cyclotrons that would like to implement
68Ga production. This looks particularly suited for small on-
site production within hospital cyclotron facilities (50, 51). Main
disadvantages of cyclotron production are the co-production
of other radionuclides (potentially non-removable, since they
possess the same chemistry like 66Ga and 67Ga) and the presence
of metal impurities that may perturb the radiolabeling reaction of
68GaCl3. This necessitates complex target design and purification
procedures, and is particularly true for solid targets (52). Because
of growing interest in accelerator-produced 68GaCl3, the latter
now has a European Pharmacopeia monograph (monograph
3109) (53). Cyclotron-produced 68Ga, either with solid or liquid
targets, has reached the clinic (51, 54). No differences were
observed in the quality of studies whether 68Ga was produced
from a cyclotron or from a generator.

GALLIUM CHEMISTRY

Gallium is located in group 13 in the 4th period of the
Periodic Table, with the electronic configuration [Ar]3d104s24p1.
In aqueous solution, only the +III oxidation state is stable. The
Ga3+ cation is a hard Lewis acid (pKa = 2,6), because of its
high cation density and short ionic radius (62 pm), with close
coordination chemistry to Fe(III), which has a similar ionic
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radius (65 pm) and same ionic charge (55). It is an electron
acceptor. It has a d10 electronic configuration allowing it to
accept different numbers of coordination, mostly 6, but 4 or 5
are also possible. It will preferentially coordinate with hard bases
(electron donor species, with high electronegativity), that is to
say ligands containing nitrogen, oxygen or, to a lesser extent,
sulfur (such as carboxylate, phosphonate, hydroxamate, amines,
thiolates, and phenolates groups), to form thermodynamically
stable complexes (37, 56). However, the ionic form Ga3+ is only
stable in a very acidic medium below pH 3. Indeed, at pH above 3,
water acts as a weak ligand and gallium associates with hydroxide
groups as described below:

Ga3+ + OH− ↔ [Ga(OH)]2+ + OH− ↔ [Ga(OH)2]+ + OH−

↔ [Ga(OH)3]+ OH− ↔ [Ga(OH)4]−

The prevalent species formed at pH 3-7, [Ga(OH)3], is
insoluble, and gallium is no longer available for a complexation
reaction. At basic pH (> 7), gallium forms the gallate
ion [Ga(OH)4]− which is soluble. However, gallium remains
unavailable for any complexation reaction (57). Hydrolysis
and formation of insoluble hydroxides in the preparation
of 68Ga radiopharmaceuticals remain a problem that can be
circumvented by using weak, stabilizing ligands such as citrate,
acetate, oxalate, and HEPES (2-[4-(2-hydroxyethyl)piperazin-
1-yl]ethanesulfonic acid) (58). The latter, acting as both a
buffer and a weak chelating ligand, has demonstrated superior
performance when radiolabeling with 68Ga (59). There are,
however, several limitations regarding its use pertaining to its
potential toxicity for human use (60). For this, reason, acetate
buffers are usually preferred.

The design of most 68Ga-labeled radiotracers is based on
the use of bifunctional chelating agents. These compounds are
capable of both coordinating the radiometal on one side and
covalently conjugating to carrier molecules (i.e., a peptide) by
an appropriate functional group on the other side. Bifunctional
chelators must meet several criteria for the development of 68Ga-
based radiopharmaceuticals:

- Their binding to a vector molecule must not alter their
complexation to the metal. Chelation must be rapid
and effective.

- Conversely, their binding to the vector molecule must
not disturb the chemical characteristics, and therefore, its
pharmacodynamic parameters in vivo. The size and charge
of chelates can change the affinity of the tracer for its
receptor. Lipophilicity may also interfere with the elimination
of radiopharmaceutical drugs.

- They must be stable, with respect to hydrolysis, to avoid
formation of hydroxides.

- The obtained chelate must be kinetically stable against
demetallation, at physiological pH, and in the presence of
other cations present in the serum (Ca2+, Zn2+, Mg2+).

- 68Ga complexes must be more stable than 68Ga-transferrin
complexes to avoid transchelation because transferrin has two
binding sites of metal ions. As already mentioned, gallium has
a strong similarity to iron, from a chemical point of view.

In vivo, iron is transported by transferrin mainly at the hepatic
level. This protein tends to remove gallium from its ligand
if the complex is of low affinity, which explains the hepatic
binding of gallium. Transferrin, therefore, constitutes a sort of
“reference” during tests of gallium-68 chelating agents [mean
pGa is 19.7, and log (β) is 20.3 and 19.3 on each of the two sites
of binding carried by transferrin] (61).

A strong coordination of chelating agents is always necessary
to obtain sufficient stability. Therefore, ligands that form highly
stable complexes with Ga3+ ions are hexadentate. They sequester
Ga3+ using its maximum coordination number (n = 6).
The chemistry of six-coordinate Ga(III) complexes has been
comprehensively reviewed (62). Chelation with gallium-68 has
been extensively studied, allowing fine tuning of obtained 68Ga
imaging agents in terms of charge and lipophilicity, and thus their
pharmacokinetics and biodistribution profiles (27, 29, 31, 37, 63–
67). There are two main classes of bifunctional chelating agents:
macrocyclic and acyclic ligands. In general, acyclic chelating
complexes are less inert thanmacrocycles of comparable stability,
but they have higher complexation kinetics than cyclic chelating
agents. Overall, a large number of labeling carried out with these
acyclicmolecules can be done at room temperature rather quickly
and with good yield. Examples of chelating agents used with 68Ga
are given in Figure 2.

Acyclic polyaminopolycarboxylate ligands, such
as ethylenediaminetetraacetic acid (EDTA) and
diethylenetriaminepentaacetic acid (DTPA), were among the first
chelators to be used with 68Ga for blood cell and renal imaging
(68, 69). They have also been used as bifunctional chelators.
Unfortunately, most of these complexes showed low stability
in vivo, since such anionic complexes tend to undergo acid- or
cation-promoted demetallation. More stable complexes were
subsequently synthesized. Among the most widely described
ligands investigated, one can cite desferrioxamine (DFO) and its
derivatives, which form a stable, neutral complex by coordinating
Ga(III) through three hydroxamate groups (70). H2DEDPA
(6,6’-(ethane-1,2diylbis(azanediyl))bis(methylene)dipicolinic
acid) has good characteristics in terms of labeling parameters,
quantitatively chelating 68Ga3+within 10min at RT, with ligand
concentrations as low as 10−7 M (71). Its in vivo clearance,
however, appears slow (72). Tripodal compounds of the 3,4-
hydroxypyridinone family, such as tris(hydroxypyridinone)
(aka THP or CP256) and NTP(PrHP)3, are also promising
chelators for 68Ga, with quick chelating ability and high in vivo
stability (73, 74). They also allow for complexation of 68Ga3+

above pH 5 at ambient temperature and can be conjugated to
peptides or other targeting molecules. THP shows remarkably
high affinity for Ga3+ ion [log (β) of 35 with Ga3+, pGa of 30].
Maybe its main drawback is its sensitivity for metallic impurities
commonly present in 68Ge/68Ga generators or with the material
used, such as Al3+, Fe3+, and Ti4+, although it was shown to be
less sensible than DOTA or NOTA to other metallic impurities
possibly present (Zn2+, Cr3+, Ni2+, and Pb2+) (75). Several
68Ga hydroxypyridinone-based bioconjugates with biomolecules
of interest (PSMA, TATE, RGD. . . ) have been reported in the
literature (76). The latter two examples ([68Ga]Ga-THP-TATE
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FIGURE 2 | Chelates commonly used with 68Ga.
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and [68Ga]Ga-THP-RGD3) led to inferior biodistribution results
when compared with their DOTA-counterparts, while [68Ga]Ga-
THP-PSMA led to positive outcomes, with tumor imaging
characteristics comparable to the current “gold standard”
[68Ga]Ga-PSMA-11 (77).

Finally, HBED (N,N’-bis(2-hydroxybenzyl)ethylenediamine-
N,N’-diacetic acid) is currently considered the gold standard
for acyclic chelating agents. HBED is a related derivative
of EDTA, which was first described in the 1960s (78). It
has a strong affinity for Ga3+ with a pGa of 28.6. It is
characterized by rapid complexation reaction with Ga3+

with very good yields, and its stability in serum is comparable
to that of NOTA, which sets it apart from the majority
of acyclic chelators. The complexation reaction is rapid
even at ambient temperature; it is, therefore, a particularly
advantageous ligand for radiolabeling of thermolabile molecules.
Among its functionalized derivatives, HBED-CC (N,N’-bis[2-
hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N’-diacetic
acid) has been particularly studied and used. It presents
bifunctionalization with two carboxyl arms in the phenyl rings,
which allows its conjugation to multiple vector molecules
(79–82). HBED derivatives have a coordination of six and engage
four oxygen atoms (the two hydroxyls of the phenyl rings and
those of the two acetic functions) and two nitrogen atoms (those
of the ethylenediamine function) in the complexation of Ga3+.
This complexation causes a modification of the conformation
of the ligand that can form three distinct diastereomers each
having two enantiomers (67). Heating is necessary to increase
the formation of the most thermodynamically favored isomer,
since configuration might impact the biological behavior of
the radiotracer.

Poly-aza-macrocycles derived from cyclen (1,4,7,10-
tetraazacyclododecane) and TACN (1,4,7-triazacyclononane)
are currently the most studied ligands. The metal is trapped
within a cage-like structure formed by the ligand. It is possible
to increase the number of interactions with the radionuclide
by adding electron donor groups on the side chains of the
chelating agents, which improves the stability of the complex
and may eventually provide additional functionalization
sites useful for conjugation to the vector molecule. Cyclic
chelating agents exhibit good complexation inertia, with little
demetallation phenomena seen in vivo; hence their significant
use (37). DOTA, a cyclen substituted by four carboxylic arms
(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), is
the most common gallium chelator (83). In the case of 68Ga,
the maximum coordination number is 6; therefore, only two
carboxyl arms are used for complexation; thus, one of the
carboxyl groups in DOTA is often transformed and used to
allow for conjugation to the vector in the form of a very low
complexing activated ester. This decreases the denticity of the
chelator, which often causes decrease in stability, especially for
metals with a coordination number of 8. Despite an average
stability with Ga [log (β) of 21.33 with Ga3+ and pGa of 15.3],
close to those of the Ga-transferrin complex, DOTA has great
inertia kinetic. However, this involves a slow complexation
reaction. Radiolabeling protocols necessitate heating at more
than 90◦C for several minutes to obtain a yield>90%. This limits

its use on heat-resistant molecules. Many DOTA derivatives
have, thus, been developed to address these issues (increase the
denticity of DOTA and/or allow labeling at room temperature):
p-SCN-Bn-DOTA, C-DOTA, DOTAGA, DOTASA, CB-DO2A,
TCMC... (37, 84).

Derived from TACN, NOTA (1,4,7-triazacyclononane-1,4,7-
triacetic acid) is a hexadentate chelating agent whose N3O3

core provides high thermodynamic stability [log (β) of 30.98
and pGa of 26.4]. This is due to the size of its cycle, which is
more adapted to the ionic radius of Ga3+ compared to DOTA.
NOTA engages its three carboxylate arms in the complexation
of Ga3+ and presents a neutral charge at physiological pH.
In this configuration, none of the arms are available for
functionalization. If one of its carboxylate arms is mobilized
to create a direct bond to a vector, the thermodynamic
stability of the complex is compromised, because the optimal
coordination of 6 of Ga3+ is no longer possible. In addition,
the complex becomes positively charged, which can alter the
biological properties of the vector (85). Different functionalized
derivatives have been proposed to be conjugated to peptides
while preserving the maximum denticity of the NOTA, with,
in particular, functionalization on a carbon between a carboxyl
and a nitrogen of the ring (i.e., NODAGA). Phosphinic and
phosphonic acids functionalized polyazacycloalkanes, such as
NOTP, NOPO, and TRAP derivatives, and showed themselves
as powerful bifunctional chelators for the preparation of 68Ga-
based targeted imaging probes, forming very stable complexes
(85–87). They demonstrate significantly improved selectivity for
Ga3+ ions, and, hence, are less sensitive to potential metal ion
contaminants (88, 89). These triazacyclononane-triphosphinates
ligands also have the advantage of chelating 68Ga at very low
concentrations and in strongly acidic media. They, thus, would
permit labeling directly from an acidic generator eluate, which
could ease automation or kit formulation (90).

Recently, hybrid chelators, combining fast complexation
kinetics under mild conditions of acyclic ligands with
the prolonged complex stability of the macrocyclic ones,
have been introduced. H4AAZTA (N,N’,N”,N”(6-amino-6-
methylperhydro-1,4-diazepine)-tetraacetic acid) demonstrates
good qualities, especially regarding its simple conditions of
use, and high kinetic inertness and thermodynamic stability
of the resulting complex, with a pGa of 22.4 (91, 92). It is,
however, not totally stable against serum and competitors.
Other more stable chelators based on the 6-amino-diazepine
scaffold, have been developed, DATAX chelators (93). They
allow for quantitative labeling with 68Ga with favorable kinetics
at ambient temperature, and within a large range of pH (4-
7). Besides, formed 68Ga-chelates display excellent stability
toward transchelation (94). A further advantage of this type
of ligands is their suitability to also chelate therapeutic 177Lu
radionuclide (95).

Tsoniou et al. have performed an extensive side-by-side
comparison with some of the most prominent chelators for
68Ga labeling (67). They demonstrated that NOTA, NOTP,
TRAP, HBED, DFO, and THP were all efficiently and quickly
labeled at near neutral pH, room temperature, and that
with low chelator concentration, THP and DFO are the
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most effective under these conditions. They are, thus, ideal
candidates for instant kit preparation. Among TACN ligands,
NOTP appeared as probably the most promising one for
labeling under mild conditions (ambient temperature, near-
neutral pH). The Ga(NOTP)3− complex, however, appears to
be more prone to hydrolysis under basic conditions (86). So
far, studies investigating its potential usefulness as a bifunctional
chelating agent are scarce. Unfortunately, AAZTA and DATA
derivatives were not included in the comparative study by
Tsoniou et al. However, a direct comparison between DATA
chelators and NOTA demonstrated the potential superiority of
the DATA family over NOTA (94). DATA chelators represent,
thus, another potential ideal candidate for instant kit preparation.
Care should be taken when choosing the chelator for it can
have a non-negligible influence on final radiotracer behavior
(96). Choice of optimal bifunctional chelator candidate for the
preparation of 68Ga imaging agents has to be made based on
systematic comparison among different chelators coupled with
the same targeting moiety. The best candidate is the one with
the best compromise between radiochemistry considerations
and pharmacologic parameters, determined by in vitro and
subsequently in vivo studies. For instance, Varasteh et al.
investigated the influence of four different macrocyclic chelators
on a bombesin analog targeting properties (97), while Renard et
al. evaluated seven different chelators coupled to a neurotensin
receptor 1 antagonist (98). Other examples of such a strategy
also include comparison of [68Ga]Ga-THP-TATEwith [68Ga]Ga-
DOTATATE and [68Ga]Ga-AAZTA5-PSMA-617 with [68Ga]Ga-
DOTA-PSMA-617 (99, 100).

AUTOMATION

Radiolabeling developed in preclinical research often starts with
a manual optimization phase of reaction conditions. However,
in order to improve the radiation protection of personnel and
facilitate transfer for routine clinical use, automated modules
have been developed. They are piloted by software that allows to
remotely control the sequence of operations required for labeling.
They allow higher reproducibility and robustness, especially in
critical stages such as elution of generator and purification.
Parameters are checked continuously, and summary data are
plotted and stored. It, thus, enables to face the increasing
regulatory issues required for hospital-based preparation of PET
radiopharmaceuticals (101, 102). Transfer to other institutions
is also facilitated with the use of standardized and validated
technologies and procedures.

Several semi-automated and automated systems have been
developed, either in-house built or commercially available
products, combining generator elution and post-processing,
68Ga-radiolabeling, and purification of the final 68Ga radiotracer.
It has to be noted that all post-processing approaches
(fractionation, anionic and cationic purification) have been
adopted in commercially available automated systems. These
apparatuses can be classified into two types, depending on the
technology used: fixed tubing or single-use disposable cassette
(103). Both approaches have their respective pros and cons.

Fixed tubing systems were the first to be developed and are still
extensively used in preclinical research (104). They are indeed
extremely flexible. Modification at will of sequence parameters
to optimize labeling is possible. They are also cost-effective. On
the other hand, they require stringent cleaning and disinfection
procedures to maintain sterility, and cross-contamination cannot
be excluded if several radiotracers are prepared using the
same module. The cassette system approach presents with the
advantage of using sterile single-use cassettes. It, therefore,
offers enhanced microbiological safety and eliminates risks of
cross-contamination, accordingly better complying with cGMP
requirements. Multiple syntheses can easily be achieved, even
for different tracers and/or radionuclides, by simply changing
the cassette (105). Cassette-based synthesizers, nonetheless, have
some downsides. They allow less flexibility than fixed tubing
ones. Moreover, using disposable cassettes has a non-negligible
cost and generates reliance on cassette manufacturers. New,
validated cassette development strongly depends on marketing
considerations. Presently, there is a number of sterile GMP
cassettes to produce 68Ga-radiotracers for targeted imaging
of somatostatin and chemokine receptors or prostate-specific
membrane antigen, commercially available from all automated
synthesizer manufacturers. Figure 3 presents a typical automated
procedure for 68Ga labeling of a DOTA-peptide.

Future developments in automation might be using
microfluidic, in a dose-on-demand strategy. This approach
would enable reducing the size of modules as well as cost to
produce a dose (107, 108). Care should be taken, though, of
possible surface effects and radiolysis owing to high radionuclide
concentration. Research on that domain is still very preliminary
and has not reached clinical use.

COLD KITS

As mentioned above, automated preparation of 68Ga imaging
agents generates substantial investments (in hot cells, synthesis
modules, and quality control equipment), which may not
be easily accessible to small-scale radiopharmacies. This
could hamper the widespread use of 68Ga-PET imaging.
As a consequence, interest in the development of cold kit
formulations, as a simpler and cheaper approach, has increased
steeply in recent years (94, 109–111).

Technical Challenges
Generator Eluate
The synthesis of 99mTc radiopharmaceuticals is easily carried out
using commercial kits, containing a reducing agent (most often
tin chloride), a ligand (intended to form the desired complex
or an intermediate complex), and, possibly, other components
(buffer, stabilizing agents, cryoprotectant, excipients. . . ). Kits
are lyophilized and sealed, and are, therefore, sterile, pyrogen-
free, and can be stored for a long time. This approach offers
convenience and ease of use, simply adding the required activity
in a certain volume of eluate, with or without the need for heating
(112). Technetium-99m issued from 99Mo/99mTc is eluted under
the form of sodium pertechnetate, with a sterile and pyrogen-free
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FIGURE 3 | Typical automated procedure for 68Ga labeling of a DOTA peptide [adapted from (106)].

solution of sodium chloride. This solution can be used directly
for the preparation of radiotracers.

On the other hand, 68Ga eluate is a strongly acidic solution,
and is obtained using HCl in various amounts and various
molarities, depending on generator type. It can also come from
a cyclotron, with still other characteristics. This is a challenge
for the formulation of kits. Indeed, addition of highly varying
68Ga eluates into a fixed buffer amount inevitably leads to pH
variations of the final solution. However, apart from use with
few chelating agents, gallium chemistry is very pH-sensitive. It
is, thus, essential to buffer the solution within an adequate pH
range and stabilize 68Ga3+ ion (58). One proposed solution is
to prepare 1-vial generator-specific kits, with a fixed amount
of buffer in the freeze-dried vial to enable to reach optimal
pH in function of HCl volume and molarity required to elute
the generator. For instance, to develop a kit-based [68Ga]Ga-
DOTATOC preparation, Asti et al. prepared kits with either 180
or 380 µl of 1.5M sodium formate for use with, respectively, ITG
(eluted with 0.05MHCl) and Eckert & Ziegler (eluted with 0.1M
HCl) generators, to maintain the reaction pH around 3.3 (113).
Vats et al. developed three different formulations of a [68Ga]Ga-
RM2 kit to be used with ITG, Eckert & Ziegler, and iThemba
generators (Faure, South Africa) (114). With this solution not
being very practical, another proposed possibility has been to
develop 2-vial kit formulations similar, for instance, to [99mTc]Tc-
mercaptoacetyltriglycine ([99mTc]-Mertiatide). One vial contains
the lyophilized ligand and excipients, and the other the buffer
solution. This way, it is possible to adjust the necessary amount of
buffer to reach suitable pH for the labeling to proceed. This can be
exemplified by [68Ga]Ga-DOTATOC and [68Ga]Ga-DOTATATE
kit formulations (106). The kit for the preparation of [68Ga]Ga-
HBED-CC-PSMA-11, developed by ANMI (now part of Telix
Pharmaceuticals, Melbourne, Australia), is also provided with a
third sterile vacuumed vial for initial elution before addition of
the buffer-dissolved precursor (Figure 4).

Most of the kits developed up to now have been validated
with one generator model, usually dependent upon geographic
and/or financial availability. There is currently only one example

of a cold kit used with an accelerator-produced 68GaCl3 eluate
(115). When using different generators, besides tweaking the
formulation, it might also be required to adapt the radiolabeling
protocol. For instance, [68Ga]Ga-DOTATOC (Somakit TOC R©;
Novartis) was initially developed for use with a Galliapharm R©

(Eckert & Ziegler, Basel, Switzerland) generator, at a time when
the latter was the only authorized generator for human use.
It was, thus, designed to be reconstituted with 5ml of 68Ga-
eluate. To be used with the newly introduced GalliAd R© (IRE
Elit) generator and its 1.1-ml eluate, a different procedure
had to be validated by, notably, dilution with sterile water
(Figure 5). When preparing [68Ga]Ga-DOTAGA-TOC and
[68Ga]Ga-DOTAGA-TATE using an Eckert & Ziegler generator,
Satpati et al. passed the generator eluate through a StrataTM X-
C cation exchange column, which was then eluted with a 500-µl
acetone/HCl mixture (97.6%/0.02M) before the addition of the
purified eluate to the kit vial (117). Using an ITG generator, the
eluate was directly added to the kit vial. Tuning the molarity of
the buffer is also a way to enhance the robustness of buffering
toward HCl. In another study by Satpati et al., they reported
that increasing sodium acetate buffer from 0.5 to 1.5M allowed
to yield suitable pH conditions either with an Eckert & Ziegler
generator or with an ITG generator when preparing [68Ga]Ga-
DKFZ-PSMA-11 (118). Using even a very small amount (250µL)
of 2-M acetate buffer, on the other hand, led to very high pH of
5.5, even for the most acidic E&Z generator.

Chelator
Use of robust, gallium-specific, bifunctional chelators is another
step toward kit-based 68Ga-radiopharmacy. Promising ligands,
like macrocyclic NOTA phosphinic derivatives, acyclic HBED-
CC and THP, and hybrid DATA chelators, allow for fast and
easy complexation with 68Ga under mild conditions, which is
amenable to instant kit-type procedure. Several kits using these
chelators have been reported in the literature, the most notable
being HBED-CC-PSMA-11 used in two commercially available
cold kits for prostate cancer imaging (IllumetTM/Illuccix R©, Telix
Pharmaceuticals, and IsoPROTrace-11 R©, Isotopia, Petah Tikva,

Frontiers in Medicine | www.frontiersin.org 8 February 2022 | Volume 9 | Article 812050

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Lepareur 68Ga Cold Kit Labeling

FIGURE 4 | Procedure for the preparation of 68Ga-HBED-CC-PSMA-11 (Telix Pharmaceuticals).

Israel) (119). The main difference between both kits is that the
first kit consists of three vials, while the latter contains only
one. PSMA binding motif lysine-urea-glutamate (KuE) has been
attached to a THP chelator in yet another investigational kit,
which was recently the object of a phase 2 trial (120). The same
motif was also successfully grafted on DATA5M and AAZTA5

chelators, but no kit formulation has been reported to date,
although it is amenable to do (121).

Even though these chelators revealed themselves as successful
in complexation of 68Ga in a fast and stable manner, they,
with the possible exception of AAZTA/DATA chelators,
unfortunately do not allow for complexation of other radiometals
with higher coordination number, such as 177Lu, 90Y, and
225Ac. Thus, from a theranostics perspective, DOTA and its
derivatives still remain the chelator of choice, even for 68Ga.
Besides,68Ga-labeled DOTA-peptides generally demonstrate
very good pharmacological properties. Kit formulation with
DOTA/DOTAGA precursors is, therefore, still an active research
area (113, 114, 117, 122).

Precursor
To be sure that the reaction is complete and no post-labeling
purification step is required, kits are generally prepared with

higher ligand amount. For instance, 40 µG of a DOTATOC
precursor is present in lyophilized kit formulation, while only
20–25 µg is necessary when [68Ga]Ga-DOTATOC is prepared
manually or with an automated synthesizer (123). Likewise,
10 µg of a PSMA-11 precursor for automated process is used
vs. 25 µg for an IllumetTM kit. This has to be optimized
finely to prevent saturation of targeted receptors with unlabeled
biomolecule. On the other hand, this, plus shorter production
time and higher radiolabeling yield with the kit than with
automated module synthesis, might allow for multiple patient
preparations, although kits are usually recommended as single-
dose preparations (118, 124, 125). Regarding outcomes of both
processes, in terms of product characteristics, quality control
gave comparable results (Figure 6A), and both methods are
reliable and comply with Good Manufacturing Practices and
European Pharmacopeia specifications (113, 124, 126, 127). In
terms of clinical applications, a direct comparison on patients
with prostate cancer found no significant differences in PET/CT
image quality (Figures 6B,C) (126).

Kit-Based vs. Module Based Radiolabeling
Several studies discussed the respective pros and cons of cold
kit-based preparation and module-based automated synthesis
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FIGURE 5 | Comparison of procedures for Somakit TOC® labeling with 2 different commercial generators [(A). Galliapharm (Eckert & Ziegler) GalliAd (IRE Elit); (B).

GalliAd® and IRE Elit) (116).

(126–128). To summarize, main advantages of the kit-based
process are cost, shorter production time, simplicity of use,
no purification needed, no EtOH content, and lower final
volume. Main drawbacks are radiation exposure, higher amount
of precursor usually needed, strong dependence on generator
quality since there is no purification step, and few kits
currently established and even fewer commercially available.
To detail more precisely the cost efficiency of 68Ga cold
kit labeling, besides savings on expensive synthesizer and its
maintenance, and, according to local regulation, even the
need for a shielded hot cell, cost per synthesis is significantly
decreased. For instance, Kleynhans et al. calculated that one

[68Ga]Ga-HBED-CC-PSMA-11 synthesis with a module and
commercially available cassette and precursor costed 274 e,
and that the cold-kit synthesis amounted for only 10 e
with an in-house made kit (127). It should be noted that
a commercial kit would be more expensive. In a study on
[68Ga]Ga-RM2 synthesis, consumable costs for a synthesis was
reported to be 282.1 vs. 65.7 e for a module and a kit,
respectively, whereas the shorter production time and higher
radiolabeling yield with the kit would allow for the injection of
at least two additional patients (125). This gain in production
time may also improve patient workflow, improving, again,
cost efficiency.
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FIGURE 6 | (A) Comparison of HPLC profiles of automated (blue) and cold kit-based (black) labeling of [68Ga]Ga-HBED-CC-PSMA-11. (B,C) Comparison of 2
68Ga-PSMA-11 PET/CT acquisitions rated as good quality using 68Ga-PSMA-11 synthetized with sterile cold kit (B) and 68Ga-PSMA-11 synthetized with automated

module (C). (B,C) from (126).

Concerning radiation protection, there are only few
direct comparisons between kit-based and module-based

preparations reported in the literature. Frindel et al. compared
[68Ga]Ga-DOTATOC kit preparation with automated
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[68Ga]Ga-DOTANOC labeling (129). Based on detector
probes fixed on the first phalanx of each middle finger, they
extrapolated extremity dose measurements for a 1.85-GBq
generator at calibration. They reported 70 and 132 µSv for the
automated labeling (left and right hand) and 179 and 152 µSv
for the kit-based preparation. In the study by Kleynhans et al. on
[68Ga]Ga-HBED-CC-PSMA-11 synthesis, whole-body exposure
was found to be significantly lower for the automated synthesis
with 2.05 ± 0.99 µSv vs. 14.32 ± 5.3 µSv per synthesis (127).
However, automated synthesis was performed on a hot cell with
50-mm lead shielding, while the kit preparation was realized in a
3-mm lead-shielded class II biosafety cabinet, with a 10-mm lead
shielded tabletop shield. When performing kit radiolabeling on
a 50-mm lead hot cell, whole-body exposure was brought down
to 2± 0.5 µSv per synthesis. Extremity dose was calculated to be
1.5± 0.4 mSv per kit synthesis. A major advantage of automated
synthesis on radiation exposure was lower variation. For the
kit labeling, radiation exposure was highly varying, depending
on operator experience. Moreover, this can lead to radiation
protection concerns in centers with high patient workflow. To
circumvent this problem, several teams have investigated the
possibility of partly or fully automating kit preparation. For
instance, some teams eluted their 68Ge/68Ga generator with an
automated module before reconstituting the kit vial (130). Revy
et al. investigated both an automated and a semi-automated
method for the labeling of kit-based DOTATOC formulation
with 68Ga (131). Automated method led to longer preparation
time, and, above all, possible product loss. Indeed, since the
synthesizer they used, like most commercial synthesizers, does
not possess a cooling block, transfer to another vial after the
heating step was necessary to avoid overheating. The semi-
automated process was developed as an alternative to product
transfer with manual removal of the vial from the heating block.
Semi-automated vs. manual kit labeling reduced significantly
radiation exposure with a whole-body dose of 0.35 ± 0.19 vs.
0.98 ± 0.96 µSv/GBq and an extremity dose below the limit
of quantification vs. 0.567 and 0.467 mSv/GBq (right and left
hands). These methods are easily transposable to other cold kit
preparations, especially those not requiring heating. Kit-based
preparation of 68Ga-MAA (macroaggregated albumin) was
conveniently automated using small Modular Lab EAZY (Eckert
& Ziegler) (132). In front of this interest in the automation of
kit radiolabeling, the industry has developed dedicated modules,
like KitLab (Eckert & Ziegler) and MorGaNA (Tema Sinergie,
Faenza, Italy) (133). These have the advantage of small footprint
but have less flexibility than common automated modules.

Regulatory Aspects
There are several articles that review the regulatory framework
for radiopharmaceuticals in the US and Europe (101, 134–
136). Radiopharmaceuticals are defined as medicinal products.
In Europe, medicinal products are regulated in Directive
2001/83/EC (137), which also extends to cold kits, radionuclide
generators, and radionuclide precursors (138). This implies that
radiopharmaceuticals, and kits, need a marketing authorization,
and a production process according to Good Manufacturing
Practices (GMP), whose guidelines are specified in a separate

Directive 2003/94/EC (139). Specific rules apply according
to the status of the radiotracer. Investigational medicinal
products and radiopharmaceuticals prepared “in-house” for
local use (magistral/officinal preparation or compounding)
are exempted from Directive 2001/83/EC (101, 140). Taking
into account the particularities of radiopharmaceuticals, the
EANM and its Radiopharmacy Committee have released
specific guidelines, dubbed current Good Radiopharmacy
Practice (cGRPP), for the production of radiopharmaceuticals
in small-scale radiopharmacies, which do not cover commercial
radiopharmaceuticals (141). For radiopharmaceuticals prepared
from a licensed generator and a licensed kit, quality control
should be realized according to the procedures described
in the Summary of Product Characteristics (SmPC) for
generator eluates and kit-based radiopharmaceuticals. When
preparing from unlicensed components, procedures are more
stringent to ensure maximum safety. When available, use of
the appropriate European Pharmacopeia (Ph. Eur.) monograph
or similar guidelines and documents published by the FDA is
required. Implementation of a new radiopharmaceutical into
pharmacopeias follows an extended procedure. For instance,
[68Ga]Ga-PSMA-11 was granted a Ph. Eur. monograph in
2020 (monograph 3044) despite its extensive use for several
years (53). Consequently, the majority of 68Ga-based imaging
agents is not yet represented with their own monographs in
the Pharmacopeias. In this case, general Ph. Eur. monograph
“Radiopharmaceutical preparations” (monograph 0125) or
closely related specific monographs (i.e., [68Ga]Ga-DOTATOC
monograph, monograph 2482) can be used. Additionally, local
authorities could demand more detailed quality control, even
for licensed radiopharmaceuticals. The quality of the final
radiopharmaceutical must fulfill all specifications given by the
relevant legislation or Pharmacopeia no matter the synthesis
route (manual, automated, or kit-based) (142).

A kit (or radiolabeling kit) is defined as “Any preparation
to be reconstituted or combined with radionuclides in the final
radiopharmaceutical, usually prior to its administration” (141).
Cold kit-based radiolabeling is considered a closed procedure,
consisting of preparation of a sterile radiopharmaceutical
through the addition of a sterile eluate to a sterilized close vial
containing a set of sterile, lyophilized ingredients via a system
closed to the atmosphere. The final product is, thus, a sterile and
pyrogen-free solution suitable for intravenous injection. It is of
utmost importance to rigorously follow the instructions given by
the manufacturer, especially regarding the maximum activity and
volume of 68Ga eluate that is transferred to a kit vial (116). The
European Pharmacopeia states that “the marketing authorization
holder of a licensed kit is responsible to ensure compliance of
the kit with the requirements of its marketing authorization,
while the final user carries the responsibility for the quality of
the preparation and the handling. If the given instructions are
not strictly followed or if one or more components used for
the reconstitution do not have marketing authorization, it is the
responsibility of the final user to demonstrate that the quality
of the final preparation is suitable for the intended use” (143).
On its side, the FDA considers “cold kits to be finished drug
products. Therefore, preparation of a radiopharmaceutical from
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the components of a cold kit according to FDA approved labeling
is not compounding. However, if an ingredient is added, or if the
cold kit is otherwise manipulated in a manner not considered a
minor deviation, it would be considered compounding,” which
could only be done by or under the supervision of an authorized
radiopharmacist (144).

68Ga Cold Kits and Their Applications
An overview of the kits reported in the literature is given in
Table 1.

Neuroendocrine Tumor Imaging
Somatostatin receptors (SSTRs) are widely expressed in
the whole body, but their expression is significantly
enhanced in many solid tumors, especially gastro-entero-
pancreatic neuroendocrine tumors (GEP-NETs). Thus,
radiolabeled somatostatin analogs have been developed
to visualize the distribution of receptor overexpression in
tumors and/or from a therapeutic perspective (84). Among
them, [68Ga]Ga-DOTATOC ([68Ga-DOTA-Tyr3]octreotide),
[68Ga]Ga-DOTATATE ([68Ga-DOTATyr3]octreotate), and
[68Ga]Ga-DOTANOC ([68Ga-DOTA1NaI3]octreotide) have
shown themselves particularly useful for neuroendocrine tumor
imaging, leading to the approval of the first two for GEP-NET
imaging (170). Evaluation of a cold kit-based preparation
of 68Ga-labeled somatostatin analogs was first described by
Mukherjee et al. (171). They consisted of single vial kits
containing 50 µg of a lyophilized peptide plus sodium acetate
in order to achieve a pH in the range of 3.5–4 upon addition
of the 68Ga eluate (1mL of 0.1M HCl). A small study on 10
patients with a freeze-dried kit-prepared [68Ga]Ga-DOTATOC
allowed to identify sites of primary and metastatic diseases
with good accuracy and specificity (172). Other teams around
the world also successfully developed kit formulations for
DOTA-somatostatin analogs (113, 173). Positive clinical results
with these radiotracers eventually led to the approval of
[68Ga]Ga-DOTATATE (NETSPOTTM) in the United States
and [68Ga]Ga-DOTATOC (Somakit TOC R©) in Europe (174).
First clinical investigations with this [68Ga]Ga-DOTATOC kit
successfully validated its safety and clinical utility (106).

Radiolabeling with DOTA peptides requires heating at over
90◦C, and might not represent the best candidate for kit-
based radiopharmacy. To achieve rapid labeling under mild
conditions, somatostatin analogs based on other more “user-
friendly” chelators have been proposed. THP-Tyr3-octreotate
(THP-TATE) has been labeled with 68Ga in <2min at room
temperature, in ≥ 95% radiochemical yield (99). No freeze-dried
kit formulation has, however, been reported to date. One of
the reasons may be the higher retention in non-target organs
and lower tumor-to-liver ratio than for [68Ga]Ga-DOTATATE,
which limits its interest in clinic. [68Ga]Ga-DATATOC, based
on a DATA chelator, has been radiolabeled with 68Ga in 1–
10min, depending on the post-processing method used, at
ambient temperature using a single vial kit containing 13 nm
of a peptide derivative (146). In a first-in-human study, it
demonstrated higher tumor-to-liver contrast in a NET-patient
compared to [68Ga]Ga-DOTATOC, while in a subsequent

study with 50 patients, it displayed comparable results with
[68Ga]Ga-DOTANOC (175, 176). It has been hypothesized that
somatostatin, antagonists, and other peptides might be more
useful than agonists. Actually, after binding to its receptor, an
agonist analog is internalized into a cell as a ligand-receptor
complex. This internalization allows it to accumulate into the
cell. This does only slightly occur for antagonists, and they do
not activate the receptor. Antagonists do, however, accumulate
more on the target, as a consequence of a greater number of
target binding sites for antagonists and amore slowly dissociation
kinetics than for agonists, and probably due to a possible ligand
rebindingmechanism (36, 84, 177). In that context, 68Ga-OPS202
([68Ga]Ga-NODAGA-JR11) has attracted particular attention
and demonstrated superiority over [68Ga]Ga-DOTATOC (178).
Satpati et al. recently reported the development of a cold kit for
68Ga-OPS202, formulated with either HEPES or sodium acetate
buffer (147). To our knowledge, 68Ga-OPS202 prepared this way
has not yet been evaluated in humans.

Prostate Cancer Imaging
Prostate-specific membrane antigen (PSMA), a type II
transmembrane protein on the surface of cancer cells, is
considered to be the most interesting antigen in prostate cancer,
since it is overexpressed in high-grade tumors, metastases, and
hormone-resistant tumors with low concomitant expression
(100 to 1,000 times less) in normal tissues (179). PSMA is,
therefore, an ideal target for molecular imaging of prostate
cancer, especially for the development of small radiolabeled
molecules, having fast plasma clearance and generating little
background noise (180). Identification of the binding site of
PSMA substrates promoted the development of small molecule
ligands or inhibitors of PSMA. PSMA inhibitors can be grouped
into three families: phosphorus inhibitors, sulfur inhibitors,
and urea-based inhibitors. The latter have great affinity and
good specificity for PSMA as well as rapid internalization
into tumor cells (181). The small molecule Lys-Urea-Glu
(Lys-NH-CO-NH-Glu) composed of two amino acids, lysine
and glutamate, united by a urea unit is one of them. This
pharmacophore has been conjugated with several chelators for
labeling with 68Ga (182). Among them, HBED-CC linked to the
Lys-Urea-Glu motif through a 6-aminohexanoic (Ahx) spacer
afforded particularly positive results (183). Eder et al. were
particularly interested in the influence that the proportion of
isomers could have on the characteristics of the binding of the
radiotracer to its target (184). They showed that specific binding
to PSMA and internalization of the radiotracer were comparable,
whatever the proportion of isomers present. Successful clinical
investigations eventually led to FDA approval for the UCLA
Biomedical Cyclotron Facility (Los Angeles, CA, United States)
and the UCSF Radiopharmaceutical Facility (San Francisco,
CA, United States) (119). This imaging agent, indeed, has had a
significant impact on prostate cancer management (185).

Preparation of a freeze-dried cold kit formulation for the
preparation of [68Ga]Ga-HBED-CC-PSMA-11 was first reported
by Ebenhan et al. in 2015 (80). The radiotracer was conveniently
prepared in 15min, at room temperature, from a single-vial kit
containing 5 µg of HBED-CC-PSMA-11 precursor. It passed
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TABLE 1 | Overviewof cold kits reported in the literature for the preparation of gallium-68 (68Ga) imaging agents.

68Ga-labeled molecule Commercial

name

Amount

active

substance

Number

of vials

Eluate

volume

(mL)

Labeling conditions References

Somatostatin analogs

DOTATOC Somakit TOC® 40 µg 2 5 7–10min, 95◦C, pH = 3.2–3.8 (116)

DOTATATE NETSPOT® 40 µg 2 5 7–10min, 95◦C, pH = 3.2–3.8 (145)

DOTAGATOC/DOTAGATATE N/A 50 µg 1 0.5 5–10min, 90◦C, pH = 4 (117)

DATATOC N/A 13 nmol 1 1–10min, 23◦C, pH = 4.2–4.9 (146)

NODAGA–JR11 N/A 75 µg 1 5 7min, 90◦C, pH = 4 (147)

Prostate–specific membrane antigen ligands

PSMA-11 IllumetTM 25 µg 3 1.1–5 5min, RT, pH = 4–5 (148)

IsoPROTrace-11® 10 µg 1 2.5 5min, RT, pH = 4–5 (149)

N/A 5 nmol (5 µg) 1 1 15min, RT, pH = 4.0–4.5 (80)

N/A 20 µg 1 1 10min, 85◦C, pH = 4 (118)

THP-PSMA GalliProstTM 40 µg 1 5 5min, RT, pH = 6–7 (150)

Bombesin analogs

AMBA N/A 50 µg 1 1 10min, 90◦C, pH = 3.5–4.0 (151)

DOTA-RM2 N/A 50 µg 1 1–5 10min, 90◦C, pH = 3 (114)

50 µg 1 1.1 10min, 100◦C, pH = 3 (125)

HBED-CC-PEG2-RM26 N/A 40 µg 1 2 5min, 80◦C, pH = 3 (81)

NODAGA-PEG2-RM26 N/A 40 µg 1 2 5min, 80◦C, pH = 3 (81)

NeoBOMB1 NeoB 50 ± 5 µg 2 5 7–10min, 95◦C, pH = 3.6–4.0 (122)

Other peptides/biomolecules

NOTA-RGD N/A 60 µg 1 1 10–15min, 90◦C, pH = 4.0–4.5 (152)

NOTA-Ubiquicidin N/A 30 nmol 1 2.5 15min, 90◦C, pH = 4 (153)

NOTA-SdAb N/A 100 µg 1 1–1.1 10min, RT, pH = 5 (154)

NOTA-hexavalent lactoside N/A 40 µg 1 0.7–1.5 15min, RT, pH = 4–5 (155)

Small molecules

BAPEN N/A 0.25mg 1 1 10min, RT, pH = 5.5 (156)

HBED-CC-DiAsp N/A 10 µg 1 4 10, min, RT, pH = 4.3 (157)

Biphosphonates

EDTMP Multibone® 25mg 1 5 30min, RT (158)

DOTMP N/A 400 µg 1 0.5 7min, 100◦C, pH = 4.5 (159)

THP-Pam N/A 5 µg 1 0.25 5min, RT, pH = 7 (160)

P15-041 N/A 30 µg 1 4 5min, RT, pH= 4.5–5.5 (161)

Particulates

MAA/HSA 4 different

commercial kits

1–5mg 1 0.1 15min, 74 ± 1◦C, pH = 4.7 (162)

Pulmolite® 10mg 1 5 15min, 75◦C, pH = 5–6 (163)

HSA Microsphere

B20

2.5mg 1 1.5 20min, 75◦C, pH = 4 (164)

MAASol® 1.75mg 1 <1 10min, 90◦C, pH = 4.5 (132)

1.5 20min, 75◦C, pH = 4 (164)

<1 10min, 90◦C, pH = 4.5 (132)

DraxImage® MAA 2.5mg 1 1 15min, 75◦C, pH = 5.2 (165)

TCK-PARS-1800 3mg 1 1.5 8min, 75◦C, pH = 3.9–4.2 (166)

LyoMAA® 2mg 1 <1 10min, 90◦C, pH = 4.5 (132)

NanoHSA NanoAlbumon® 0.5mg 1 8 20min, 40◦C, pH = 4–4.5 (167)

Phytate Phytacis® 20mg 3 1 30 mi, 100◦C, pH = 1–2 (168)

SBMP N/A 20mg 1 4 10min, RT, pH = 4.1 (169)

all quality control criteria and, in a 15-patient study, was able
to detect primary prostate cancer as well as metastatic lesions.
Other kit formulations containing HBED-CC-PSMA-11 have

been subsequently set up (118, 148). Two commercial kits are
now available for investigational studies, as mentioned above,
allowing for fast labeling of 68Ga in 5min at room temperature
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(148, 149). Both kit formulations demonstrated their clinical
applicability and are compatible with all commercial 68Ge/68Ga
generators as well as cyclotron production.

Another PSMA derivative, based on the promising
THP chelator [tris(hydroxypyridinone)], has also attracted
attention. A single-vial kit formulation has been developed
by (Theragnostics, Bracknell, UK) (GalliProstTM). It contains
40 µg of THP-Glu-urea-Lys(Ahx), which is a higher amount
than in PSMA-11 kits, and complete labeling occurs in 5min
at ambient temperature (150). Positive clinical outcomes, i.e.,
good detection rates in patients with biochemical recurrence
coupled with ease of use, led to an ongoing phase 2 clinical trial
(120, 186–188). It has to be noted, however, that detection rates
are lower than with other PSMA imaging agents.

Gastrin-releasing peptide receptors (GRPRs) are another
potential target for prostate cancer imaging and therapy.
Various 68Ga-labeled peptides targeting these receptors have
been reported in the literature, among which are bombesin
derivatives, either agonists (i.e., AMBA) or antagonists (i.e.,
RM2) (189–191). The GRPR antagonist [68Ga]Ga-RM2
(RM2=DOTA-4-amino-1-carboxymethylpiperidine-D-Phe-
Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2) has been particularly
attractive for prostate cancer imaging. In small cohorts of
patients, it emerged as a possible alternative to [68Ga]Ga-
PSMA-11 imaging, thanks to its different biological processes
(192). Its role is, non-etheless, still a matter of debate (193).
In view of the potential interest in this radiotracer, several
kit formulations have been reported in the literature. Vats
et al. developed three single-vial formulations, each adapted
to one single 68Ge/68Ga generator type (114). In vitro studies
demonstrated that [68Ga]Ga-RM2 prepared this way was suitable
for GRPR imaging. Soon after, Chastel et al. developed a similar
kit formulation (50 µg of peptide precursor, same reaction
conditions) usable with a GalliAd R© generator (125). Besides
demonstrating high uptake in GRP-R-expressing PC-3 cells, they
established the importance of excipients (scavenger, bulking
agent) in the formulation of freeze-dried kits, since composition
without trehalose did not meet criteria for lyophilization.

Lung Perfusion Imaging
Albumin particles were the first reported example of cold kit
labeling with 68Ga, as far as in the end of the 1980s, for imaging
pulmonary perfusion with higher resolution and sensitivity
than conventional 99mTc SPECT imaging. Experiments were
conducted using commercial [99mTc]Tc-MAA kits (162). Since
then, different types of albumin particles have been labeled, either
macroaggregated albumin or human serum albumin (HSA), still
with various commercial 99mTc-kits, and employing a similar
procedure to prepare the kits for the labeling with 68Ga. The
kits were suspended in 5-ml sterile saline, vigorously shaken,
then centrifugated to separate particles from stannous chloride
and other components, such as polysorbate or free albumin.
After centrifugation, the supernatant was discarded and albumin
particles were resuspended in a small volume of sterile water
or saline and used for labeling with 68Ga (164, 170). Some
authors also relyophilized the kits before use (165). It was,
however, demonstrated that removal of stannous chloride prior

to labeling with 68Ga was not necessary. Indeed, absence or
presence of SnCl2 had no impact on labeling efficiency (132).
Unfortunately, despite initial promises and possible lower-dose
delivery to critical organs, 68Ga-MAA or 68Ga-HSA has never
broken through (166).

To avoid the use of human blood derivatives, starch-based
microparticles (SBMPs) have been proposed as a surrogate to
albumin particles for lung imaging and labeled with 99mTc (194).
Verger et al. reported the labeling of these SBMPs with 68Ga,
but only investigated their potential use as a pre-therapeutic
tool for radioembolization of liver cancer (169). In a similar
manner, phytate particles, using a commercial Phytacis R© kit for
99mTc, have been proposed as a possible 68Ga perfusion imaging
agent (168).

Other Applications
As mentioned above, GRPR imaging has found interest in
prostate cancer diagnostic and staging. GRP receptors are,
however, expressed in several other cancers, which could
benefit from the use of GRPR-targeting 68Ga radiotracers (195).
Gastrin-releasing peptide receptors are notably overexpressed
in breast and lung cancers. Besides [68Ga]Ga-RM2, several
other cold kit formulations have been reported with GRPR-
addressed peptides. Pandey et al. described a kit formulation with
GRPR agonist [68Ga]Ga-AMBA ([68Ga]Ga-DO3A-CH2CO-G-
[4-aminobenzoyl]-QWAVGHLM-NH2), while Satpati et al.
reported the labeling of the antagonist RM26 (D-Phe-Gln-
Trp-Ala-Val-Gly-His-Sta-Leu-NH2), conjugated either with a
NODAGA or an HBED-CC chelator (81, 151). Another
promising bombesin derivative is the antagonist NeoBomb1.
It is currently the object of a clinical study on patients with
oligometastatic gastrointestinal stromal tumors, and is prepared
using a kit procedure (196). This cold kit, designed for use with
a Galliapharm R© generator, enables fast radiolabeling of peptides
in <10min with a 2-vial formulation (122).

Several other kit-based 68Ga radiosyntheses have been
reported with potentially interesting peptides. Integrin
receptor targeting [68Ga]Ga-NOTA-RGD, for angiogenesis
imaging, has been described by Ebenhan et al. using a
single-vial kit formulation (152). Ubiquicidin (UBI 29-41
= TGRAKRRMQYNRR) is an antimicrobial peptide designed
as an infection-specific imaging agent when radiolabeled. It
was first labeled with 99mTc (197). A 68Ga-PET surrogate has
subsequently been developed and investigated using a kit-based
preparation (153). This small study on 10 patients gave mixed
results, as 4 patients gave false negative results possibly because
of antibiotic treatment (2 patients) or because of very low
microbial population. Studies with a larger number of patients
are necessary to assess its usefulness.

Biphosphonates are another important class of imaging
agents. They are extensively used for bone imaging, in particular
for visualization of skeletal metastases. Several bisphosphonate
derivatives have been labeled with 68Ga, for which kit
formulations have been reported. EDTMP (ethylenediamine
tetramethylene phosphonic acid) has been radiolabeled with 68Ga
using a commercial Multibone R© kit, initially designed for use
with 99mTc, but its utility remains uncertain (158). 68Ga-labeled
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BPAMD (4-{[bis-(phosphonomethyl))carbamoyl]methyl}-7,10-
bis(carboxy methyl)-1,4,7,10-tetraazacyclododec-1-yl)acetic
acid) has shown favorable preclinical and clinical properties.
The radiotracer, prepared with a kit-based procedure, gave
satisfactory results in terms of ease of use and clinical outcome
in a small cohort of patients (198). [68Ga]Ga-THP-Pam, based
on pamidronic acid conjugated to a THP chelator, was easily
obtained under mild conditions (5min, RT, and pH 7) and
demonstrated high in vivo affinity for bone tissue, comparable to
[18F]NaF (160). Latest example to date is [68Ga]Ga-P15-041, an
HBED-CC-derived bisphosphonate (161).

Future Developments
Several other 68Ga imaging agents demonstrated promising
preclinical and clinical outcomes. They are currently prepared
manually or through automated procedures, which limits their
dissemination. The set-up of cold kit formulations for these
radiotracers would, thus, be of great benefit for the medical
community. Among the radiotracers of interest, one can cite
the peptides neurotensin and exendin-4, for which receptors
are overexpressed in several tumor types (199–202). These two
peptide derivatives could be of interest particularly in pancreatic
cancers. Preliminary clinical results demonstrated the safety
and tolerance of a 68Ga-labeled agonist neurotensin peptide
([68Ga]Ga-NT-20.3) conjugated to a DOTA chelator (203).
Antagonist derivatives have also been investigated with various
common 68Ga chelators (98). It was shown that the DOTAGA
chelator gave the best results in vitro and in vivo, and that
the THP chelator, a priori the best suited chelator among the
ones investigated for kit formulation thanks to its radiolabeling
characteristics, led to poor tumor uptake. Several chelators
have been conjugated with exendin-4 (DOTA, NODAGA, DFO,
and HBED-CC), and some of them are suitable for cold kit
preparation (130, 204, 205).

Nevertheless, radiotracers with highest promises are
probably the CXCR4 and FAP inhibitor ligands, targeting a
tumor microenvironment. Chemokine receptor 4 (CXCR4) is
overexpressed in numerous tumor types, and plays a critical
role in tumor growth and invasiveness, as well as metastasis
(206). The 68Ga-labeled CXCR4 antagonist ([68Ga]-Pentixafor),
prepared automatically through a commercial single-use
cassette (207), has revealed itself as a useful clinical tool in
hemotologic diseases and in solid tumors, as well as under
benign conditions (208–210). Fibrobast activation proteins
(FAPs), overexpressed in a variety of tumors, are involved in
several tumor-promoting activities and represent a prospective
theranostic target. A family of inhibitors of this protein based

on a quinolone scaffold has been developed and labeled with
several diagnostic and therapeutic radionuclides, such as 68Ga
(211, 212). Among the FAPI derivatives developed, [68Ga]Ga-
FAPI-4 and [68Ga]Ga-FAPI-46, with a DOTA chelator, led to
impressive results (213–215). New derivatives suitable for cold kit
radiolabeling were recently described, one with a NOTA chelator
(FAPI-74) (216), and another with the DATA5M chelator (217).

CONCLUSION

Radiolabeling of clinically useful 68Ga-PET imaging agents
with ready-to-use lyophilized cold kits may contribute to their
worldwide dissemination, in particular in small or low-budget
centers not equipped with an elaborate and expensive set-up,
enabling for earlier and better diagnostics and treatment response
assessment in the context of personalized medicine. Kit-based
synthesis has proven to be “user-friendly,” trustworthy, robust,
and cost-effective. New chelators such as THP, DATA, and NOTA
derivatives, enabling “instant kit” procedures, are particularly
appealing in that regard. The repertoire of applications is steadily
increasing, following clinical demand. Cold kit formulations of
most promising new radiotracers such as CXCR4 and FAPI
ligands are eagerly awaited.

In large centers with high patient throughput, however,
automated modules may most probably remain the favored
production mode for 68Ga-labeled imaging agents, maybe in
conjunction with kits, based on better GMP-compliance, and for
radioprotection reasons. Another reason might be early access to
newly designed radiotracers, since kit formulations will only be
developed for already established tracers, having demonstrated
their clinical effectiveness.

Eventually, effective development of 68Ga cold kits will rely on
easy access to 68Ga, either through a generator or a cyclotron,
simplicity, and robustness of 68Ga incorporation into novel
radiopharmaceuticals, successful clinical applications, and strong
medical industry support.
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88. Šimeček J, Hermann P, Wester HJ, Notni J. How is 68Ga
labeling of macrocyclic chelators influenced by metal ion

Frontiers in Medicine | www.frontiersin.org 18 February 2022 | Volume 9 | Article 812050

https://doi.org/10.1186/s41181-019-0088-x
https://doi.org/10.1186/s41181-020-00106-9
https://doi.org/10.3390/molecules25040966
https://doi.org/10.3390/biom11081118
https://doi.org/10.1016/j.ccr.2017.05.011
https://doi.org/10.1021/cr900325h
https://doi.org/10.1016/B978-0-08-021344-6.50028-8
https://doi.org/10.1097/MNM.0b013e32833acb99
https://doi.org/10.1002/cmmi.1517
https://doi.org/10.1186/s41181-021-00129-w
https://doi.org/10.1021/bi00271a010
https://doi.org/10.1016/j.ccr.2007.12.001
https://doi.org/10.1186/2191-219X-2-28
https://doi.org/10.1002/jlcr.3146
https://doi.org/10.1039/C5DT04706D
https://doi.org/10.1053/j.semnuclmed.2016.04.003
https://doi.org/10.1039/C7RA09076E
https://doi.org/10.1007/s11307-017-1135-1
https://doi.org/10.1007/s00259-020-04948-y
https://doi.org/10.1021/ja106399h
https://doi.org/10.1016/j.nucmedbio.2012.01.003
https://doi.org/10.1016/j.jinorgbio.2010.09.012
https://doi.org/10.3390/ijms18010116
https://doi.org/10.1039/C9RA07723E
https://doi.org/10.3390/molecules26226997
https://doi.org/10.1039/C8DT04454F
https://doi.org/10.1021/ja00980a019
https://doi.org/10.1007/s00259-008-0816-z
https://doi.org/10.3390/molecules200814860
https://doi.org/10.1002/jlcr.3795
https://doi.org/10.1039/D0OB02513E
https://doi.org/10.1039/c3cc38507h
https://doi.org/10.3390/molecules25174012
https://doi.org/10.1021/ic202103v
https://doi.org/10.1016/S0162-0134(99)00232-9
https://doi.org/10.1002/cmdc.201400055
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Lepareur 68Ga Cold Kit Labeling

contaminants in 68Ge/68Ga generator eluates? ChemMedChem. (2013)
8:95–103. doi: 10.1002/cmdc.201200471

89. Vágner A, Forgács A, Brücher E, Tóth I, Maiocchi A, Wurzer A, et
al. Equilibrium thermodynamics, formation, and dissociation kinetics of
trivalent iron and gallium complexes of Triazacyclononane-Triphosphinate
(TRAP) chelators: unraveling the foundations of highly selective Ga-68
labeling. Front Chem. (2018) 6:170. doi: 10.3389/fchem.2018.00170
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