AUTHOR=Lovas András , Chen Rongqing , Molnár Tamás , Benyó Balázs , Szlávecz Ákos , Hawchar Fatime , Krüger-Ziolek Sabine , Möller Knut TITLE=Differentiating Phenotypes of Coronavirus Disease-2019 Pneumonia by Electric Impedance Tomography JOURNAL=Frontiers in Medicine VOLUME=9 YEAR=2022 URL=https://www.frontiersin.org/journals/medicine/articles/10.3389/fmed.2022.747570 DOI=10.3389/fmed.2022.747570 ISSN=2296-858X ABSTRACT=Introduction

Coronavirus disease-2019 (COVID-19) pneumonia has different phenotypes. Selecting the patient individualized and optimal respirator settings for the ventilated patient is a challenging process. Electric impedance tomography (EIT) is a real-time, radiation-free functional imaging technique that can aid clinicians in differentiating the “low” (L-) and “high” (H-) phenotypes of COVID-19 pneumonia described previously.

Methods

Two patients (“A” and “B”) underwent a stepwise positive end-expiratory pressure (PEEP) recruitment by 3 cmH2O of steps from PEEP 10 to 25 and back to 10 cmH2O during a pressure control ventilation of 15 cmH2O. Recruitment maneuvers were performed under continuous EIT recording on a daily basis until patients required controlled ventilation mode.

Results

Patients “A” and “B” had a 7- and 12-day long trial, respectively. At the daily baseline, patient “A” had significantly higher compliance: mean ± SD = 53 ± 7 vs. 38 ± 5 ml/cmH2O (p < 0.001) and a significantly higher physiological dead space according to the Bohr–Enghoff equation than patient “B”: mean ± SD = 52 ± 4 vs. 45 ± 6% (p = 0.018). Following recruitment maneuvers, patient “A” had a significantly higher cumulative collapse ratio detected by EIT than patient “B”: mean ± SD = 0.40 ± 0.08 vs. 0.29 ± 0.08 (p = 0.007). In patient “A,” there was a significant linear regression between the cumulative collapse ratios at the end of the recruitment maneuvers (R2 = 0.824, p = 0.005) by moving forward in days, while not for patient “B” (R2 = 0.329, p = 0.5).

Conclusion

Patient “B” was recognized as H-phenotype with high elastance, low compliance, higher recruitability, and low ventilation-to-perfusion ratio; meanwhile patient “A” was identified as the L-phenotype with low elastance, high compliance, and lower recruitability. Observation by EIT was not just able to differentiate the two phenotypes, but it also could follow the transition from L- to H-type within patient “A.”

Clinical Trial Registration

www.ClinicalTrials.gov, identifier: NCT04360837.