AUTHOR=Knevel Rachel , Knitza Johannes , Hensvold Aase , Circiumaru Alexandra , Bruce Tor , Evans Sebastian , Maarseveen Tjardo , Maurits Marc , Beaart-van de Voorde Liesbeth , Simon David , Kleyer Arnd , Johannesson Martina , Schett Georg , Huizinga Tom , Svanteson Sofia , Lindfors Alexandra , Klareskog Lars , Catrina Anca TITLE=Rheumatic?—A Digital Diagnostic Decision Support Tool for Individuals Suspecting Rheumatic Diseases: A Multicenter Pilot Validation Study JOURNAL=Frontiers in Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.774945 DOI=10.3389/fmed.2022.774945 ISSN=2296-858X ABSTRACT=Introduction

Digital diagnostic decision support tools promise to accelerate diagnosis and increase health care efficiency in rheumatology. Rheumatic? is an online tool developed by specialists in rheumatology and general medicine together with patients and patient organizations. It calculates a risk score for several rheumatic diseases. We ran a pilot study retrospectively testing Rheumatic? for its ability to differentiate symptoms from existing or emerging immune-mediated rheumatic diseases from other rheumatic and musculoskeletal complaints and disorders in patients visiting rheumatology clinics.

Materials and Methods

The performance of Rheumatic? was tested using in three university rheumatology centers: (A) patients at Risk for RA (Karolinska Institutet, n = 50 individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity) (B) patients with early joint swelling [dataset B (Erlangen) n = 52]. (C) Patients with early arthritis where the clinician considered it likely to be of auto-immune origin [dataset C (Leiden) n = 73]. In dataset A we tested whether Rheumatic? could predict the development of arthritis. In dataset B and C we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic diseases. We examined the discriminative power of the total score with the Wilcoxon rank test and the area-under-the-receiver-operating-characteristic curve (AUC-ROC). Next, we calculated the test characteristics for these patients passing the first or second expert-based Rheumatic? scoring threshold.

Results

The total test scores differentiated between: (A) Individuals developing arthritis or not, median 245 vs. 163, P < 0.0001, AUC-ROC = 75.3; (B) patients with an immune-mediated arthritic disease or not median 191 vs. 107, P < 0.0001, AUC-ROC = 79.0; but less patients with an immune-mediated arthritic disease or not amongst those where the clinician already considered an immune mediated disease most likely (median 262 vs. 212, P < 0.0001, AUC-ROC = 53.6). Threshold-1 (advising to visit primary care doctor) was highly specific in dataset A and B (0.72, 0.87, and 0.23, respectively) and sensitive (0.67, 0.61, and 0.67). Threshold-2 (advising to visit rheumatologic care) was very specific in all three centers but not very sensitive: specificity of 1.0, 0.96, and 0.91, sensitivity 0.05, 0.07, 0.14 in dataset A, B, and C, respectively.

Conclusion

Rheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. The current scoring system needs to be further optimized.