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Background: The estimation of post-mortem interval (PMI) is one of the

most important problems in forensic pathology all the time. Although many

classical methods can be used to estimate time since death, accurate and

rapid estimation of PMI is still a difficult task in forensic practice, so the

estimation of PMI requires a faster, more accurate, and more convenient

method.

Materials and methods: In this study, an experimental method, lab-on-chip,

is used to analyze the characterizations of polypeptide fragments of the lung,

liver, kidney, and skeletal muscle of rats at defined time points after death (0,

1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning

algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model:

stacking, soft voting, and soft-weighted voting) are applied to predict PMI with

single organ. Multi-organ fusion strategy is designed to predict PMI based on

multiple organs. Then, the ensemble pruning algorithm determines the best

combination of multi-organ.

Results: The kidney is the best single organ for predicting the time of

death, and its internal and external accuracy is 0.808 and 0.714, respectively.

Multi-organ fusion strategy dramatically improves the performance of PMI

estimation, and its internal and external accuracy is 0.962 and 0.893,

respectively. Finally, the best organ combination determined by the ensemble

pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle.

Conclusion: Lab-on-chip is feasible to detect polypeptide fragments and

multi-organ fusion is more accurate than single organ for PMI estimation.
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1. Introduction

Post-mortem interval (PMI), also called time since death,
is the elapsed time between the death of an organism and the
initiation of an official investigation (1). It is very important
for the investigation of death in civil and criminal cases to
accurately infer the time of death, such as civil investigation
of life insurance fraud, identifying the victim and suspect,
and accepting or rejecting the suspect’s alibi (2). Traditional
inference methods of PMI are usually based on corpse
temperature (3) and early corpse phenomena such as livor
mortis (4), rigor mortis (5), and post-mortem turbidity of cornea
(6); it is difficult to precisely confirm the time since death,
because these methods are rough, subjective, and empirical, as
well as are greatly affected by environmental factors (7).

With the development of biomolecular technology,
detection methods based on nucleic acid (1, 8, 9), metabolites
(10, 11), and microorganisms (2, 12, 13) have been widely
used in the past few decades. Some studies suggested that
the genes, such as GAPDH2, ACTB2, 18S rRNA, miR-1,
and miR-133a, are suitable indicators for estimating PMI
(14–16). The level of the metabolite, which was detected by
nuclear magnetism, mass spectrometry, and spectrograph, also
provided a new direction for PMI inference at the tissues level
(17–20). A further investigation into microorganisms of human
and animal remains to study microbial community succession
after death (21–24). In addition, with the development of
imaging technology, post-mortem computed tomography (25),
microCT (26), and visible and thermal 3D imaging (27) have
also been used to infer the time since death. These technologies
provide valuable ideas and methods for PMI estimation in
forensic practice.

Protein is one of the biological macromolecules, an
essential component of the organism, and participates in every
cellular process. In recent years, proteins, in particular, have
been evaluated for their potential to aid PMI delimitation.
Sodium dodecyl sulfate–polyacrylamide gel electrophoresis
(SDS-PAGE)/western blotting (28, 29), immunohistochemistry
(30, 31), and mass spectrometry (32, 33) were widely used to
estimate the time since death. Although these approaches have
shown some success and promise, there are certain limitations
with these existing approaches, e.g., tedious operations, money-
wasting, and slow. More importantly, there is no mature method
to predict PMI accurately.

In the present study, a new experimental method, called
lab-on-chip, is used to analyze protein and its degradation
fragments, i.e., polypeptides. This method utilizes the Agilent
2,100 Bioanalyzer in combination with the protein LabChip
kit, which simplifies the process of bioanalytical investigation
and provides a system with standardized analysis handling and
data processing (34). Although lab-on-chip cannot identify a
polypeptide as a particular protein, the technology has been
proven to be available for examining snake venom composition

(35) and soybean cultivars in previous studies (36). It can
perform molecular mass, migration time, peak height, peak area,
relative concentration, and percentage of overall protein content
and generate complete multi-peak spectrums of a sample. In
addition, lab-on-chip is fast with minimal sample consumption,
high throughput, and automatic quantitation (37), which means
it is more appropriate for estimating PMI in practical work. At
the same time, the abovementioned advantages also contribute
to the united use of lab-on-chip and machine learning.

In the past decades, most studies have applied a single
organ, such as the degradation of rat muscle proteins, used to
estimate PMI by Zissler et al. (38). Although the two organs
were used to estimate the time since death in the study by Mona
Mohamed Abo El-Noor, the results of the heart and kidney
were not analyzed jointly (39). In recent years, researchers from
other fields have discovered that multi-organ fusion based on
machine learning is more helpful to cancer diagnosis (40) and
preclinical drugs than single organ (41). Hence, it is a beneficial
trial that exploits multi-organ fusion and machine learning in
estimating PMI. In the current study, lab-on-chip will analyze
the polypeptide fragments in the lung, liver, kidney, and skeletal
muscle of rat after death. We compare the performance of
machine learning based on single and multiple organs to
estimate the time since death and obtain the best prediction
model based on multiple organs, which provides a new idea for
forensic death time estimation.

2. Materials and methods

This study’s workflow mainly involves the following
(Figure 1). (1) Lab-on-chip analysis of the post-mortem
degradation of polypeptides from the lung, liver, kidney,
and skeletal muscle of rat at defined time points; (2) Base
models (LR, SVM, RF, GBDT, and MLPC) and ensemble
models (stacking, soft voting, and soft-weighted voting) evaluate
the single organ’s performances to predict PMI; and (3)
The ensemble model based on a multi-organ fusion strategy
evaluates multi-organ performances to predict PMI.

2.1. Equipment, reagents, and supplies

A two-place balance (AX223ZH/E, OHAUS, China),
vortex finder (VXMNFS, OHAUS, China), thermocell mixing
block (MSC-100, Aosheng, China), heraeus sepatech (2-16PK,
Sartorius, Germany), climate chamber (RX2-260B, Ningbo,
China), and Agilent 2,100 Bioanalyzer (Agilent Technologies,
Waldbronn, Germany) were used.

Deionized water for protein extraction, a Agilent Protein
230 LabChip R© kit (Agilent Technologies, CA, USA), and
dithiothreitol (DTT, 1 M; Solarbio, Beijing, China) were used
for the preparation of denaturant.
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FIGURE 1

The workflow of this study.

2.2. Animal sample

This study was approved by the Institutional Animal Care
and Use Committee of Shanxi Medical University. Animals
received humane care in conformity with the principles in the
Guide for the Care and Use of Laboratory Animals protocol,
published by the Ministry of the People’s Republic of China. This
study was carried out in compliance with the ARRIVE guideline
and evaluated and approved by the Institutional Animal Care
and Use Committee of the Shanxi Medical University of China.

A total of 84 healthy male Sprague–Dawley rats, 10–
12 weeks, weighing 200–230 g (provided by Animal Center of
Shanxi Medical University) were housed in a cage with rat chow
and water under a 12-h light–dark cycle at 22–25◦C at a relative
humidity of 40–60%. After 2 days, rats were sacrificed after
pentobarbital anesthetization via cervical dislocation. The lung,

liver, kidney, and right hind limb gastrocnemius muscle of each
rat were harvested (200 mg ± 2 mg) at the fixed time points of
0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days (n = 6 rats)
after sacrifice, and a total of 336 samples were placed in liquid
nitrogen for quick freezing and stored at –80◦C until analysis.

For external validation, 28 rats were taken according to
the methods of the abovementioned experimental process. Each
time point took two rats.

2.3. Water-soluble protein extraction
and samples preparation

Analysis was performed according to the protocol provided
by the manufacturer. A volume of 200 mg of the lung, liver,
kidney, and skeletal muscle tissues were ground, added to
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deionized water containing 1% phenylmethylsulfonyl fluoride
(PMSF) according to the ratio of 1:3.5 (w/v), then incubated on
ice for 60 min, and centrifuged at 12,000 × g (15 min, 4◦C).
A volume of 4 µl solution per sample was diluted by mixing
with 2 µl of the sample buffer with a reducing agent (DTT).
The diluted solution and ladder (Agilent) were heated for 5 min
at 95◦C and then diluted with 84 µl H2O. Samples and ladder
were loaded on the protein chip and measured immediately. To
confirm the protein extraction process or the protein analysis
process by lab-on-chip had avoided errors as much as possible,
quality control samples were prepared.

2.4. Microfluidic LoaC electrophoresis

The protein profile of rat skeletal muscle using microfluidic
capillary gel electrophoresis with laser-induced fluorescence
(LIF) detection was carried out on the Bioanalyzer Agilent 2,100
using the Protein 230 Kit (Agilent Technologies, Waldbronn,
Germany), which allows the separation of proteins from 14 to
230 kDa. According to the protocol, 4 µl of each tissue sample
was mixed with 2 µl denaturing solution (35 mM dithiothreitol)
in 0.5-ml tubes and denatured at 100◦C for 5 min, incubated in
ice for 2 min, and centrifuged for 15 s. Pure water was added to
100 µl, and samples were vortexed. Then, 6 µl of samples were
added to each well of the chip. For the analysis, three biological
replicates were used for each sample.

All reagents were provided with each LabChip kit, including
the standard protein ladder containing different proteins
with known concentrations and molecular weights that can
be used for semi-quantitative analysis. The Agilent 2,100
Bioanalyzer separates and calculates the protein fragments
based on the microfluidic capillary gel electrophoresis with
LIF detection, where fluorescence intensities of proteins are
measured. The migration times of polypeptide fragments were
used to estimate the respective protein bands’ molecular
weights, and the height was calculated to semi-quantify each
protein fragment’s concentration. Data analysis performed with
the Agilent 2,100 Expert software automatically determines
molecular weight, concentration, and percentage of the sample’s
total individual proteins.

2.5. Confirmation of polypeptide
fragments and data preprocessing

All protein electrophoresis chromatography analyses were
performed by “comparison” and “overlap” operations in the
software to calibrate, identify, and adjust peaks according to
the lower and upper markers. The same polypeptide fragments
of each organ can be marked as the same number according
to the molecular mass of these peptides, from minor to major.
Numerical data such as protein molecular mass, peak height,
and migration time are outputted for subsequent analysis.

It is essential to confirm the polypeptide fragments, which
could be used as an indicator to estimate the PMI. The
present study acquired the raw data through Agilent 2,100
Expert software, and all CSV data were imported into MS
Excel. Then, the polypeptide fragments detected in five out of
six biological replicate samples were identified as meaningful
indicators for estimating PMI. The deviation of migration times
less than 2% was considered the same polypeptide fragment in
different samples.

Then, the datasets of each organ with 84 rats have been
randomly divided into two, namely, the training dataset, which
was made up of 70% of the dataset, and the testing dataset, also
named internal validation, which comprised the remaining 30%,
and standardized. For the external validation of 28 rats, the same
data preprocessing was applied as mentioned earlier.

2.6. Machine learning

2.6.1. Feature importance evaluated for
machine learning

Feature selection, or feature ranking, reduces data
processing time and memory requirements for machine-
learning algorithms to deal with the essential predictors. In
the present study, feature importance was evaluated through
the least absolute shrinkage and selection operator (LASSO)
(42), recursive feature elimination (RFE) (43), sequential
forward selection (SFS), and sequential back selection (SBS)
(44, 45).

2.6.2. Sub-model training and evaluation for
PMI using different organs

Five machine learning algorithms, including Logistic
Regression (LR), Support Vector Machine (SVM), Random
Forest (2), Gradient Boosting Decision Tree (GBDT), and
Multilayer Perceptron Classier (MLPC), were implemented to
predict PMI in the present study. The robustness and efficiency
of 20 sub-models according to the four feature selection
methods cross-match five machine learning algorithms are
analyzed for each organ. The performance comparison analysis
was performed by sequencing accuracy, precision, recall, and
area under the ROC curve (AUC) of internal and external
validation according to the order from good to wrong. And then,
the ranking scores of all metrics were summed for each sub-
model. Finally, the optimal classification model was determined
by comparing the scores of 20 sub-models of each organ. It
should be noted that the principle of this scoring method is to
combine internal and external verification and comprehensive
consideration of multiple evaluation indicators. Therefore, we
believe that the model with the highest score has the highest
comprehensive efficiency, which means that the model may not
be the best in all indicators.
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2.6.3. Ensemble model development and
evaluation for PMI based on single organ

Ensemble learning can improve the classifier’s performance
by combining the trained sub-models contribution to solving
the same classification problem in some studies (46). In the
present study, there are three ensemble models, namely, stacking
(47), soft voting (48), and soft-weighted voting (49), used to
estimate the PMI based on the single organ. The accuracy,
precision, recall, and AUC were calculated separately.

2.6.4. Multi-organ fusion strategy and
ensemble pruning algorithm

A framework that is suitable for multi-organ fusion analysis
is proposed in this study. First, each organ’s best combinations of
feature selection methods and sub-models were combined into
a pipe. Four pipelines are used as four sub-models to complete
each organ’s feature selection and PMI prediction. Then, four
parallel pipelines were performed to predict PMI by the
abovementioned three ensemble models. In this step, the four
organs are fused to predict PMI. Finally, the ensemble models
based on multi-organ fusion were compared with the optimal
sub-models and ensemble models based on single organ.

After getting the best model, the ensemble pruning
algorithm was applied to ensure the best combination of an
organ. The ensemble pruning algorithm is a technique where
the model starts with all possible members being considered
and removes members from the ensemble until no further
improvement is observed. This could be performed in a greedy
manner where members are removed one at a time and only
if their removal results in a lift in the performance of the
overall ensemble.

3. Results

3.1. Characterization of polypeptide
fragments after death

A total of 45 polypeptide fragments were identified with
different migration times in the lung, liver, kidney, and skeletal
muscle samples (Table 1). These polypeptide fragments may
be highly correlated with the PMI, and 21, 22, 19, and 23
polypeptide fragments were found in the lung, liver, kidney, and
skeletal muscle tissues, respectively (Figure 2A). Among these
polypeptide fragments, 4 polypeptide fragments were detected
in four organs, 7 polypeptide fragments were present in three
organs, and 14 polypeptide fragments were present in two
organs (Figure 2B). There were three polypeptide fragments
specific to the kidney and lung but seven to the liver and skeletal
muscle.

After further analysis of the data, we found that the
content of the abovementioned polypeptide fragments was
highly homogeneous in the samples with the same PMI

TABLE 1 The polypeptide fragments in the lung, liver, kidney, and
skeletal muscle samples.

Polypeptide Molecular
mass

(−X ± SD)

Migration
time

(−X ± SD)

Organsa

1 14.25 ± 0.45 20.68 ± 0.08 Lub , Lic , Kd ,
Me

2 15.53 ± 0.30 20.95 ± 0.05 M

3 17.61 ± 0.34 21.34 ± 0.06 M

4 19.65 ± 0.62 21.81 ± 0.13 K

5 25.58 ± 0.73 21.94 ± 0.15 Li

6 22.62 ± 0.83 22.36 ± 0.16 Li, K

7 23.84 ± 0.38 22.56 ± 0.07 M

8 24.54 ± 0.37 22.66 ± 0.06 Lu, Li

9 25.63 ± 0.69 22.93 ± 0.15 K, M

10 26.83 ± 0.35 23.12 ± 0.08 Lu, Li, M

11 29.43 ± 0.50 23.57 ± 0.14 Lu, K

12 31.68 ± 0.64 23.91 ± 0.10 K, M

13 32.92 ± 0.75 24.08 ± 0.12 Lu, Li, K

14 35.47 ± 0.91 24.40 ± 0.10 Lu, Li, M

15 39.65 ± 0.94 25.02 ± 0.18 Lu, Li, K, M

16 43.68 ± 0.82 25.59 ± 0.11 Lu, Li, K, M

17 45.15 ± 1.21 25.86 ± 0.17 Li

18 47.34 ± 0.91 26.19 ± 0.12 K

19 50.20 ± 1.11 26.46 ± 0.13 Lu, Li

20 51.97 ± 0.47 26.69 ± 0.09 K, M

21 53.06 ± 0.65 26.86 ± 0.08 Li

22 55.43 ± 0.43 27.15 ± 0.04 Li

23 57.44 ± 1.10 27.32 ± 0.16 Lu, K, M

24 58.43 ± 1.11 27.54 ± 0.18 Li, K, M

25 62.89 ± 0.70 28.08 ± 0.08 M

26 71.58 ± 1.57 28.80 ± 0.27 Lu, Li, K

27 74.83 ± 1.49 28.99 ± 0.16 Lu, M

28 78.23 ± 1.25 29.29 ± 0.07 M

29 82.13 ± 1.08 29.68 ± 0.09 Li

30 84.57 ± 0.77 29.88 ± 0.07 K

31 85.91 ± 0.98 29.90 ± 0.09 Lu, M

32 91.34 ± 1.04 30.30 ± 0.09 Lu

33 93.95 ± 1.91 30.59 ± 0.16 Lu, Li, K, M

34 104.86 ± 1.01 31.59 ± 0.08 Li

35 111.46 ± 5.41 32.09 ± 0.52 M

36 121.23 ± 1.82 32.98 ± 0.17 M

37 123.73 ± 2.40 33.23 ± 0.20 K, M

38 131.39 ± 1.01 33.90 ± 0.09 Li

39 135.25 ± 2.04 34.20 ± 0.17 Lu, Li

(Continued)
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TABLE 1 (Continued)

Polypeptide Molecular
mass

(−X ± SD)

Migration
time

(−X ± SD)

Organsa

40 141.40 ± 1.35 34.71 ± 0.15 Lu, M

41 144.59 ± 2.03 35.04 ± 0.18 Li, M

42 154.94 ± 1.46 35.78 ± 0.11 Lu, K

43 179.02 ± 1.05 37.28 ± 0.07 Lu, Li, K

44 217.22 ± 0.98 39.60 ± 0.07 Lu

45 225.04 ± 3.44 40.08 ± 0.21 Lu

aOrgans with polypeptide fragments.
bLu represents lung.
cLi represents liver.
dK represents kidney.
eM represents skeletal muscle.

(Figures 2C, D). The results showed no significant difference
among the biological replicates, providing that the experimental
operation was stable and reliable. In addition, the polypeptide
fragments showed different peak heights at different PMIs
(Figures 2E, F), which highly correlated with PMI.

To further clarify the correlation between peptide fragment
content and PMI, the earlier data were clustered using TB tools.
It can be found from the clustering heat map that the death
time of this experiment could be divided into five different
stages according to the content of polypeptide fragments in
the lung. Specifically, 0 and 3 days, 1 and 2 days, 5, 18, and
21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were
divided together (Figure 3A). Similarly, the samples can be
distinguished into 5, 4, and 5 different periods according to
the content of polypeptide fragments in the liver, kidney, and
skeletal muscle (Figures 3B–D).

3.2. Performance of sub-models based
on different organs

3.2.1. Evaluating the sub-models by accuracy,
precision, recall, and AUC

To compare the predictive accuracy of four different
organs in inferring the PMI, a total of 80 combined results
were generated by cross-combining of four feature selection
methods (e.g., LASSO, RFE, SBS, and SFS) and five machine
learning algorithms (e.g., LR, SVM, RF, GBDT, and MLPC)
(Figure 4A).

The accuracy, precision, recall, and AUC of sub-models
with four organs are summarized in Figures 4B–E. As is
shown in Figure 4B, the internal validation accuracy ranges
of the lung, liver, kidney, and skeletal muscle were 0.462
(RFE + GBDT and SFS + GBDT)–0.769 (SBS + RF and
SFS + RF), 0.231 (LASSO + SVM)–0.692 (SFS + RF),
0.577 (SFS + GBDT)–0.808 (LASSO + RF and SFS + RF),
and 0.346 (RFE + GBDT)–0.769 (RFE + RF, SFS + SVM,

and SFS + RF), respectively. Their external verification
accuracies were 0.286 (SFS + GBDT)–0.679 (LASSO + RF and
LASSO + MLPC), 0.179 (LASSO + MLPC)–0.536 (SFS + RF),
0.429 (SFS + GBDT)–0.714 (LASSO + RF and SFS + RF),
and 0.321 (SFS + GBDT)–0.679 (RFE + RF, SBS + RF, and
SFS + RF), respectively. Similarly, the analysis of Figures 4C–
E shows that the model with the kidney as the detection
sample performs best in precision, recall, and AUC evaluation
indexes.

The abovementioned results indicated that the liver is the
worst, and the kidney is the best to predict PMI among the four
organs. As for the feature selection methods, the four feature
selection methods cannot clearly distinguish the advantages and
disadvantages. These results further show that LASSO, RFE,
and SFS help determine feature subsets, which means that
feature selection methods are necessary for different organs. It
is particularly interesting that RF, the best machine learning
algorithm in all organs, has advantages over other machine
learning algorithms in predicting PMI, as mentioned earlier,
while GBDT performed worst in the lung, kidney, and skeletal
muscle. The four organs’ remaining indicators were similar
results (Figures 4B–E).

3.2.2. Screening optimal model by the ranking
principle

The ranking scores principle described in the “Sub-models
training and evaluation for PMI using different organs”
section was used to compare the sub-models of each organ
comprehensively. As is shown in Table 2, the best model
combination in the lung and liver is SFS + RF, with scores
of 146 and 149, respectively. The optimal sub-model of the
kidney is LASSO + RF, which has a score of 149. The best sub-
model of skeletal muscle is RFE + RF, which has a score of
139.

We found that the kidney is more suitable than other organs
to predict PMI, comparing the performance of the best models
for each organ. In optimal sub-models of four organs, 0.808 and
0.714 are the highest internal and external validation accuracies
based on LASSO-RF of the kidney (Figure 5E), respectively.
In Figure 5F, the confusion matrix of external verification of
the kidney showed that eight samples were misjudged, and
many miscalculations in the prediction results of the kidney
were found at 0–2 days and 12–18 days after death. Next, the
internal validation of the lung and skeletal muscle is 0.769
based on SFS-RF. The former’s accuracy of external validation
is 0.607 lower than the latter, which is 0.679 (Figures 5A,
G). The liver is the worst organ to predict PMI; the accuracy
is 0.692 and 0.536 in internal and external validation using
SFS-RF, which is the best classification model for the liver
(Figure 5C). As shown in Figures 5B, D, H, there are 11,
13, and 9 samples of the lung, liver, and skeletal muscle,
respectively, which were wrongly judged in their external
verification.
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FIGURE 2

The characteristics of polypeptide fragments in different organs at different times after death. (A) The numbers of polypeptide fragments in
different organs. (B) Co-expression analysis of polypeptide fragments in different organs. (C) The gel-like image of polypeptide fragments in
skeletal muscle at the same time points after death. This figure is the simulated gel electrophoresis figure automatically given by Agilent 2,100
Bioanalyzer according to the molecular weight. Lanes 1–8 represent the gel diagram of eight skeletal muscle samples in 0 day after death. The
migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the bottom are the upper/lower ladder,
which is the standard, respectively. The remaining blue bands are the detected protein fragments. The shade of the blue band represents the
content of each protein fragment. (D) The electropherogram of skeletal muscle at the same time points after death in the microfluidic chip
electrophoresis (LoaC) system. Multi-peak spectrums overlaid of different rats at the same time points after death, and there was no significant
difference in peak height and number of peaks in the superposition of multi-peak spectra at the same time point after death of different rats. It is
worth noting that there is a peptide peak around 24.5s in all samples at the same time point after death. (E) The gel-like image of polypeptide
fragments in skeletal muscle at different time points after death. This figure is the simulated gel electrophoresis figure automatically given by
Agilent 2,100 Bioanalyzer according to the molecular weight. Lanes 1–14 represent the gel diagram of 14 time points of skeletal muscle samples
within 0–30 days after death. The migration time (s) is set on the side of the gel image. The purple bands at the top and the green bands at the
bottom are the upper/lower ladder, which is the standard, respectively. The remaining blue bands are the detected protein fragments. The
shade of the blue band represents the content of each protein fragment. (F) The electropherogram of skeletal muscle at different time points
after death in the microfluidic chip electrophoresis (LoaC) system. The peak heights showed significant differences and a new peptide peak
appears near 24.5 s by comparing multi-peak spectrums at different time points after death.
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FIGURE 3

The clustering heat map based on the peak heights of polypeptide fragments in different organs. (A) Lung samples could be divided into five
different stages, 0 and 3 days, 1 and 2 days, 5, 18, and 21 days, 7, 12, and 15 days, and 9, 24, 27, and 30 days were divided together, respectively.
(B) Liver samples could be divided into five different stages, 1 and 2, 3, and 5 days, 7 and 21 days, 12 days, and 0, 9, 15, 18, 24, 27, and 30 days
were divided together, respectively. (C) Kidney samples could be divided into four different stages, 0 to –3 days, 5, 7, and 9 days, 12, 15, 18, 21,
and 24 days, and 27 and 30 days were divided together, respectively. (D) Skeletal muscle samples could be divided into five different stages,
0–2 days, 3, 5, and 7 days, 9, 12, 15, and 21 days, 18 and 27 days, and 24 and 30 days were divided together, respectively.

3.3. Performance of the single organ
based on ensemble models

Considering that different prediction models have different
prediction performances in four organs, this experiment will
cross-combine the four feature selection methods and three
ensemble models mentioned earlier to establish an ensemble
model to improve the performance of PMI estimation in a single
organ.

The performance of the ensemble models of four organs is
shown in Figure 6A. In the validation of the lung, LASSO + soft-
weighted voting generated the highest accuracy of 0.808 in
the internal validation, while LASSO + soft voting generated
the highest accuracy of 0.643 in the external validation. The
best accuracy of internal validation based on the liver is 0.654,
which was obtained by RFE + soft voting and RFE + soft-
weighted voting. The accuracy of RFE + soft-weighted voting for

external validation of the liver had reached 0.464. For kidneys,
the accuracy for internal validation of LASSO + soft voting,
LASSO + soft-weighted voting, SFS + soft voting, and SFS + soft-
weighted voting was 0.808, while the optimal accuracy for
external validation of LASSO + soft voting and RFE + stacking
was 0.679. The highest accuracy for internal validation of
skeletal muscle was 0.769, and the combined strategies were
RFE + soft voting and RFE + soft-weighted voting, respectively.
Furthermore, the external validation accuracy of SFS + soft
voting and SFS + soft-weighted voting for skeletal muscle is
0.643. The details of the precision, recall, and AUC have similar
results, as shown in Figure 6A.

According to the ranking principle described in the “Sub-
models training and evaluation for PMI using different organs”
section, the optimal ensemble model of each organ was screened
in this experiment. The best ensemble model in the lung is
LASSO + soft-weighted voting with ranking scores of 89, and
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FIGURE 4

The performance of sub-models generated by cross-combination of four feature selection methods and five machine learning algorithms
based on single organ. (A) Workflow of cross-combination of four feature selection methods and five machine learning algorithms to establish
sub-models to predict PMI based on the lung, liver, kidney, and skeletal muscle. (B) The heat map on the left show accuracy of internal
validation of sub-models based on lung, liver, kidney and skeletal muscle, and the heat map on the right shows the accuracy of external
validation. (C) The heat map on the left show precision of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle,
and the heat map on the right shows the precision of external validation. (D) The heat map on the left show recall of internal validation of
sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on the right shows the recall of external validation. (E) The
heat map on the left shows AUC of internal validation of sub-models based on the lung, liver, kidney, and skeletal muscle, and the heat map on
the right shows AUC of external validation.

the internal and external validation accuracies were 0.808 and
0.571, respectively (Table 3). Specifically, the optimal ensemble
model of RFE + soft-weighted voting based on the liver was 89.5,

and the internal and external validation accuracies were 0.654
and 0.464, respectively. The internal and external verification
accuracies for the kidney are 0.808 and 0.679, respectively, based
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TABLE 2 The scores of sub-models generated by cross-combination
of four feature selection methods and five machine learning
algorithms.

Model Lung Liver Kidney Skeletal
muscle

LASSO + LR 107.5 76 128 50.5

LASSO + SVM 100 15 99.5 47.5

LASSO + RF 135.5 83 149 59

LASSO + GBDT 59.5 57.5 27 19.5

LASSO + MLPC 137 29 93.5 64.5

RFE + LR 104.5 113.5 110 107

RFE + SVM 48 70.5 92.5 93.5

RFE + RF 132 135.5 112 139

RFE + GBDT 18.5 48.5 46 14

RFE + MLPC 53 125 51.5 96

SBS + LR 64.5 109.5 65 115.5

SBS + SVM 60.5 71 62 111.5

SBS + RF 118 119 93.5 116.5

SBS + GBDT 20.5 32.5 65.5 25.5

SBS + MLPC 69 87.5 102 104.5

SFS + LR 71 130.5 83 130.5

SFS + SVM 99.5 96 91.5 122.5

SFS + RF 146 149 143 134.5

SFS + GBDT 19.5 37 11 22

SFS + MLPC 116 94 54.5 106.5

on LASSO + soft voting, which has the highest score of 76. The
best ensemble model of skeletal muscle is SFS + soft-weighted
voting, which scored 81, and the internal and external accuracy
were 0.731 and 0.643, respectively.

In the present study, each organ’s ensemble model was
compared with the best sub-model of the same organ to
determine whether the integrated model can improve the
PMI prediction performance. Compared with SFS-RF, the
best sub-model of the lung, although all metrics of internal
validation are slightly improved, its external validation metrics
significantly decreased according to LASSO + soft-weighted
voting (Figures 6B, C). The RFE + soft-weighted voting model
based on the liver predicts PMI with the most indicators
lower than the best sub-model except for the AUC of internal
and external validation (Figures 6D, E). Compared with
the optimal kidney sub-model, the LASSO + soft voting
model weakly improves the precision and AUC of internal
validation (Figures 6F, G). By comparing SFS-soft-weighted
voting with SFS-RF of skeletal muscle, the former only has feeble
improvement in AUC of internal validation and precision of
external validation (Figures 6H, I).

The abovementioned results indicated that the SFS + RF
was the optimal model for predicting PMI based on the kidney.

However, the single organ ensemble model could not effectively
improve the PMI prediction performance. Therefore, in the
multi-organ fusion based on ensemble model construction, the
optimal sub-model performance will be compared with other
models’ performance in predicting PMI.

3.4. Performance of multi-organ fusion
based on ensemble models

Since the single-organ ensemble strategy cannot improve
the prediction efficiency of PMI, we further focus on the multi-
organ integration strategy. Figure 7A shows the appropriate
multi-organ fusion model establishment steps for estimating
PMI. In brief, the best combinations of feature selection
methods and sub-models in the lung, liver, kidney, and
skeletal muscle were piped based on a multi-organ fusion
strategy. Then, the ensemble model with the highest scores
was selected by comparison. Finally, the ensemble pruning
algorithm integrates multi-organ data based on the optimal
model for PMI estimation.

By comparing the multi-organ integration model’s internal
and external verification accuracies, the soft voting fusion
strategy has an absolute advantage with the internal and external
verification accuracies of 0.962 and 0.893, respectively. In
contrast, the staking model had the worst performance, and its
internal and external validation accuracy is even lower than the
single-organ optimal model based on the kidney, with only 0.692
and 0.679. The performance of soft-weighted voting was similar
to that of soft voting, with internal and external validation
accuracies of 0.923 and 0.893 (Figures 7B, C).

Although the AUC values of the internal and external
validation of the three fusion strategies are all higher than 0.97,
the confusion matrix results show that some samples are still
misjudged according to the external validation (Figures 7D–I).
The sample prediction error is mainly more than 15 days after
death, indicating that if the prediction results show that the
PMI exceeds 15 days, the prediction accuracy decreases and the
credibility decreases.

The ensemble pruning algorithm showed that the optimal
combination of multiple organs was four organs, i.e., lung, liver,
kidney, and skeletal muscle, used in the present study to infer
the PMI. Furthermore, soft voting and soft-weighted voting can
significantly improve the prediction performance of PMI based
on the multi-organ fusion strategy (Table 4).

3.5. Comparison of lab-on-chip and
traditional protein detection methods

To further clarify the superiority of the analysis method
and its application value in forensic practice, we summarize
the main improvements of the proposed approach compared
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FIGURE 5

The performance and confusion matrix of the optimal sub-models with the lung, liver, kidney, and skeletal muscle. (A) The optimal sub-model
of the lung is SFS + RF. The accuracy, precision, recall, and AUC of internal validation are 0.769, 0.810, 0.798, and 0.948, respectively. The
accuracy, precision, recall, and AUC of external verification of this model are 0.607, 0.690, 0.607, and 0.919, respectively. (B) The confusion
matrix of SFS + RF for the lung shows that the external validation samples were completely predicted correctly only at 1, 3, 9, and 24 days. The
external validation predictions were wrong at 15 days after death. There was a misjudgment in the samples at other PMI. (C) The optimal
sub-model of the liver is SFS + RF. The accuracy, precision, recall, and AUC are 0.692, 0.732, 0.750, and 0.900, respectively. The accuracy,
precision, recall, and AUC of external verification are 0.536, 0.574, 0.536, and 0.865, respectively. (D) The confusion matrix of SFS + RF for the
liver shows that the external validation samples of Liver were completely predicted correctly at 1, 3, 12, and 21 days. The external validation
predictions were wrong at 0, 24, and 30 days after death. There was a misjudgment in the samples at other PMI. (E) The optimal sub-model of
the kidney is LASSO + RF. The accuracy, precision, recall, and AUC are 0.808, 0.760, 0.786, and 0.962, respectively. The accuracy, precision,
recall, and AUC of external verification are 0.714, 0.798, 0.714, and 0.939, respectively. (F) The confusion matrix of LASSO + RF for the kidney
shows that the external validation samples of Kidney were completely predicted correctly at 3, 5, 9, 21, 24, and 30 days, and there was a
misjudgment in the samples at other PMI. (G) The optimal sub-model of skeletal muscle is RFE + RF. The accuracy, precision, recall, and AUC
are 0.769, 0.762, 0.786, and 0.951, respectively. The accuracy, precision, recall, and AUC of external verification of this model are 0.679, 0.649,
0.679, and 0.912, respectively. (H) The confusion matrix of RFE + RF for skeletal muscle shows that the external validation samples of skeletal
muscle were completely predicted correctly at 0, 2, 3, 5, 12, 21, and 24 days, The external validation predictions were wrong at 9 and 27 days
after death. There was a misjudgment in the samples at other PMI.
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FIGURE 6

The prediction performance of ensemble model and best sub-model based on single organ. (A) Histogram performance of internal and external
validation of four organs cross-combining of four feature selection methods and three ensemble models. (B) Radar map of SFS-RF and
LSAAO-soft-weighted voting based on internal validation of lung. (C) Radar map of SFS-RF and LSAAO-soft-weighted voting based on external
validation of lung. (D) Radar map of SFS-RF and RFE-soft-weighted voting based on internal validation of liver. (E) Radar map of SFS-RF and
RFE-soft-weighted voting based on external validation of liver. (F) Radar map of LSAAO-RF and LSAAO-soft voting based on internal validation
of kidney. (G) Radar map of LSAAO-RF and LSAAO-soft voting based on external validation of kidney. (H) Radar map of RFE-RF and
SFS-soft-weighted voting based on internal validation of skeletal muscle. (I) Radar map of RFE-RF and SFS-soft-weighted voting based on
external validation of skeletal muscle.

to the traditional methods. And the terms include whether
the required instruments are expensive, whether the detection
methods are cumbersome, and the length of analysis time. The
results show that the present study’s detection method and
analysis strategy have good application prospects for estimating
PMI (Table 5).

4. Discussion

Protein is one of the important components of an organism,
so forensic pathologists have always used the analysis of
protein degradation after death as an auspicious tool to
determine PMI. Previous studies have shown that some specific
proteins and their degradation products (e.g., desmin, cTnT,

and calpain 1) could be used as markers for specific time
intervals of post-mortem decomposition (50). In contrast, many
protein detection methods have tested their applicability for
predicting PMI. However, these technologies are complex, time-
consuming, and expensive, but more importantly, the accuracy
is not enough to infer PMI (51).

In the present study, the lab-on-chip combines Agilent
2,100 biological analyzer and the Protein 230 Plus LabChip
kits, enabling the separation of polypeptides in the 14–
230 kDa range. This technique allows the analysis of 10
samples in 30 min and avoids all the cumbersome post-
electrophoresis procedures required for SDS-PAGE analysis,
including staining, destaining, and storage, and does not need
additional image analysis equipment. It is worth noting that
the technology can directly display the results as gel-like images
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TABLE 3 The scores of ensemble models based on four organs.

Model Lung Liver Kidney Skeletal
muscle

LASSO + stacking 39.5 15.5 54.5 17

LASSO + soft
voting

78.5 17 76 26

LASSO + soft
weighted voting

89 30 71.5 21.5

RFE + stacking 24 56.5 60.5 45.5

RFE + soft voting 38.5 70 46 69.5

RFE + soft
weighted voting

41 89.5 45 80.5

SBS + stacking 28 52 41.5 36.5

SBS + soft voting 42.5 51 49.5 68.5

SBS + soft
weighted voting

45.5 54.5 49.5 67

SFS + stacking 50.5 65 23 46.5

SFS + soft voting 64 61.5 41.5 64.5

SFS + soft
weighted voting

83 61.5 65.5 81

and electrophoretograms. It also can output the characteristics
of each polypeptide peak as numerical data, such as molecular
mass, peak height, and migration time. More importantly, the
technology can simultaneously analyze multiple polypeptides
or their degradation fragments of a sample. With this high-
throughput advantage, this technology will help establish a
human sample database and then realize the prediction of
human samples with unknown PMI in the future.

The results of this study showed that the prediction accuracy
of the kidney was the highest, followed by the lung and
skeletal muscle, and that of the liver was the lowest when
applying sub-models based on a single organ to predict PMI.
The reason may be that the kidney, as a deep organ in the
organism, is less affected by the outside world and less protease.
The lung and skeletal muscles are greatly affected by the
external environment because of gas exchange and relative
superficial organs. The result of the liver was the lowest mainly
because the detoxification organ of the organism contains many
proteolytic enzymes.

According to the results mentioned in the “Performance of
the single organ based on ensemble models” section, we found
that the performance of ensemble models based on single organ
is worse than that of the sub-model. When generating ensemble
models, some fundamental principles should be considered. The
first is diversity, which means the machine learning algorithm
participating in ensemble learning should have enough diversity
to obtain ideal prediction performance. The second is prediction
performance, which means the individual machine learning
algorithm should be as high as possible (52, 53). In the

present research, we have used multiple models to ensure
the diversity of algorithms. However, the disadvantage is
that we have not deleted the worst-performing sub-models,
such as GBDT, which may lead to the low accuracy of the
integrated model.

In the current study, we designed a multi-organ fusion
strategy combining multiple organs to predict PMI. The soft-
voting and soft-weighted voting model based on multi-organ
fusion strategy improved the predictive performance of internal
and external verification. The results show that the soft-voting
model drastically improved the accuracy of internal verification
from 0.808 to 0.962 and the accuracy of external verification
from 0.714 to 0.893. The reason may be that the essence of
a multi-organ fusion strategy is to fuse and analyze multiple
training datasets to fit different base models. It helps to integrate
the characteristics of different organs better and increases
the amount of data (53). Another possible reason is that we
choose the optimal sub-model of the four organs in the multi-
organ fusion strategy to have enough diversity to obtain ideal
prediction performance (54).

Through this study, we also found significant differences in
the predictive power of different ensemble models, which means
it is necessary to compare and screen them. Compared with
the Lu et al.’s study, they used the same four organs combined
with mass spectrometry and multi-organ fusion to predict PMI,
with an accuracy of 0.93 based on a stacking ensemble (55).
However, the performance of the stacking ensemble was not
satisfactory in our research. On the contrary, the accuracy of
soft voting reached 0.96, which may be related to the different
analytical techniques.

Ensemble pruning methods, called ensemble selection
methods, aim to reduce ensemble models’ complexity. These
methods search for a subset of ensemble members that performs
to some extent as well as the original ensemble (56). This method
can reduce the size of the ensemble model, save training time,
and improve accuracy and robustness (57). Hence, in our study,
we also used the ensemble pruning algorithm to select the
optimal subsets of base models for multi-organ fusion, which
also means that we can determine the optimal multi-organ
combination for the estimation of PMI. Finally, we obtained that
the optimal organ combination is the lung, liver, kidney, and
skeletal muscle for predicting time since death. This result after
pruning also suggests that we should try to use more organs to
find the best organ combination to infer future PMI.

In forensic medicine, estimating the PMI is influenced by
many internal and external factors such as temperature and
humidity, body weight, and disease. The limitations should be
avoided in future studies, such as considering more influencing
factors and increasing the number of human samples. Although
the current experiment involves an idealized condition, we have
proven a new analysis method, lab-on-chip combined with a
machine learning algorithm, could use to predict the PMI.
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FIGURE 7

Performance of multi-organ fusion strategy to predict PMI. (A) Framework of multi-organ fusion strategy to predict PMI. (B) Accuracy, precision,
recall, and AUC of internal validation for stacking are 0.692, 0.740, 0.774, and 0.979, respectively. Accuracy, precision, recall, and AUC of internal
validation for soft voting are 0.962, 0.964, 0.964, and 0.991, respectively. Accuracy, precision, recall, and AUC of internal validation for
soft-weighted voting are 0.923, 0.94, 0.929, and 0.993, respectively. (C) Accuracy, precision, recall, and AUC of external validation for stacking
are 0.679, 0.668, 0.679, and 0.978, respectively. Accuracy, precision, recall and AUC of external validation for soft voting are 0.893, 0.94, 0.893,
and 0.99, respectively. Accuracy, precision, recall, and AUC of external validation for soft-weighted voting are 0.893, 0.94, 0.893, and 0.992,
respectively. (D) The ROC curve of internal and external validation for the stacking model based on multi-organ fusion strategy. (E) The
confusion matrix of external validation for the stacking model, the mispredictions occurred 7 to 12 days and 18 to 24 days after death. (F) The
ROC curve of internal and external validation for the soft voting model based on multi-organ fusion strategy. (G) The confusion matrix of
external validation for the soft voting model. The external validation samples were predicted incorrectly at 7, 9, and 24 days of PMI. (H) The ROC
curve of internal and external validation for the soft-weighted voting model based on multi-organ fusion strategy. (I) The confusion matrix of
external validation for the soft-weighted voting model. The samples were mispredicted at 7, 9, and 24 days.
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TABLE 4 The summary of all the optimal models is based on single organ sub-models, single organ ensemble models, and multi-organ fusion
strategy.

Organ Best model Internal validation External validation

ACCa PREb RECc AUC ACC PRE REC AUC

Lung SFS + RF 0.769 0.81 0.798 0.948 0.607 0.690 0.607 0.919

LASSO + soft weighted voting 0.808 0.827 0.833 0.949 0.571 0.536 0.571 0.941

Liver SFS + RF 0.692 0.732 0.75 0.9 0.536 0.574 0.536 0.865

RFE + soft weighted voting 0.654 0.56 0.595 0.924 0.464 0.474 0.464 0.901

Kidney LASSO + RF 0.808 0.76 0.786 0.962 0.714 0.798 0.714 0.939

LASSO + soft weighted voting 0.808 0.767 0.786 0.974 0.643 0.683 0.643 0.94

Skeletal muscle RFE + RF 0.769 0.762 0.786 0.951 0.679 0.649 0.679 0.912

SFS + soft weighted voting 0.731 0.738 0.786 0.966 0.643 0.735 0.643 0.91

Multi-organ fusion Stacking 0.692 0.74 0.774 0.979 0.679 0.668 0.679 0.978

Soft voting 0.962 0.964 0.964 0.991 0.893 0.94 0.893 0.99

Soft weighted voting 0.923 0.94 0.929 0.993 0.893 0.94 0.893 0.992

aACC represents accuracy.
bPRE represents precision.
cREC represents recall.

TABLE 5 Comparison of lab-on-chip and traditional protein detection methods.

Lab-on-chip Traditional methods

Western-blotting ELISA Protein mass spectrometry

Operations Simplify Complex Complex Complex

Sample consumption Minimal Major Major Minimal

Expenditure Cheap Cheap Cheap Expensive

Speed Less than 30 min Slow Fast Slow

Equipment Only 2,100 Bioanalyzer Variety Few Variety

Identify particular protein No Yes Yes Yes

Quantitation Automatic Semiquantitative Semiquantitative Automatic

High throughput Yes No No Yes

Data processing Use machine learning Manual analysis Manual analysis Use machine learning

Predict performance Excellent Poor Poor Good

Witnessed inspections Yes No Yes No

Furthermore, the multi-organ fusion strategy can significantly
improve the performance of PMI prediction.
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