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Gastrointestinal cancer is becoming increasingly common, which leads to

over 3 million deaths every year. No typical symptoms appear in the

early stage of gastrointestinal cancer, posing a significant challenge in the

diagnosis and treatment of patients with gastrointestinal cancer. Many patients

are in the middle and late stages of gastrointestinal cancer when they

feel uncomfortable, unfortunately, most of them will die of gastrointestinal

cancer. Recently, various artificial intelligence techniques likemachine learning

based on multi-omics have been presented for cancer diagnosis and

treatment in the era of precision medicine. This paper provides a survey on

multi-omics-based cancer diagnosis using machine learning with potential

application in gastrointestinal cancer. Particularly, we make a comprehensive

summary and analysis from the perspective ofmulti-omics datasets, task types,

and multi-omics-based integration methods. Furthermore, this paper points

out the remaining challenges of multi-omics-based cancer diagnosis using

machine learning and discusses future topics.
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1. Introduction

Cancer is one of the leading causes of death worldwide (1), usually with few

symptoms in the early stage. However, once a patient is diagnosed with cancer, it is in the

advanced stage of cancer. Cancer has a high morbidity and mortality rate worldwide and

has become a common human disease, therefore, it poses a great threat to human beings.

According to statistics (1), in 2020, there were about 19.3 million new cancer patients

globally, and nearly 10.0 million patients died of cancer. Specifically, The number of

new cases of breast cancer in the world reaches 2.3 million a year, becoming the most

common cancer type globally, while 1.8 million cases of lung cancer deaths a year, rank

first in the global cancer death population. Breast, lung, colorectal, stomach, liver, and

prostate cancers are the most general types of cancer. Among them, all cancers in the
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digestive tract organs like colorectal cancer, gastric cancer, and

liver cancer belong to gastrointestinal cancer, also becoming

more andmore common. In other words, the number of patients

with these cancers is increasing every year. According to the

institute for cancer research (1), some known risk factors such

as smoking, unhealthy diet, being overweight and physical

inactivity largely cause cancers, such as gastrointestinal cancer.

It is extraordinarily difficult for doctors to diagnose and treat

cancer patients, although surgery is one of the approaches to

treatment for cancer patients, the recurrence rate is still high.

Unfortunately, neither chemotherapy nor radiotherapy is ideal.

In order to improve the cancer treatment effect, as well

as prolong the survival time for cancer patients, it is very

essential to improve capabilities in precision medicine by using

specific information about a patient’s tumor to help make an

accurate diagnosis, plan an effective treatment, find out how

well treatment is working, or make a prognosis. In particular,

accurate diagnosis can be used for the early diagnosis of

cancer, many cancers can be cured if detected early and treated

effectively (2). Even in the middle and advanced stages, being

able to accurately diagnose cancer types or cancer molecular

subtypes, also have a certain significance in enhancing treatment

effects, improving the quality of life, and prolonging the life

of patients.

However, accurate diagnosis of cancer is a scientific problem

in the field of biomedicine. Fortunately, over the past few

years, with the development of artificial intelligence technology,

especially machine learning (ML) and deep learning (DL) (3),

smart medicine has developed rapidly (4). Smart medicine

combines artificial intelligence technologies such as ML with

medical theories and then applies them to pathological reports of

cancer patients for converting cancer diagnosis into problems of

classification, regression, or clustering. Especially in recent years,

cancer diagnosis based on artificial intelligence has made great

progress. As illustrated in Figure 1, the number of publications

demonstrated that the multi-omics-based integrative methods

using ML have become increasing interest in the area of cancer

diagnosis over the last decade. For example, Stanford computer

scientists have created an AI diagnostic algorithm that diagnosed

skin cancer as well as a board-certified dermatologist (5). It is

particularly emphasized that ML technology based on multi-

omics is playing an important role in cancer diagnosis like

survival analysis, drug sensitivity response, etc. (6, 7), and they

have achieved corresponding curative effects on various cancers.

This paper provides a comprehensive review ofmulti-omics-

based ML models or artificial intelligence technologies in the

field of cancer diagnosis, and then we highlight its prospects

and applications in gastrointestinal cancer. Finally, we point out

the difficulties in the current multi-omics-based ML integration

methods and discuss some future research directions.

As shown in Figure 2, the rest of this paper is organized

as follows. In Section 2, we detail the cancer task types based

on multi-omics. We review some commonly used open-source

FIGURE 1

Number of publications published each year on di�erent search

keywords.

omics databases in Section 3. Section 4 summarizes and

discusses the state-of-the-art multi-omics-based ML integration

methods for cancer diagnosis. Finally, Section 5 concludes the

work and points out challenges and future directions.

2. Multi-omics-based cancer task
types

Typical types of cancer tasks based on multi-omics data

integration methods are cancer molecular subtype classification,

survival analysis, drug response prediction, and biomarker

discovery. In addition, some tasks are not well studied in the

literature, such as metastasis prediction, recurrence prediction,

etc., they will not be discussed in this review.

2.1. Molecular subtype classification and
discovery of new subtypes

To customize the optimal treatment strategy for patients

and achieve the purpose of precision medicine, it is of great

significance to improve the accuracy of a cancer diagnosis.

Specifically, cancer is generally further divided into multiple

molecular subtypes, and different molecular subtypes adopt

different treatment strategies to achieve the best therapeutic

effect (8). For example, breast cancer is subdivided into four

molecular subtypes: HER2-enriched, Luminal A, Luminal B,

and Basal-like (9). Each subtype is associated with a unique

panel of mutated genes. Therefore, the task of cancer subtype

classification is to automatically identify defined subtypes based

on the multi-omics measurement results of patients (10–13). In

addition, with the growth of multi-omics data, there are still

some potential cancer subtypes that need to be mined (14–16).
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FIGURE 2

Illustration of multi-omics-based data integration using machine learning.

Therefore, the identification of cancer subtypes is usually treated

as a supervised classification problem, and the discovery of new

subtypes is generally treated as a clustering problem.

2.2. Survival analysis

To improve the survival rate of cancer patients, a large

number of researchers studied and analyzed the factors affecting

their survival times by collecting the survival times of cancer

patients and using machine learning methods to discover

possible survival rules (17, 18). Cancer survival analysis can be

defined as a binary classification or a risk regression problem

(19, 20). In a binary classification task, patients are divided into

short-term and long-term survival groups, or low-risk and high-

risk survival groups, according to a predefined survival time

threshold (e.g., 5 years) (21). In risk regression tasks, the Cox

proportional hazards model and its extensions are often used to

calculate the risk score for each patient.

2.3. Drug response prediction

IC50 is widely used to assess the sensitivity of drug

response, and it is the concentration of drug required

to reduce the number of viable cells by half after drug

administration (22). Drug response prediction tasks are the

same as survival analysis tasks. The binary classification

tasks and regression tasks are often used in drug response

research (19, 23–26). In regression problems, drug response

directly predicts IC50 values, while in binary classification

tasks, a predefined threshold based on the distribution of

IC50 values is used to predict drug response as sensitive

or resistant.
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2.4. Biomarker discovery

In this review, the goal of biomarker discovery is to find

genes associated with cancer prognosis by combining multi-

omics data, which can advance the understanding of molecular

mechanisms of cancer and offer new ideas for clinical diagnosis

and treatment (27, 28). For example, in clinical practice in

gastrointestinal cancer, CEA is themost commonly usedmarker.

Furthermore, some biomarkers have been used for cervical

cancer including miR-215-5p, miR-192-5p, KAT2B, PCNA, and

CD86 (29). Biomarkers are widely identified by using the

methods of feature selection and feature importance ranking in

traditional ML (10, 30, 31). When analyzing the contribution of

each feature in multiple omics sources, the feature will be set

to 0 in turn, and then the performance of the classification or

regression model will be calculated, and it will be compared to

performance using all features (10).

3. Multi-omics datasets

It has become increasingly apparent that many novel omics

data sequencing technologies have emerged since the Human

Genome Project was proposed and implemented (32–34),

and the cost of sequencing like high-throughput, is gradually

decreasing. Therefore, we can quickly obtain high-dimensional

multi-omics data and provide data sources for research in the

fields of biomedicine and bioinformatics.

3.1. Multi-omics datasets

In this section, we introduce the multi-omics cancer datasets

that are widely used in the literature. The multi-omics datasets

are shown in Table 1.

The Cancer Genome Atlas (TCGA) is a project jointly

launched by the National Cancer Institute (NCI) and the

National Human Genome Research Institute (NHGRI) in

2006 (35). It includes clinical information, histopathological

images, and multiple omics data like genomics, transcriptomics,

proteomics, and epigenomics. Especially, genomics and

transcriptomics, are the most commonly used types of omics.

For example, the data types of DNA methylation and copy

number variation in genomics, as well as the data types of

mRNA expression and miRNA expression in transcriptomics,

appear most frequently in the literature on multi-omics-based

ML integration methods. TCGA dataset currently includes a

total of 33 types of cancer. In particular, all gastrointestinal

cancer, including gastric cancer, colorectal cancer, liver cancer,

etc., can be obtained in TCGA. TCGA is free and open, which

greatly helps cancer researchers to improve the prevention,

diagnosis, and treatment of cancer.

The Genomics of Drug Sensitivity in Cancer (GDSC) omics

database was jointly developed by the Wellcome Trust Sanger

Institute in the United Kingdom and the Massachusetts General

Hospital Cancer Center in the United States (36). GDSC collects

drug response data (IC50) of about 200 anticancer drugs in

more than 1,000 human cancer cell lines. Variations in the

cancer genome can affect the effectiveness of clinical treatment,

and different targets have very different responses to drugs.

Therefore, the GDSC data are really important for the discovery

of potential tumor therapeutic targets, which have been widely

used in anticancer drug screening.

In addition to the TCGA and GDSC datasets, other

widely used databases also appear in the relevant literature,

such as Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC), COSMIC Cell Lines, CPTAC,

LinkedOmics, and the Cancer Imaging Archive (TCIA) (37–41).

3.2. Multi-omics challenges based on
machine learning

Although multi-omics data can be used for cancer diagnosis

using ML integration methods, there are still some problems

with multi-omics data. We list some of the challenges that are

quite general in the relevant literature (6, 42) as follows.

3.2.1. Small sample size

The first challenge is that almost all existing omics datasets

suffer from the problem of a small number of observations in a

specific class, with most classes having <100 observations. The

features of omics usually have higher dimensionality, which is

much larger than the number of observed samples, leading to

the problem of the curse of dimensionality (43). In this case, it

is crucial to use a reasonable evaluation method to estimate the

classification error.

3.2.2. Missing values

There are many missing values in clinical information and

omics sequencing results in multi-omics datasets. Some studies

have proposed that (17, 19) when a feature has more than 20%

missing values in omics data, this feature will be discarded. At

the same time, if our experimental content is to integrate and

analyze multiple omics data, when patients lack any kind of

omics data, the observation sample of this patient will also be

discarded.

3.2.3. Class imbalance

There is a problem of class distribution imbalance between

different cancer types, as well as between different cancer
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TABLE 1 Frequently used multi-omics datasets.

Dataset names Data types Supported task types URL

TCGA

(35)

• Genomics

• Transcriptomics

• Epigenomics

• Proteomics

• Slide Image

• Subtypes classification

• Biomarker discovery

• Survival analysis

• Drug response

https://portal.gdc.cancer.gov/

GDSC

(36)

• Genomics

• Drug response

• Drug response

• Biomarker discovery

https://www.cancerrxgene.org/

METABRIC

(37)

• Genomics • Subtypes classification

• Biomarker discovery

https://www.cbioportal.org/study/ summary?id=brca-metabric

COSMIC Cell Lines

(38)

• Genomics

• Transcriptomics

• Epigenomics

• Drug response

• Subtypes classification

• Biomarker discovery

• Survival analysis

• Drug response

https://cancer.sanger.ac.uk/cell-lines

CPTAC

(39)

• Proteomics

• Slide Image

• Subtypes classification

• Biomarker discovery

• Survival analysis

https://pdc.cancer.gov/pdc/

LinkedOmics

(40)

• Genomics

• Transcriptomics

• Proteomics

• Subtypes classification

• Biomarker discovery

• Survival analysis

http://www.linkedomics.org/login.php

TCIA

(41)

• Radiomics

• Slide Image

• Genomics

• Subtypes classification

• Biomarker discovery

• Survival analysis

https://www.cancerimagingarchive.net/

molecular subtypes, respectively. To solve this problem, up-

sampling and down-sampling techniques are usually employed

(44).

4. Data integration methods for
multi-omics using machine learning

In recent years, with the increase in computing power and

the decline in the cost of high-throughput sequencing, and

the success of ML technology in various fields, ML has been

widely employed in the fields of biomedical and bioinformatics

computing (45). In particular, a variety of novel data integration

models have been introduced from ML. There are some reviews

for summarizing the data integration methods based on multi-

omics (6, 46), for example, the data are fused according to

three strategies of early fusion, intermediate fusion, and late

fusion (7). In addition, some reviews classify data integration

methods according to concatenation-based, transformed-based,

and model-based approaches (42). In this section, we classify the

newly proposed data integrationmodels according to three types

of groups: traditional ML-based, transformer-based, and graph

neural network based.

4.1. Conventional machine learning
technologies

Here we will briefly introduce three subgroups of models

applied in data integration: traditional MLmodels, classical deep

learning models, and auto-encoder models.

Logistic regression (LR), support vector machine (SVM),

random forest (RF) and Xgboost are widely used traditional

ML models (30, 31, 47), before feeding the data to them,

it generally needs to reduce the dimensionality of high-

dimensional features of multiple omics data based on feature

extraction methods such as nearest component analysis (NCA)

(19, 23) and principal component analysis (PCA) (21), and then

concatenate the dimensionality-reduced features and finally feed

the concatenated features to the model.

In contrast, it is not necessary for classical deep learning

models like fully connected neural networks (FCNNs)

and convolution neural networks (CNNs) to reduce the

dimensionality of omics features to very low dimensions, due

the models can automatically learn useful information from

high-dimensional space (11, 48–51).

Auto-encoder is an unsupervised neural network model

where the network can be replaced by FCNN, CNN, or other

DNNs (16). Auto-encoder compresses the data to a lower
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dimension, which is called encoding, and then reconstructs

the original input data back, which is called decoding (11).

Intuitively, auto-encoder can be used for dimensionality

reduction which is similar to PCA, but its performance is

stronger than PCA due to the neural network model can extract

more effective new features (52). In addition to dimensionality

reduction, new features learned by the auto-encoder can be fed

into the supervised learning model for the tasks of classification

or regression.

4.2. Graphic neural network technologies

In recent years, GraphNeural Networks (GNNs) have shown

strong capabilities in handling non-Euclidean graph-structured

data by naturally combining network topology structure and

the information of node and link, GNNs have been employed

to integrate multi-omics data since the last 2 years. Wang et

al. (10) proposed MOGONET, for each omics data type, a

weighted sample similarity network was constructed according

to omics characteristics as the input of GNN and used for the

identification of biomarkers. In Xing et al. (53), MLE-GAT is

presented to explore the correlation information between genes

contained in omics data. It assumes that genes usually interact

rather than acting alone, so the weighted correlation network

analysis (WGCNA) is firstly used to convert each patient’s omics

data into a co-expression map as the input of GAT, and then

GAT outputs each node feature as a weighted combination of

its neighbors and the current node.

4.3. Transformer technologies

The transformer model is widely used in different fields

such as natural language processing and computer vision, it

is becoming one of the most frequently used deep learning

models (54–56). The success of the transformer architecture

depends on the multi-head attention mechanism that calculates

the attention between different positions in the input sequence

multiple times. The Transformer is applied to multi-omics-

based integration techniques since 2021, which is a relatively

new data integration method. For example, in these two papers

(57, 58), the transformers are used to calculate the cross-

attention between multi-omics features and histopathological

image features.

5. Conclusion

In this paper, we review the multi-omics-based integrative

approaches using ML with potential applications in

gastrointestinal cancer. Firstly, several cancer task types

are elaborated on and discussed. Then we describe widely used

cancer multi-omics datasets, and the challenges encountered

in their use for integration based on ML. Finally, we

analyze currently the state-of-the-art multi-omics-based

data integration approaches in detail and divide them into three

groups such as conventional ML technologies, graphic neural

network technologies, and transformer technologies.

Although ML has performed excellently in the application

of multi-omics data integration, there are still some challenges

that require us to consider and explore deeply. Specifically, the

existing methods for a missing value of multi-omics data are

almost all treated as discards, rather than trying to fill them in.

Therefore, to efficiently utilize the existing precious multi-omics

data, it is necessary to further explore the method of filling in

missing values in multi-omics. Additionally, since biomedical

data are very precious and difficult to obtain, the patients

who contain multiple omics sources and histopathology images

simultaneously are particularly scarce. Hence, in the future, a

pre-trained visual representation model may be transferred to

histopathology images on a limited number of samples, which

can be potentially solved by few-shot learning strategies. More

importantly, more effective approaches for integrating multi-

omics and histopathology images need further investigation for

gastrointestinal cancer diagnosis and treatment, as a promising

future research direction.
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